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Note to Readers
This book introduces beginners to the principles of machine language: what it

is, how it works, and how to program with it.

It is based on an intensive two-day course on machine language that has been

presented many times over the past five years.

Readers of this book should have a computer on hand: students will learn by

doing, not just by reading. Upon completing the tutorial material in this book, the

reader will have a good idea of the fundamentals of machine language. There will

be more to be learned; but by this time, students should understand how to adapt

other material from books and magazines to their own particular computers.

LIMITS OF LIABILITY AND

DISCLAIMER OF WARRANTY

The author and publisher of this book have used their best efforts in preparing

this book and the programs contained in it. These efforts include the development,

research, and testing of the programs to determine their effectiveness. The author

and the publisher make no warranty of any kind, expressed or implied, with regard

to these programs, the text, or the documentation contained in this book. The

author and the publisher shall not be liable in any event for claims of incidental

or consequential damages in connection with, or arising out of, the furnishing,

performance, or use of the text or the programs.

Note for Commodore 128 Owners

The Commodore 128 is three machines in one: a Commodore 64, a Commodore

128, and a CP/M machine. You may select any of the three at any time.

If you choose the Commodore 64 mode, you'll find examples within this book

that will work on your machine. The programs you write will be compatible with

other ("real") Commodore 64 computers. But you'll lose access to extra memory

and to other features of the new machine. In particular, you won't have a built-in

machine language monitor and will need to load one from tape or disk.

If you choose the Commodore 128 mode, you're working with a richer and more

powerful machine. You will have a built-in machine language monitor for speed

and convenience, and access to new features such as 80 columns, with extra

complexity. There are new rules to be learned. This book contains extra material

to enable you to cope with the new features of the C128.

If you choose CP/M mode, you will be in an environment that is quite different

from other Commodore machines. This book, working with the 64 or 128 mode,

can teach you principles of machine language and skills which may be carried to

other computer environments, including CP/M. But it will not teach you CP/M itself

or CP/M's machine language.
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A Commodore 128 owner can read each chapter of this book twice, if desired.

The first time, the exercises for the Commodore 64 can be worked through; the

second time, those for the 128 can be used. The principles are the same; the

code is similar; but the 128 often calls for a little more detailed work.

If you wish to learn machine language for the Commodore 128, please read the

Introduction in Appendix E, under Exercises for the Commodore 128. It will give

you some starting facts about your machine. There is more information on the

128 in the latter section of Appendix B and elsewhere, but don't try to read it all

at the start. It will be there when you need it.
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Preface
This book is primarily tutorial in nature. It contains, however, extensive reference

material, which the reader will want to continue to use.

No previous machine language experience is required. It is useful if the reader

has had some background in programming in other languages, so that concepts

such as loops and decisions are understood.

Beginners will find that the material in this book moves at a fast pace. Stay with

it; if necessary, skip ahead to the examples and then come back to reread a difficult

area.

Readers with some machine language experience may find some of the material

too easy; for example, they are probably quite familiar with hexadecimal notation

and don't need to read that part. If this is the case, skip ahead. But do enter all

the programming projects; if you have missed a point, you may spot it while doing

an exercise.

Programming students learn by doing. The beginner needs to learn simple things

about his or her machine in order to feel in control. The elements that are needed

may be itemized as:

• Machine language. This is the objective, but you can't get there without the

next two items.

• Machine architecture. All the machine language theory in the world will have

little meaning unless the student knows such things as where a program may

be placed in memory, how to print to the screen, or how to input from the

keyboard.

• Machine language tools. The use of a simple machine language monitor to

read and change memory is vital to the objective of making the computer do

something in machine language. Use of a simple assembler and elements of

debugging are easy once you know them; but until you know them, it's hard

to make the machine do anything.

Principles of sound coding are important. They are seldom discussed explicitly,

but run as an undercurrent through the material. The objective is this: it's easy to

do things the right way, and more difficult to do them the wrong way. By introducing

examples of good coding practices early, the student will not be motivated to look

for a harder (and inferior) way of coding.

It should be pointed out that this book deals primarily with machine language,

not assembly language. Assembler programs are marvellous things, but they are

ix



too advanced for the beginner. I prefer to see the student forming an idea of how

the bytes of the program lie within memory. After this concept is firmly fixed in

mind, he or she can then look to the greater power and flexibility offered by an

assembler.
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Introduction
Why learn machine language? There are three reasons. First, for speed; ma

chine language programs are fast. Second, for versatility; all other languages are

limited in some way, but not machine language. Third, for comprehension; since

the computer really works in machine language only, the key to understanding

how the machine operates is machine language.

Is it hard? Not really. It's finicky, but not difficult. Individual machine language

instructions don't do much, so we need many of them to do a job. But each

instruction is simple, and anyone can understand it if he or she has the patience.

Some programmers who started their careers in machine language find "higher

level" languages such as BASIC quite difficult by comparison. To them, machine

language instructions are simple and precise, whereas BASIC statements seem

vague and poorly defined by comparison.

Where will this book take you? You will end up with a good understanding of

what machine language is, and the principles of how to program in it. You won't

be an expert, but you'll have a good start and will no longer be frightened by this

seemingly mysterious language.

Will the skills you learn be transportable to other machines? Certainly. Once

you understand the principles of programming, you'll be able to adapt. If you were

to change to a non-Commodore machine that used the 6502 chip (such as Apple

or Atari), you'd need to learn about the architecture of these machines and about

their machine language monitors. They would be different, but the same principles

would apply on all of them.

Even if you change to a computer that doesn't use a chip from the 6502 family,

you will be able to adapt. As you pick through the instructions and bits of the

Commodore machine, you will have learned about the principles of all binary

computers. You will need to learn the new microprocessor's instruction set, but it

will be much easier the second time around.

Do you need to be a BASIC expert before tackling machine language? Not at

all. This book assumes you know a little about programming fundamentals: loops,

branching, subroutines, and decision making. But you don't need to be an ad

vanced programmer to learn machine language.
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1
First

Concepts

This chapter discusses:

• The inner workings of microcomputers

• Computer notation: binary and hexadecimal

• The 650x's inner architecture

• Beginning use of a machine language monitor

• A computer's "memory layout"

• First machine language commands

• Writing and entering a simple program
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The Inner Workings of Microcomputers

All computers contain a large number of electrical circuits. Within any

binary computer, these circuits may be in only two states: "on" or "off."

Technicians will tell you that "on" usually means full voltage on the circuit

concerned, and "off" means no voltage. There's no need for volume control

adjustments within a digital computer: each circuit is either fully on or fully

off.

The word "binary" means "based on two," and everything that happens

within the computer is based on the two possibilities of each circuit: on or

off. We can identify these two conditions in any of several ways:

ON or OFF

TRUE or FALSE

YES or NO

1 orO

The last description, 1 or 0, is quite useful. It is compact and numeric. If

we had a group of eight circuits within the computer, some of which were

"on" and others "off," we could describe their conditions with an expression

such as:

11DDD111

This would signify that the two leftmost wires were on, the next three off,

and the remaining three on. The value 11000111 looks like a number; in

fact, it is a binary number in which each digit is 0 or 1. It should not be

confused with the equivalent decimal value of slightly over 11 million; the

digits would look the same, but in decimal each digit could have a value

from 0 to 9. To avoid confusion with decimal numbers, binary numbers

are often preceded by a percent sign, so that the number might be shown

asZllDDDlill.

Each digit of a binary number is called a bit, which is short for "binary

digit." The number shown above has eight bits; a group of eight bits is a

byte. Bits are often numbered from the right, starting at zero. The right-

hand bit of the above number would be called "bit 0," and the left-hand

bit would be called "bit 7." This may seem odd, but there's a good math

ematical reason for using such a numbering scheme.
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The Bus

It's fairly common for a group of circuits to be used together. The wires

run from one microchip to another, and then on to the next. Where a group

of wires are used together and connect to several different points, the
group is called a bus (sometimes spelled "buss").

The PET, CBM, and VIC-20 use a microprocessor chip called the 6502.

The Commodore 64 uses a 6510. The Commodore B series uses a 6509

chip, and the Commodore PLUS/4 uses a chip called 7501. All these chips
are similar, and there are other chips in the same family with numbers like

6504; every one works on the same principles, and we'll refer to all of
them by the family name 650x.

Let's take an example of a bus used on any 650x chip. A 650x chip has

little built-in storage. To get an instruction or perform a computation, the

650x must call up information from "memory"—data stored within other
chips.

The 650x sends out a "call" to all memory chips, asking for information.

It does this by sending out voltages on a group of sixteen wires called the

"address bus." Each of the sixteen wires may carry either voltage or no

voltage; this combination of signals is called an address.

Every memory chip is connected to the address bus. Each chip reads the

address, the combination of voltages sent by the processor. One and only

one chip says, "That's me!" In other words, the specific address causes

650x

—*~

—

\

*~

I I I

\
MEMORY

CHIP

—^

I I I

\

MEMORY

—^

I I I

in

Figure 1.1 Address bus connecting 650x & 3 chips
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that chip to be selected; it prepares to communicate with the 650x. All

other chips say, "That's not me!" and will not participate in data transfer.

The Data Bus

Once the 650x microprocessor has sent an address over the address bus

and it has been recognized by a memory chip, data may flow between

memory and 650x. This data is eight bits (it flows over eight wires). It

might look like this:

OlDllOll

The data might flow either way. That is, the 650x might read from the

memory chip, in which case the selected memory chip places information

onto the data bus which is read by the microprocessor. Alternatively, the

650x might wish to write to the memory chip. In this case, the 650x places

information onto the data bus, and the selected memory chip receives the

data and stores it.

650x

-ADDRESS BUS-

DATA BUS

MEMORY

CHIP

("SELECTED"]

in

MEMORY

CHIP

(NOT

SELECTED)

in

MEMORY

CHIP

(NOT

SELECTED)

Figure 1.2 Two-way data bus

All other chips are still connected to the data bus, but they have not been

selected, so they ignore the information.

The address bus is accompanied by a few extra wires (sometimes called
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the control bus) that control such things as data timing and the direction
in which the data should flow: read or write.

Number Ranges

The address bus has sixteen bits, each of which might be on or off. The

possible combinations number 65536 (two raised to the sixteenth power).

We then have 65536 different possibilities of voltages, or 65536 different
addresses.

The data bus has eight bits, which allows for 256 possibilities of voltages.

Each memory location can store only 256 distinct values.

It is often convenient to refer to an address as a decimal number. This is

especially true for PEEK and POKE statements in the BASIC language.

We may do this by giving each bit a "weight." Bit zero (at the right) has

a weight of 1; each bit to the left has a weight of double the amount, so

that bit 15 (at the left) has a weight of 32768. Thus, a binary address such
as

DDD1DD1D1D1D11DD

has a value of 4096 + 512+128 + 32 + 8 + 4 or 4780. A POKE to 4780

decimal would use the above binary address to reach the correct part of
memory.

128 64 32 16 8 4 2 1

EIGHT BITS

32768 16384 8192 4096 20481024
XXX

512 256 128 64 32 16 8 4

SIXTEEN BITS

Figure 1.3

Direct conversion between decimal and binary is seldom needed. Such

conversions usually pass through an intermediate number system, called
hexadecimal.

Hexadecimal Notation

Binary is an excellent system for the computer, but it is inconvenient for

most programmers. If one programmer asks another, "What address should
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I use for some activity?", an answer such as "Address

&DDDlDDlDlDlDllDDlf might be correct but would probably be un

satisfactory. There are too many digits.

Hexadecimal is a code used by humans to conveniently represent binary

numbers. The computer uses binary, not hexadecimal; programmers use

hexadecimal because binary is cumbersome.

To represent a binary number in hexadecimal, the bits must be grouped

together four at a time. If we take the binary value given above and split

it into groups of four, we get

DDD1 DD10 ID ID HDD

Now each group of four bits is represented by a digit as shown in the

following table:

DDDD-D

0DD1-1

DD1D-2

0011-3

D10D-4

0101-5

DllD-t

0111-7

IDDO-fl

lOOl-R

1010-A

1011-B

1100-C

1101-D

1110-E

1111-F

Thus, the number would be represented as hexadecimal IE AC. A dollar

sign is often prefixed to a hexadecimal number so that it may be clearly

recognized:$12AC.

The same type of weighting is applied to each bit of the group of four as

was described before. In other words, the rightmost bit (bit zero) has a

weight of 1, the next left a weight of 2, the next a weight of 4, and the

leftmost bit (bit three) a weight of 8. If the total of the weighted bits exceeds

nine, an alphabetic letter is used as a digit: A represents ten; B, eleven;

C, twelve; and F, fifteen.

Eight-bit numbers are represented with two hexadecimal digits. Thus,

SDl'DllDll may be written as $5B.

Hexadecimal to Decimal

As we have seen, hexadecimal and binary numbers are easily inter

changeable. Although we will usually write values in "hex," occasionally

we will need to examine them in their true binary state to see a particular

information bit.

Hexadecimal isn't hard to translate into decimal. You may recall that in

early arithmetic we were taught that the number 24 meant, "two tens and

four units." Similarly, hexadecimal 24 means "two sixteens and four units,"

or a decimal value of 36. By the way, it's better to say hex numbers as
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"two four" rather than "twenty-four," to avoid confusion with decimal val
ues.

The formal procedure, or algorithm, to go from hex to decimal is as follows.

Step 1: Take the leftmost digit; if it's a letter A to F, convert it to the appropriate
numeric value (A equals ID, B equals 11, and so on).

Step 2: If there are no more digits, you're finished; you have the number. Stop.

Step 3: Multiply the value so far by sixteen. Add the next digit to the result,
converting letters if needed. Go back to step 2.

Using the above steps, let's convert the hexadecimal number $15 AC.

Step 1: The leftmost digit is 1.

Step 2: There are more digits, so we'll continue.

Step 3. 1 times Ifc is It, plus E gives Ifl.

Step 2: More digits to come.

Step 3: Ifl times It is Eflfl, plus ID (for A) gives E^fl.

Step 2: More digits to come.

Step 3: ERfl x It is 47tfl, plus IE (for C) gives 47flD.

Step 2: No more digits: 47flD is the decimal value.

This is easy to do by hand or with a calculator.

Decimal to Hexadecimal

The most straightforward method to convert from decimal to hexadecimal

is to divide repeatedly by 16; after each division, the remainder is the next

hexadecimal digit, working from right to left. This method is not too well

suited to small calculators, which usually don't give remainders. The fol

lowing fraction table may offer some help:

.DQDD-D .55DD-4 .5DDD-fl .75DD-C

.Dt55-1 .3155-5 .5kS5-q .fllS5-D

.1550-5 .375D-b .fcS5D-A .fl75D-E

.1375-3 .4375-7 .tfl?5-B .R375-F

If we were to translate 4780 using this method, we would divide by 16,

giving 298.75. The fraction tells us the last digit is C; we now divide 298

by 16, giving 18.625. The fraction corresponds to A, making the last two

digits AC. Next we divide 18 by 16, getting 1.125—now the last three

digits are E AC. We don't need to divide the one by 16, although that would

work; we just put it on the front of the number to get an answer of $ 15 AC.

There are other methods of performing decimal-to-hexadecimal conver-
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sions. You may wish to look them up in a book on number systems.

Alternatively, yog may wish to buy a calculator that does the job electron

ically. Some programmers get so experienced that they can do conver

sions in their heads; I call them "hex nuts."

Do not get fixed on the idea of numbers. Memory locations can always

be described as binary numbers, and thus may be converted to decimal

or hexadecimal at will. But they may not mean anything numeric: the

memory location may contain an ASCII coded character, an instruction,

or any of several other things.

Memory Elements

There are generally three types of devices attached to the memory busses

(address, data, and control busses):

• RAM: Random access memory. This is the read and write memory, where

we will store the programs we write, along with values used by the program.

We may store information into RAM, and may recall the information at any

time.

• ROM: Read only memory. This is where the fixed routines are kept within the

computer. We may not store information into ROM; its contents were fixed

650x

ADDRESS BUS

MEMORY BUS

£
RAM

(READ

AND

WRITE)

ROM

(READ

ONLY)

c

TO

OTHER

CHIPS

IA

(SPECIAL)

CONNECTIONS

TO "OUTSIDE WORLD"

Figure 1.4
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when the ROM was made. We will use program units (subroutines) stored in

ROM to do special tasks for us, such as input and output.

• I A: Interface adaptor chips. These are not memory in the usual sense; but,

these chips are assigned addresses on the address bus, so we call them

"memory-mapped" devices. Information may be passed to and from these

devices, but the information is generally not stored in the conventional sense.

IA chips contain such functions as: input/output (I/O) interfaces that serve

as connections to the "outside world"; timing devices; interrupt control sys

tems; and sometimes specialized functions, such as video control or sound

generation. IA chips come in a wide variety of designs, including the PI A

(peripheral interface adaptor), the VIA (versatile interface adaptor), the CIA

(complex interface adaptor), the VIC (video interface chip), and the SID

(sound interface device).

Within a given computer, some addresses may not be used at all. Some

devices may respond to more than one address, so that they seem to be

in two places in memory.

An address may be thought of as split in two parts. One part, usually the

high part of the address, selects the specific chip. The other part of the

address selects a particular part of memory within the chip. For example,

in the Commodore 64, the hex address $DD2D (decimal 53EflD) sets

the border color of the video screen. The first part of the address (roughly,

$DD ...) selects the video chip; the last part of the address (... EU)

selects the part of the chip that controls border color.

Microprocessor Registers
Within the 650x chip are several storage areas called registers. Even

though they hold information, they are not considered "memory" since

they don't have an address. Six of the registers are important to us. Briefly,
they are:

PC: (16 bits) The program counter tells where the next

instruction will come from.

A, X and Y (8 bits each) These registers hold data.

SR The status register, sometimes called PSW
(processor status word), tells about the re

sults of recent tests, data handling, and so

on.

S P The stack pointer keeps track of a temporary
storage area.

We will talk about each of these registers in more detail later. At the

moment, we will concentrate on the PC (program counter).
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| PC

r

L

r

L

c

i

a i

_2lJ

Y I

SR |

SP |

ADDRESS BUS

DATA BUS

65Ox CHIP

Figure 1.5

Instruction Execution
Suppose that the 650x is stopped (not an easy trick), and that there is a

certain address, say $1234, in the PC. The moment we start the micro

computer, that address will be put out to the address bus as a read address,

and the processor will add one to the value in the PC.

Thus, the contents of address $1534 will be called for, and the PC will

change to $1535. Whatever information comes in on the data bus will

be taken to be an instruction.

The microprocessor now has the instruction, which tells it to do something.

The action is performed, and the whole action now repeats for the next

DATA BUS

Figure 1.6
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instruction. In other words, address $1535 will be sent to memory, and

the PC will be incremented to $lE3t.

You can see that the processor works in the same way that most computer

languages do: an instruction is executed, and then the computer proceeds
to the next instruction, and then the next, and so on. We can change the

sequence of execution by means of a "jump" or "branch" to a new location,

but normally, it's one instruction after another.

Data Registers:A, X, and Y

Any of three registers can be used to hold and manipulate eight bits of
data. We may load information from memory into A, X, or Y; and we may
store information into memory from any of A, X, or Y.

Both "load" and "store" are copying actions. If I load A (LDA) from

address $234 5,1 make a copy of the contents of hex S3 AS into A; but

E3AS still contains its previous value. Similarly, if I store Y into $345b,

I make a copy of the contents of Y into that address; Y does not change.

The 650x has no way of moving information directly from one memory

address to another. Thus, this information must pass via A, X, or Y; we

load it from the old address, and store it to the new address.

Later, the three registers will take on individual identities. For example,

the A register is sometimes called the accumulator, since we perform

addition and subtraction there. For the moment, they are interchangeable:

we may load to any of the three, and we may store from any of them.

First Program Project
C128 note: The programming task that follows will need to be slightly

changed if you are using a Commodore 128 in C128 mode. In particular,

the program will need to be written into a different part of memory from

that which is shown below. Check Appendix E, Exercises for the Com-

modore C128, page 251 for the correct C128 coding. ra«^oB 80*oB8f

Here's a programming task: locations $D3flD and $D3fll contain in

formation. We wish to write a program to exchange the contents of the

two locations. How can we do this?

We must make up a plan. We know that we cannot transfer information

directly from memory to memory. We must load to a register, and then

store. But there's more. We must not store and destroy data in memory

until that data has been safely put away. How can we do this?
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Here's our plan. We may load one value into A (say, the contents of

$ D 3 a D), and load the other value into X (the contents of $ D 3 a 1). Then

we could store A and X back, the other way around.

We could have chosen a different pair of registers for our plan, of course:

A and Y, or X and Y. But let's stay with the original plan. We can code

our plan in a more formal way:

LDA $D3aD (bring in first value)

LDX $D3ai (bring in second value)

STA $ D 3 a 1 (store in opposite place)

STX $D3aD (and again)

You will notice that we have coded »load A" as LDA, »load X11 as

LDX, "store A11 as STA, and "store X" as STX. Every command

has a standard three-letter abbreviation called a mnemonic. Had we used

the Y register, we might have needed to use LDY and STY.

One more command is needed. We must tell the computer to stop when

it has finished the four instructions. In fact, we can't stop the computer;

but if we use the command BRK (break), the computer will go to the

machine language monitor (MLM) and wait for further instructions. We'll

talk about the MLM in a few moments.

We have written our program in a notation styled for human readability,

called assembly language. But the computer doesn't understand this no

tation. We must translate it to machine language.

The binary code forLDAis^lDlDHDl, or hexadecimal AD. That's

what the computer recognizes; that's the instruction we must place in

memory. So we code the first line:

AD BD D3 LDA $D3aD

It's traditional to write the machine code on the left, and the source code

on the right. Let's look closely at what has happened.

LDA has been translated into $AD. This is the operation code, or op

code, which says what to do. It will occupy one byte of memory. But we

need to follow the instruction with the address from which we want the

load to take place. That's address $D3aO; it's sixteen bits long, and so

it will take two bytes to hold the address. We place the address of the

instruction, called the operand, in memory immediately behind the instruc

tion. But there's a twist. The last byte comes first, so that address $ D 3 a D

is stored as two bytes: BD first and then D3.



FIRST CONCEPTS 73

This method of storing addresses—low byte first—is standard in the 650x.

It seems unusual, but it's there for a good reason. That is, the computer

gets extra speed from this "backwards" address. Get used to it; you'll see

it again, many times.

Here are some machine language op codes for the instructions we may

use. You do not need to memorize them.

LDA-AD

STA-flD

>w we car

AD

AE

flD

flE

DO

flD

fll

fll

flD

LDX-AE

STX-flE

LDY-AC

STY-flC

BRK-DD

1 complete the translation of our program.

03

03

D3

D3

LDA

LDX

STA

STX

BRK

$D3flD

$D3fll

$03fll

$D3flD

On the right, we have our plan. On the left, we have the actual program

that will be stored in the computer. We may call the right side assembly

code and the left side machine code, to distinguish between them. Some

users call the right-hand information source code, since that's where we

start to plan the program, and the left-hand program object code, since

that's the object of the exercise—to get code into the computer. The job

of translating from source code to object code is called assembly. We

performed this translation by looking up the op codes and translating by
hand; this is called hand assembly.

The code must be placed into the computer. It will consist of 13 bytes:

AD flO D3 AE fll D3 fiD fll D3 flE SO D3 00. That's the

whole program. But we have a new question: where do we put it?

Choosing a Location

We must find a suitable location for our program. It must be placed into

RAM memory, of course, but where?

For the moment, we'll place our program into the^cassette buffer, starting

at address $D33C (decimal fl^fl). That's a goodplace to pufshort test
2 programs, which is what we will be writing for a while.

J3.15 — *- $0600 d<tsjinzl 3-814
Now that we've made that decision, we face a new hurdle: how do we get

the program in there? To do that, we need to use a machine language
monitor.
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Monitors: What They Are

All computers have a built-in set of programs called an operating system

that gives the machine its style and basic capabilities. The operating sys

tem takes care of communications—reading the keyboard, making the

proper things appear on the screen, and transferring data between the

computer and other devices, such as disk, tape, or printer.

When we type on the computer keyboard, we use the operating system,

which detects the characters we type. But there's an extra set of programs

built into the computer that must decide what we mean. When we are

using the BASIC language, we'll be communicating with the BASIC mon

itor, which understands BASIC commands such as NEW, LORD, LIST,

or RUN. It contains editing features that allow us to change the BASIC

program that we are writing.

But when we switch to another system—often another language—we'll

need to use a different monitor. Commands such as NEW or LIST don't

have any meaning for a machine language program. We must leave the

BASIC monitor and enter a new environment: the machine language mon

itor. We'll need to learn some new commands because we will be com

municating with the computer in a different way.

The Machine Language Monitor

Most PET/CBM computers have a simple MLM (machine language mon

itor) built in. It may be extended with extra commands. The Commodore

PLUS/4 contains a very powerful MLM. The VIC-20 and Commodore 64

do not have a built-in MLM, but one can be added. Such a monitor may

be either loaded into RAM or plugged in as a cartridge. Monitors may be

purchased or obtained from user clubs.

Most machine language monitors work in a similar way, and have about

the same commands. To proceed, you'll need an MLM in your computer.

Use the built-in one, plug it in, load it in, or load and run ... whatever the

instructions tell you. On a PET/CBM machine, typing the command SYS

4 will usually switch you to the built-in monifoh After an MLM has been

added to a VIC or Commodore 64, the command SYS fi will usually get

you there. On the Commodore PLUS/4, the BASIC command MONITOR

will bring the monitor into play.



FIRST CONCEPTS 75

C128 note: When the Commodore 128 is in C64 mode, it needs to have
a monitor program loaded, as does the Commodore 64. When in the C128

mode, however, the command MONITOR will bring the monitor into play.

There will be slight differences in the screen display of this monitor. <Apy

pendix H contains information on the various monitor commands ana
formats.

Caution: Occasionally, you may run across a monitor which uses—and
changes—memory locations in the address range $D33C to $D3FD,

which is where we will put many of our programs. There is a version of

program MICROMON which does this. Such a monitor will create problems

for us as we try to work the following examples, since our programs and
data will be changed by the monitor as we use it. The built-in monitors
will certainly not have any problem. If you encounter any problems with

the following examples, and it appears that your program is being mys
teriously changed, switch to another machine language monitor.

Monitor Display

The moment you enter the MLM, you'll see a display that looks something
like this:

B*

PC SR AC XR YR SP

. ; DDD5 5D 54 E3 bA Ffl

The cursor will be flashing to the right of the period on the bottom line.
The exact appearance of the screen information may vary according to
the particular monitor you are using. Other material may be displayed—

in particular, a value called IRQ—which we will ignore for the time being.

The information you see may be interpreted as follows:

B*—we have reached the MLM by means of a "break." More about that later.

PC—The value shown below this title is the contents of the program counter.

This indicates where the program "stopped." In other words, if the value shown
is address DDD5, the program stopped at address DDD4, since the PC is
ready to continue at the following address. The exact value (DDD4 versus
DDD5) may vary depending on the particular MLM.

S R—The value shown below shows the status register, which tells us the results

of recent tests and data operations. We'd need to split apart the eight bits and

look at them individually to establish all the information here; we will do this at
a later time.
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AC, XR, and YR—The values shown below these three titles are the contents

of our three data registers: A, X, and Y.

SP—The value shown below is that of the stack pointer, which indicates a

temporary storage area that the program might use. A value of Ffl, for example,

tells us that the next item to be dropped into the stack area would go to address

$DlFfl in memory. More on this later.

You will notice that the display printed by the monitor (called the register

display) shows the internal registers within the 650x chip. Sometimes there

is another item of information, titled IRQ, in this display. It doesn't belong,

since it does not represent a microprocessor register. IRQ tells us to what

address the computer will go if an interrupt occurs; this information is

stored in memory, not within the 650x.

M L M Commands
The machine language monitor is now waiting for you to enter a command.

The old BASIC commands don't work any more; LIST or NEW or SYS

are not known to the MLM. We'll list some popular commands in a moment.

First, let's discuss the command that takes us back to BASIC.

X exits the MLM and returns to the BASIC monitor. Try it. Remember

to press RETURN after you've typed the X, of course. You will return to

the BASIC system, and the BASIC monitor will type READY. You're back

in familiar territory. Now go back to the monitor with SYS^orSYSflor

MONITOR as the case may be. BASIC ignores spaces: it doesn't matter

if you type SYSfl or SYS fi; just use the right number for your machine

(A for PET/CBM, fl for VIC/64).

Remember: BASIC commands are no good in the MLM, and machine

language monitor commands (such as X) are no good in BASIC. At first,

you'll give the wrong commands at the wrong time because it's hard to

keep track of which monitor system is active. If you type in an MLM

command when you're in BASIC, you'll probably get a ?SYNTAX ERROR

reply. If you type in a BASIC command when you're in the machine lan

guage monitor, you'll probably get a question mark in the line you typed.

Some other MLM commands are as follows:

M 1DDD 1D1D (display memory from hex 1DDD to

1D1D)

R (display registers ... again!)
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G D 3 3 C (go to D 3 3 C and start running a

program)

Do not enter this last (G) command. There is no program at address

$D33C yet, so the computer would execute random instructions and we
would lose control.

There are two other fundamental instructions that we won't use yet: they

are S for save and L for load. These are tricky. Until you learn about
BASIC pointers (Chapter 6), leave them alone.

Displaying Memory Contents

You'll notice that there is a command for displaying the contents of mem
ory, but there doesn't seem to be one for changing memory. You can do
both, of course.

Suppose we ask to display memory from $lDDOto$lDlD with the
command

M 1DDD 1D1D

Be careful that you have exactly one space before each address. You
might get a display that looks something like this:

.:1DDD 11 3A E4 DD El 35 04 AA

.rlDDfl ED 4A 4R 4D 5D 4E 55 54

.:1D1D 54 45 SE 4b 4R 45 4C 44

C128 note: The above display will differ slightly if you are using C128.

The section Exercises for the Commodore 128, in Appendix E, gives

details.

The four-digit number at the start of each line represents the address in

memory being displayed. The two-digit numbers to the right represent the

contents of memory. Keep in mind that all numbers used by the machine

language monitor are hexadecimal.

In the example above, $ 1D D D contains a value of$ll;$lDDl contains

a value of $3 A; and so on, until $1DD7, which contains a value of $AA.

We continue with address UDDfl on the next line. Most monitors show

eight memory locations on each line, although some VIC-20 monitors show

only five because of the narrow screen.

We asked for memory locations up to address $ 1D1 □ only; but we get

the contents of locations up to $1D17 in this case. The monitor always

fills out a line, even if you don't ask for the extra values.
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Changing Memory Contents

Once we have displayed the contents of part of memory, we can change

that part of memory easily. All we need to do is to move the cursor until

it is positioned over the memory contents in question, type over the value

displayed, and then press RETURN.

This is quite similar to the way BASIC programs may be changed; you

may type over on the screen, and when you press RETURN, the new line

replaces the old. The general technique is called screen editing.

If you have displayed the contents of memory, as in the example above,

you might like to change a number of locations to zero. Don't forget to

strike RETURN so that the change on the screen will take effect in mem

ory. Give another M memory display command to confirm that memory

has indeed been changed.

Changing Registers

We may also change the contents of registers by typing over and pressing

RETURN. You may take a register display with command R, and then

change the contents of PC, AC, XR, and YR. Leave the contents of SR

and SP unchanged—tricky things could happen unexpectedly if you ex

periment with these two.

Entering the Program

C128 note: Remember to check Exercises for the Commodore 128, in

Appendix E, for the appropriate code.

We might rewrite our program one last time, marking in the addresses

that each instruction will occupy. You will recall that we have decided to

put our program into memory starting at address $D33C (part of the

cassette buffer).

D33C AD fiD D3 LDA $D3fiD

D33F AE fll D3 LDX $D3fll

Q34E flD fll D3 STA $D3fll

D345 flE flD D3 STX $D3flD

DD
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Remember that most of the above listing is cosmetic. The business end

of the program is the set of two-digit hex numbers shown to the left. At

the extreme left, we have addresses—that's information, but not the pro

gram. At the right, we have the "source code"—our notes on what the
program means.

How do we put it in? Easy. We must change memory. So, we go to the

MLM, and display memory with

M D33C D34fl

We might have anything in that part of memory, but we'll get a display

that looks something like

.:D33C xx xx xx xx xx xx xx xx

xx xx xx xx xx xx xx xx

You won't see "xx," of course; there will be some hexadecimal value

printed for each location. Let's move the cursor back and change this
display so that it looks like this:

.:D33C AD flD D3 RE fll D3 flD fll

D3 flE flD D3 DD xx xx xx

Don't type in the "xx"—just leave whatever was there before. And be

sure to press RETURN to activate each line; if you move the cursor down

to get to the next line without pressing RETURN, the memory change
would not happen.

Display memory again (M D33C D34fl) and make sure that the

program is in place correctly. Check the memory display against the pro

gram listing, and be sure you understand how the program is being tran

scribed into memory.

If everything looks in order, you're ready to run your first machine language

program.

Preparation

There's one more thing that we need to do. If we want to swap the contents

of addresses $D3flDand$D3fil, we'd better put something into those

two locations so that we'll know that the swap has taken place correctly.

Display memory with M D3flD D3fil and set the resulting display

so that the values are

.:D3flD 11 Rq xx xx xx xx xx xx
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Remember to press RETURN. Now we may run our program; we start it

up with

GO33C

The program runs so quickly that it seems instantaneous (the run time is

less than one fifty thousandth of a second). The last instruction in our

program was BRK for break, and that sends us straight to the MLM with

a display of *B (for break, of course) plus all the registers.

Nothing seems to have changed. But wait. Look carefully at the register

display. Can you explain the values you see in the &C and XR registers?

Can you explain the PC value?

Now you may display the data values we planned to exchange. Give the

memory display command M D3fiD D3fil—have the contents of

the two locations changed?

They'd better have changed. Because that's what the writing of our pro

gram was all about.

Things You Have Learned

—Computers use binary. If we want to work with the inner fabric of the computer,

we must come to terms with binary values.

—Hexadecimal notation is for humans, not for computers. It's a less clumsy

way for people to cope with binary numbers.

—The 650x microprocessor chip communicates with memory by sending an

address over its memory bus.

—The 650x has internal work areas called registers.

—The program counter tells us the address from which the processor will get

its next instruction.

—Three registers, called A, X, and Y, are used to hold and manipulate data.

They may be loaded from memory, and stored into memory.

—Addresses used in 650x instructions are "flipped:" the low byte comes first,

followed by the high byte.

—The machine language monitor gives us a new type of communications path

into the computer. Among other things, it allows us to inspect and change

memory in hexadecimal.

Detail: Program Execution
When we say G D33C to start up our program, the microprocessor goes

through the following steps:
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1. It asks for the contents of $D33C; it receives SAD, which it recognizes as

the op code "load A." It realizes that it will need a two-byte address to

go with this instruction.

2. It asks for the contents of $D33D, and then $D33E. As it receives the

values of $flD and $D3 it gathers them into an "instruction address."

3. The microprocessor now has the whole instruction. The PC has moved along

to $D33F. The 650x now executes the instruction. It sends address $D3flD

to the address bus; when it gets the contents (perhaps $11), it delivers this

to the A register. The A register now contains $11.

4. The 650x is ready to take on the next instruction; the address $D33F goes

from the PC out to the address bus; and the program continues.

Questions and Projects
Do you know that your computer has a part of memory called "screen

memory"? Whatever you put into that part of memory appears on the

screen. You'll find this described in BASIC texts as "screen POKE-ing."

The screen on the PET/CBM is at SflDDD and up; on the VIC, it's often

(but not always) at $1EDD and up; on the Commodore 64, it's usually at

$D4DD; and on the PLUS/4, it may be found at $DCDD. With the C128,

the 40-column screen is at $04 DD, but if you are in the 80-column mode,

the screen is not mapped directly to memory.

If you write a program to store information in the screen memory address,

the appropriate characters will appear on the screen. You might like to try

this. You can even "swap" characters around on the screen, if you wish.

Two pitfalls may arise. First, you might write a perfect program that places

information near the top of the screen; then, when the program finishes,

the screen might scroll, and the results would disappear. Second, the VIC

and Commodore 64 use color, and you might inadvertently produce white-

on-white characters; these are hard to see.

Here's another question. Suppose I asked you to write a program to move

the contents of five locations, $D3flD to $03fl4, in an "end-around"

fashion, so that the contents of $D3flD moved to $D3fil, $D3fll to

$D3flE, and so on, with the contents of $D3fl4 moved to $D3flD. At

first glance, we seem to have a problem: we don't have five data registers,

we have only three (A, X, and Y). Can you think of a way of doing the

job?
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Calling Machine Language Subroutines
In BASIC, a "package" of program statements called a subroutine may

be brought into action with a GO SUB command. The subroutine ends with

a RETURN statement, which causes the program to return to the calling

point, i.e., the statement immediately following GOSUB.

The same mechanism is available in machine language. A group of in

structions may be invoked with a jump subroutine (JSR) command. The

650x goes to the specified address and performs the instructions given

there until it encounters a return from subroutine (RTS) command, at

which time it resumes execution of instructions at the calling point: the

instruction immediately following JSR.

For example, if at address $D33C I code the instruction JSR $1E34,

the 650x will change its PC to $1E34 and start to take instructions from

that address. Execution will continue until the instruction RTS is encoun

tered. At this time, the microprocessor would switch back to the instruction

following the JSR, which in this case would be address $D33F (the JSR

instruction is three bytes long).

As in BASIC, subroutines may be "nested;" that is, one subroutine may

call another, and that subroutine may call yet another. We will deal with

subroutine mechanisms in more detail later. For the moment, we'll concern

ourselves with calling prewritten subroutines.

Prewritten Subroutines

A number of useful subroutines are permanently stored in the ROM mem

ory of the computer. All Commodore machines have a standard set of

subroutines that may be called up by your programs. They are always at the

same addresses, and perform in about the same way regardless of which

Commodore machine is used: PET, CBM, Commodore 64, PLUS/4, Com

modore 128, or VIC-20. These routines are called the kernal subroutines.

Details on them can be found in the appropriate Commodore reference

manuals, but we'll give usage information here.

The original meaning of the term kernal seems to be lost in legend. It was

originally an acronym, standing for something like "Keyboard Entry Read,

Network and Link." Today, it's just the label we apply to the operating

system that makes screen, keyboard, other input/output and control mech

anisms work together. To describe this central control system, we might

choose to correct the spelling so as to get the English word, "kernel." For

now, we'll use Commodore's word.
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The three major kernal subroutines that we will deal with in the next few

chapters are shown here:

Address Name What it does

$FFDE CHROUT Outputs an ASCII character

$FFE4 GETIN Gets an ASCII character

$FFE1 STOP Checks the RUN/STOP key

With the first two subroutines, we can input and output data easily. The

third allows us to honor the RON/STOP key, to guard against certain types

of programming error. In this chapter, we'll use CHROUT to print infor

mation to the screen.

C H RO UT—The Output Subroutine

The CHROUT subroutine at address $FFD2 may be used for all types

of output: to screen, to disk, to cassette tape, or to other devices. It's

similar to PRINT and PRINT#, except that it sends only one character.

For the moment, we'll use CHROUT only for sending information to the

computer screen.

Subroutine: CHROUT

Address: $FFDE

Action: Sends a copy of the character in the A register to the

output channel. The output channel is the computer screen

unless arrangements have been made to switch it.

The character sent is usually ASCII (or PET ASCII). When sent to the

screen, all special characters—graphics, color codes, cursor move

ments—will be honored in the usual way.

Registers: All data registers are preserved during a CHROUT call.

Upon return from the subroutine, ft, X, and Y will not have changed.

Status: Status flags may be changed. In the most recent Commodore

machines, the C (carry) flag indicates some type of problem with output.

To print a letter X on the screen, we would need to follow these steps:

1. Bring the ASCII letter X ($5fl) into the A register;

2. JSR to address $FFDE.
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Why Not POKE

It may seem that there's an easier way to make things appear on the

screen. We might POKE information directly to screen memory; in ma

chine language, we would call this a store rather than a POKE, of course.

The moment we change something in this memory area, the information

displayed on the screen will change. Screen memory is generally located

at the following addresses:

PET/CBM:

Commodore 64 and 128:

264/364

VIC-20:

$fiODD

$D4DD

$DCDD

$1EDD

and

and

and

and

up

up

up

up

(decimal

(decimal

(decimal

(decimal

327tfl)

1DS4)

3D72)

7tflD)

The screen memory of the VIC-20 in particular may move around a good

deal, depending on how much additional RAM memory has been fitted.

Occasionally, screen POKEs are the best way to do the job. But most of

the time we'll use the CHROUT, $FFD2 subroutine. Here are some of

the reasons why:

• As with PRINT, we won't need to worry about where to place the next

character; it will be positioned automatically at the cursor point.

• If the screen is filled, scrolling will take place automatically.

• Screen memory needs special characters. For example, the character X has

a standard ASCII code of $5fi, but to POKE it to the screen we'd need to

use the code $lfl. The CHROUT subroutine uses $5fl.

• Screen memory may move around, depending on the system and the pro

gram. The POKE address would need to change; but CHROUT keeps

working.

• Special control characters are honored: $DD for RETURN, to start a new

line; cursor movements; color changes. We can even clear the screen by

loading the screen-clear character ($^3) and calling $FFDE.

• To POKE the screen of the Commodore machines with color, the corre

sponding color nibble memory must also be POKEd (see the appropriate

memory map in Appendex C). With the subroutine at $FFD2, color is set

automatically.

A Print Project

Let's write some code to print the letter H on the screen. Once again, we'll

use address $D33C, the cassette buffer, to hold our program. Reminder:

be sure to have your monitor loaded and ready before you start this project.
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First, the plan; we lay out the instructions

LD&

We're using a new symbol (#) to signal a special type of information. It

goes by a variety of names: pounds sign, sharp, hash mark, or numbers

sign. A more formal name for the symbol is octothorpe, meaning "eight

points." Whatever you call it, the symbol means "the following information

is not an address, it's a value." In other words, we don't want the computer

to go to address $4fl, we want it to load the A register with the value

$4 fl, which represents the ASCII letter H. This type of information access

is called immediate addressing. In other words, take the information im

mediately, don't go to memory for it.

JSR $FFDE

The previous instruction brought the letter H into the A register; this one

prints it to the screen. Now all we need to do is quit. BRK takes us to the

machine language monitor.

Monitor Extensions

We could repeat the steps of the previous chapter: hand-assembling the

source code into machine language, and then placing it into memory. We

would need to know the instruction codes, and then do a careful translation.

But there's an easier way.

Most machine language monitors contain extra commands to help us do

this type of mechanical translation. We'll use the assembler feature of

these monitors.

Most monitors contain the assemble (A) command. The notable excep

tion is the built-in monitors within the PET/CBM; these, however, can be

extended by loading in a "monitor extension" program such as Supermon.

The Commodore PLUS/4 series contains an extended monitor, which
includes the A command.

These assemblers are often called nonsymbolic assemblers. This means

that whenever an address is needed, you must furnish that exact address.

You cannot type in a name such as CHROUT and expect the tiny assem

bler to know what address that represents; instead, you must type $ FFD 2.

C128 note: Remember to check Exercises for the Commodore 128, in

Appendix E, for the appropriate coding, and information on how the C128
assembler works.
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Load your monitor or monitor extension. Do any setup that may be needed.

Then type the following monitor command:

A D33C LDA #$4fl

We are asking the computer to assemble (A) at address $D33C (note

we don't use the $ here) the command LDA, Load A, the immediate value

of $4fl, which represents the ASCII letter H. When you press RETURN

after entering this line, the computer may do either of two things:

1. It may do nothing except print a question mark somewhere on the line. The

question mark indicates an error in your coding. If the question mark appears

directly after the letter A, your monitor does not understand the A assemble

instruction; get another monitor or properly set up the one you have.

2. Or, it will correctly translate your instruction, and put the object code into

memory starting at the address specified. In this case, that would happen

to be $AR at address $D33C and $4fl at address $D33D. It would then

help you by printing part of the next expected instruction. The computer

expects that you will type a line starting with

A D33E

It places the first part of this line on the screen to save you typing. The

screen should now look like this:

A D33C LDA #$A&

A D33E

You may now complete the instruction by typing in JSR $FFDE and

pressing RETURN. Again, the computer will anticipate your next line by

printing A D341, which allows you to type in the final command, BRK.

The screen now looks like this:

A D33C LDA #$A&

AD33E JSR $FFD5

AD341 BRK

A D345

The computer is still waiting for another instruction. We have no more

instructions, so we press RETURN to signal that we're finished.

At this point, our program is stored in memory. The instructions have been

assembled directly into place, and the object code is hopefully ready to

go.

Note that this saves us the trouble of remembering—or looking up—the

op codes for each instruction. And we don't need to keep track of how

long each instruction should be; the assembler does it for us.
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If you like, you can display memory and look at the object program with

theM D 3 3 C D 3 41. You'll see the bytes of your program in memory:

. :D33C AR A& 5D DE FF DD xx xx

The first six bytes are your program. The last two bytes don't matter: they

were whatever was in that part of memory before. We don't care what is

there, since the program will stop when it reaches the BRK ($DD) at

address $D341; it won't be concerned with the contents of memory at

$D342 or $D343.

Checking: The Disassembler
When we changed our source code into object code, we called this process

of translation assembly, and we called a program that did the job an

assembler.

Now we've written a program and it's safely stored in memory. We have

inspected memory and have seen the bytes there; but they are hard to

read. It would be convenient if we could perform an inverse assembly,

that is, take the contents of memory and translate it into source code. The

monitor has this capability, called a disassembler.

If we ask the computer to disassemble the code starting at $ D3 3 C, it will

examine the code there and establish that the contents ($ AR) correspond

to an LD A immediate command. It will then print for our information LD A

#$A fl, which is much more readable than the original two bytes, AR A fl.

Give the command D D33C and press RETURN. D stands for disas

semble, of course, and the address must follow.

The computer will now show a full screen of code. On the left is the address

followed by the bytes making up the instruction. On the right is the re

constructed source code. The screen shows much more memory than our

program needs. Again, we ignore all lines beyond address $D341, which

is the last instruction of our program. Anything following is "junk" left in

memory that the program does not use.

An interesting feature of most disassembly listings is that the cursor is left

flashing on the last line of the disassembly rather than on the line below.

When you have a large program, this allows you to type the letter D

followed by RETURN and the next part of your program will immediately

be displayed. On the other hand, if you don't want to disassemble more

code, press the cursor down key and move to a "clean" line before typing

your next instruction.
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A disassembly is a good way to check for errors. If you find an error in

the listing, you may correct that line by re-assembling it, using the ft

command once again. Minor errors may be corrected directly on the left-

hand side of the disassembly listing. In other words, suppose that you had

incorrectly coded LDft #$5fi during the assembly phase; when you per

form the disassembly, this line will show as

. , D33C AH 5fl LDA#$5fi

You recognize that the 5fl should be A fi; you may move the cursor up—

use cursor home if you wish—and type over the value on the left-hand

side. In this case, you place the cursor over the 5, type A to change the

display to A fl, and press RETURN. You will see from the display that the

problem has been fixed.

Running the Program
If necessary, move the cursor down to an empty line. Type the command

G D 3 3 C and the program will run. Again, it doesn't take long; the break

back to the MLM seems instantaneous. Where's the letter H that we were

supposed to print? It's hard to see, but it's there. Look at your G D 3 3 C

command and you'll see it.

Project for enthusiasts: Can you add to the program and print HI? The

ASCII code for the letter I is $4R. Can you add again and print HI on

a separate line? The ASCII code for a RETURN is $DD. Remember that

you can find all ASCII codes in Appendix D; look in the column marked

ASCII.

Linking with BASIC
So far we have started up our programs with a G (go) command from

the MLM, and we have terminated our programs with a BRK command

that returns us to the monitor. That's not a convenient way to run a program;

most users would prefer to say RUN out of BASIC and have the computer

do everything.

We can link to a machine language program from BASIC and when the

program is finished, it can return to BASIC and allow the BASIC program

to continue to run. The commands we need are

(BASIC) SYS—Go to a machine language subroutine at the stated address;

(Machine language) RTS—Return to whoever called this subroutine.
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Let's change our machine language program first. We must change the

BRK at the end to RTS (return from subroutine) so that when the program

is finished it will return to BASIC. If you like, you may change it directly

on the disassembly listing: disassemble and then type over the DD byte

that represents BRK with a value of bD. Press RETURN and you'll see

that the instruction has now changed to RTS. Alternatively, you may re

assemble with

A D33C LDA #$4fl

A D33E JSR $FFD2

A 0341 RTS

Now return to BASIC (using the X command). The computer will say

READY; you may now call your program with a SYS command.

Address $D33Cisfl2flin decimal. Thus, we type SYS fl5fl. When we

press RETURN, the letter H will be printed.

We're not finished. Any machine language subroutine may be called from

a BASIC program. Type NEW, which clears out the BASIC work area; our

machine language program is left untouched, since NEW is a BASIC com

mand. Now enter the following program:

1DD FOR J = l TO ID

11D SYS fiEfl

1SQ NEXT J

How many times will our program at fl E fl ($ D 3 3 C) be called? How many

times will the letter H be printed? Will they be on the same line or separate

lines? Type RUN and see.

Project for enthusiasts: Again, change the machine language program

to say HI. Use your imagination. What else would you like the computer

to say? Would you like to use colors or reverse font?

We've achieved an important new plateau: BASIC and machine language

working together, it's easier on the user, who doesn't have to learn spe

cialized monitor commands. It's easier on the programmer, too, since

things that are easy to do in BASIC can be written in that language; things

that are clumsy or slow in BASIC can be written in machine language. We

can get the best of both worlds.

Let's distinguish our three different types of subroutine calls:

GO SUB—calls a BASIC subroutine from a BASIC program.

SYS—calls a machine language subroutine from a BASIC program.

JSR—calls a machine language subroutine from machine language.
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Loops
We know how to send characters to the screen, one at a time. But long

messages, such as THE QUICK BROWN CAT . . ., might lead to te

dious coding if we had to write an instruction for each letter to be sent.

We need to set up a program loop to repeat the printing activity.

Let's write a program to print the word HELLO followed by a RETURN.

C128 note: Remember to check Exercises for the Commodore 128, in

Appendix E, for the appropriate coding.

We must store the word HELLO somewhere in memory. It doesn't matter

where, provided it doesn't conflict with anything else. I'll arbitrarily choose

address $D34Ato$D34F. We'll put it there in a moment. Remember

that the characters that make up the word HELLO (plus the RETURN)

are not program instructions; they are simple data. We must put them in

place with a memory change—we must not try to assemble them.

We will need to count the characters as we send them. We wish to send

six characters, so a count of six is our limit. Let's use the X register to

keep track of the count. First, we must set X to zero:

A D33C LDX #$DD

Note that we use the # symbol to denote an immediate value: we want

to load X with the value zero, not something from address D. Now, we'll

do something new. I want to take a character to be printed from address

$D34 A. But wait, that's only the first time around. When we come back

to this point in the loop, I want to take a character from $ D 3 A B, and then

from $03 AC, and so on.

How can we do this? It seems that we must write one address into the

LDA instruction, and that address can't change. But there is a way.

We can ask the computer to take the address we supply, and add the

contents of X or Y to this address before we use it. The computed address

is called an effective address.

Let's look at our position. The first time around the loop, X is counting the

characters and has a value of zero. If we specify our address as D 3 A A + X,

the effective address will be 03 A A. That's where we will have stored the

letter H.

When we come back around the loop—we haven't written that part yet—

X should now equal one. An address of D 3 A A + X would give an effective

address of 03 AB] the computer would go there and get the letter E. As
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we go around the loop, the letters, L, L, 0, and RETURN will be brought

in as needed.

As we enter the LD A instruction, we don't type the plus sign. Instead, we

signal indexing with a comma: LDA$D34A,X.We may use either X or

Y for indexing: they are sometimes called index registers. In this case, of

course, we use X. So we code

A D33E LDA$D34A,X

A D341 JSR $FFD5

The first time, the computer loads the contents of address $D34A (the

letter H of HELLO) and prints it. When the loop comes back here, with

X equal to one, this instruction will load the contents of $034B and print

the letter E.

The X register counts the number of letters printed, so we must add one

to the contents of X. There's a special command that will add one to the

contents of X: I NX, for increment X. A similar code, I NY, allows Y to

be incremented; and DEX (decrement X) and DEY (decrement Y) allow

X or Y to be decremented, or reduced, by one. At the moment, I NX is

the one we need for counting:

A Q3AA INX

Now we can test X to see if it is equal to six yet. The first time around, it

won't be since X started at zero and was incremented to a value of 1. If

X is not equal to six, we'll go back to $D33E and print another letter.

Here's how we code it:

A D345 CPX#$Db

A Q3A? BNE $D33E

CPX stands for compare X; note that we are testing for an immediate

value of six, so we use the # symbol. BNE means branch not equal; if X

is not equal to six, back we go to address $D33E.

A little careful thought will reveal that the program will go back five times

for a total of six times around the loop. It's exactly what we want.

Let's show the whole code, completing it with RTS:

A D33C LDX #$DD

A D33E LDA $D34A,X

A D341 JSR $FFD2

A D344 INX

A D34S CPX #$Dt

A D347 BNE $D33E

A D3^q RTS
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We may now put the characters for HELLO into memory. These are data,

not instructions, so we must not try to assemble them. Instead, we change

memory in the usual way, by displaying and then typing over. We give

the command M D 3 4 A D 3 4 F, and type over the display to show

:D34ft A& AS AC AC AT DD xx xx

By a lucky coincidence, this data fits exactly behind our program.

Everything should be ready now. Disassemble the program at $D33C

and check it. You may note that the data at $Q3AA doesn't disassemble

too well, but that's to be expected; these bytes are not instructions and

cannot be decoded.

When all looks well, return to BASIC (with . X) and try SYS flEfl. The

computer should say HELLO.

Once again, set up a BASIC loop program:

1DD FOR J = 1TO3

11D SYS flEfl

1ED NEXT J

A Comment on SAVE

If you wished to save the program to cassette tape, you'd have a problem

on the VIC or Commodore 64. The machine language program is in the

cassette buffer; a save-to-tape command would cause the contents of that

buffer to be destroyed before the program could be written to tape. Even

disk commands would not be completely safe: 4.0 BASIC disk commands

use the cassette buffer area as a work area; using these commands would

probably destroy our machine language program.

But saving the program is not the main problem. A correctly saved program

can give trouble when you try to bring it back and run it safely. The difficulty

is related to BASIC pointers, especially the start-of-variables pointer. The

problem, and how to solve it, will be discussed in some detail in Chapter

6.

A Stopgap SAVE

We can preserve short programs by making them part of DfiTR state

ments. The procedure is not difficult if screen editing is used intelligently.

We note that the program extends from $D33Cto$D34F, including the

message (HELLO) at the end. The decimal equivalents to these ad

dresses are fl E fl to fl A 7. C128 note: Appendix E, in the section Exercises
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for the Commodore 128, will give you the correct addresses and values

for doing this on the C128. Enter the following BASIC line:

FOR J = flEfl TO fl47:PRINT PEEK(J) ; :NEXT J

Study the above line. You will see that it asks BASIC to go through the

part of memory containing your machine language program, and display

the contents (in decimal notation, of course). You'll see a result that looks

something like this:

Its 0 Iflq 74 3 35 51D 555 535 EE4 t 50fi 545 qt

75 tq 7t 7t 7q 13

These are indeed the bytes that make up your program. With a little study,

you could reconstruct the lbE-D combination to be LDX #$DD, or the

7 E-bR-7 b-7 b-7 q at the end to be the word HELLO in ASCII. It looks

different when it's in decimal, but it's still the same numbers.

You may try a little skill and artistry, using screen editing to perform the

next activity, or you may just retype the numbers into data lines a shown.

Either way, arrange the numbers as follows:

5D DATA lt2,D,Iflq,74,3,35,BID,355,535,254,b

bD DATA EDfl.E^^t^E^q^t^t,?^!]

We now have a copy of our program, exactly the way it appears in memory,

but stored within DATA statements. The DATA statements are part of a

normal BASIC program, of course, and will SAVE and LOAD with no

trouble at all.

We can now reconstruct our machine language program, placing it back

into memory, with a simple BASIC POKE program:

flD FOR J = fiEfl TO fl47: READ X:POKE J,X:NEXT J

Now our program is safe and sound—it handles like BASIC, but it will do

a machine language task for us as desired. Let's display the entire BASIC

program

50 DATA lt3,D, Iflq,74,3,35,510,555,535,224, t

tO DATA 50fl,5^5,qfc,75,tq,7t,7t,7q,13

flO FOR J=fl5fl TO fl47 : READ X: POKE J,X:NEXT J

100 FOR J= 1 TO 3

110 SYS fl5fl

150 NEXT J

This method of saving a machine language program is clean and trouble

free, but it becomes awkward where long programs are involved. More

advanced methods will be discussed in Chapter 6.
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Things You Have Learned

—Subroutines can be called from machine language using the JSR command.

There are several useful kernal subroutines permanently available.

—A BASIC program may call a machine language program as a subroutine:
the BASIC command is SYS. The machine language subroutine returns to

the calling point with an RTS (return from subroutine) instruction.

—The CHROUT subroutine at address $FFD2 allows output of a character,

usually to the screen. In addition to printable characters, special cursor- and

color-control characters may be sent.

—Most machine language monitors have a small assembler to help program

preparation, and a disassembler to assist in program checking.

—Immediate mode is signaled by use of the # symbol. The computer is asked

to take the value given, instead of going to a specified address for its data.

—X and Y are called index registers. We may add the contents of X or Y to a

specified address, to create an effective address that changes as the program

runs. This addition is called indexing.

—X and Y also have special instructions that increase or decrease the selected

register by one. These are called increment and decrement instructions, and

are coded INX, INY, DEX, and DEY.

Questions and Projects
Look through the table of ASCII characters in Appendix D. Note that hex

R3 is "clear screen." Write a program to clear the screen and print "HO

H0!».

You may have noticed that in our example, we had register X counting

up from zero to the desired value. What would happen if you started X at

5 and counted down? Try it if you like.

Remember that you can also include cursor movements, color codes (if

your machine has color), and other special ASCII characters. Could you

lay out the coding to draw a box? (Try it in BASIC first). Draw a box with

the word HELLO inside it.
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3
Flags, Logic,

and Input

This chapter discusses:

• Flags that hold status information

• Testable flags: Z, C, N, and V

• Signed numbers

• The status register

• First concepts of interrupt

• Logical operators: OR, AND, EOR

• The GETIN subroutine for input

• The STOP subroutine

39
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Flags
Near the end of Chapter 2, we coded a program that had the seemingly

natural sequence

CPX #$0b

BNE $

It made sense: compare X for a value of b, and if not equal, branch back.

Yet it implies something extraordinary; the two instructions are somehow

linked.

Let's flash forward for a moment. Even when you have a machine language

program running, the computer "freezes" sixty times a second. The com

puter undertakes a special activity, called interrupt processing. It stops

whatever it was doing, and switches to a new set of programs that do

several tasks: flashing the cursor, checking the keyboard, keeping the

clock up to date, and checking to see whether the cassette motor needs

power. When it's finished, it "unfreezes" the main program and lets it

continue where it left off.

This interrupt might take place between the two instructions shown above,

that is, after the CPX and before the BNE. Hundreds of interrupt instruc

tions might be executed between the two, yet nothing is harmed. The two

instructions work together perfectly to achieve the desired effect. How can

the computer do this?

The two instructions are linked by means of a flag—a part of the 650x

that records that something has happened. The CPX instruction tests X

and turns a special flag on or off to signal how the comparison turned out:

equal or unequal. The BNE instruction tests that flag. If it's on (meaning

equal), no branch will take place and the program will continue with the

next instruction; if it's off (meaning not equal), a branch will take place.

In other words, some instructions leave a "trail" of status information; other

instructions can check this information. The status information is called

"flags." There are four flags that may be tested: Z, C, N, and V. They are

discussed below.

ZF/ag

The Z (zero) flag is probably misnamed, and should have been called the

E flag (for "equals"). After any comparison (CPX to compare X, CPY to

compare Y, or CMP to compare A), the Z flag will be set to "on" if the

compared values are equal; otherwise it will be reset to "off."
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Sometimes the Z flag checks for equal to zero, hence its name, Z for

zero. This happens for every activity that may change one of the three

data registers. Thus, any load command will affect the Z flag status. The

same is true of increment and decrement instructions, which obviously

change registers. And later, when we meet other operations such as ad

dition and subtraction, they too will affect the Z flag.

There are many instructions that don't affect the Z flag (or any flag, for

that matter). Store instructions (STA, STX, STY), never change a flag.

Branch instructions test flags but don't change them.

An example will help illustrate the way that some instructions change flags

and others do not. Examine the following coding:

LDA#$53 (Load 53 to A)

LDX #$DD (Load zero to X)

STA $1234 (store 53 to address $1234)

BEQ$

Will the branch (BEQ) be taken, or will the 650x continue with the next

instruction? Let's analyze the Z flag's activity step by step. The first in

struction (LDA #$53) resets the Z flag, since 53 is not equal to zero.

The second instruction (LDX #$QD) sets the Z flag because of the zero

value. The third instruction (STA $1534) does not affect the Z flag; in

fact, store instructions do not affect any flags. Thus, by the time we reach

the BEQ instruction, the Z flag is set "on" and the branch will be taken.

650x reference manuals show the specific flags that are affected by each

instruction. In case of doubt, they are easy to check.

The Z flag is quite busy—it clicks on and off very often since many in

structions affect it. It's an important flag.

If the Z flag is set "on," the BEQ (branch equals) instruction will branch

to the specified address; otherwise it will be ignored and the next instruction

in sequence will be executed. If the Z flag is reset "off," the BNE (branch

not equals) instruction will branch.

We can see in more detail how our program from Chapter 2 worked.

CPX #$Dt causes the Z flag to be set "on" if X contains the value t;

otherwise it causes the Z flag to be reset "off." BNE tests this flag, and

branches back to the loop only if the Z flag is off—in other words, only if

the contents of X is not equal to six.
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CFlag

The C (carry) flag is probably misnamed, too. It should have been called

theGE (greater/equal) flag, since after a comparison (CPX, CPY.orCMP),

the C flag is set "on" if the register (X, Y, or A) is greater than or equal

to the value compared. If the register concerned is smaller, the C flag will

be reset "off."

The C flag is not as busy as the Z flag. The C flag is affected only by

comparison instructions and by arithmetic activities (add, subtract, and a

type of multiplication and division called rotate or shift). When used in

arithmetic, the C flag is properly named, since it acts as a "carry" bit

between various columns as they are calculated. For example, an LDA

instruction always affects the Z flag since a register is being changed, but

never affects the C flag since no arithmetic or comparison is being per

formed.

If the C flag is set "on," the BCS (branch carry set) instruction will branch

to the specified address; otherwise it will be ignored and the next instruction

in sequence will be executed. If the C flag is reset "off," the BCC (branch

carry clear) instruction will branch.

The C flag may be directly set or reset by means of the instructions SEC

(set carry) and CLC (clear carry). We will use these instructions when we

begin to deal with addition and subtraction.

If you examine the last program of Chapter 2, you will see that the BNE

instruction could be replaced by BCC. Instead of "branch back if not equal

to 6," we could code "branch back if less than 6." The operation would

be the same in either case.

NF/ag

The N (negative) flag is also probably misnamed. It should have been

called the HB (high bit) flag, since numbers are positive or negative only

if they are used in a certain way. The N flag is set to indicate that a register

has been given a value whose high bit is set.

The N flag is as busy as the Z flag; it changes with every instruction that

affects a register. The N flag is affected by comparisons, but in this case

its condition is not usually meaningful to the programmer.

To sort out the operation of the N flag, it's important to become familiar

with hexadecimal-to-binary conversion. For example, will LDft #$t5 set

the N flag? Rewrite it into binary: $ 15 equals %U 11D D1D1. We can see
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that the high bit is not set, meaning that the N flag will be off after loading

this value. As another example, suppose we LDX #$DA. Hex DA is

11D11D1D binary. We see that the high bit is on and thus the N flag is
set.

If the N flag is set "on," the BMI (branch minus) instruction will branch

to the specified address; otherwise it will be ignored and the next instruction

in sequence will be executed. If the N flag is reset "off," the BPL (branch
plus) instruction will branch.

A Brief Diversion: Signed Numbers

How can a location—which is usually thought to contain a decimal value

from D to E 5 5—contain a negative number? It's up to the programmer

to decide whether a memory value is unsigned, having a value range from

D to 555, or signed, having a value range from - lEfl to +157. There

are still a total of E5t possibilities. The computer's memory simply holds

bits, while the programmer decides how the bits are to be used in a specific
case.

Mathematically, it's described this way: signed numbers, if desired, are

held in two's-complement form. We can hold -1 as hex FF, and - 5

as hex FE, all the way down to -1E fl as hex fl D. You may have noticed

that in all the examples, the high bit is set for these negative numbers.

We may need more intuitive help, however. If the computer loads the

decimal value EDD into the A register with LDA #$Cfl, the N flag will be

set and will seemingly indicate that E D D is a negative number. It may be

more comfortable to simply think of EDD as a number with the high bit

set. But in a sense, EDD could be a negative number if we wanted it to

be. Let's examine the situation by means of examples.

If I were asked to count down in hexadecimal from ID, I'd start out $ ID,

IDF, $DE, and $DD, continuing down to $DE,$D 1, and $DD. If I needed

to keep going, I'd continue past $ D D with $FF; in this case, hex FF would

clearly represent negative one. Continuing, FE, FD, and FC would rep

resent - E, - 3, and - A. And the high bit is set on all these "negative"

numbers.

Let's discuss a decimal analogy. Suppose you have a cassette recorder

with a counter device attached, and the counter reads 0025. If you rewind

the unit a distance of 30 units, you would not be surprised to see a value

of 9995 on the counter and would understand that it meant a position of

-5. If you had a car with 1,500 miles on the odometer, and "rolled back"
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the mileage by 1,501 miles, you'd see a reading of 99999, which would

mean -1. (The author does not know this from personal experience, but

is assured by many machine language students that it is so.) In these

cases, based on the decimal system, the negative numbers are called

"ten's complement."

V Flag

As with the other flags, the V (overflow) flag is probably misnamed. It

should have been called the SAO (signed arithmetic overflow) flag, since

it is affected only by addition and subtraction commands, and is meaningful

only if the numbers concerned are considered to be signed.

The V flag is used only occasionally in typical 650x coding. Many machine

language programs don't use signed numbers at all. The most typical use

of the V flag is in conjunction with a rather specialized command, BIT

(bit test). For this instruction, the V flag signals the condition of bit t of

the memory location being tested. In this case, V and N work in a similar

way: N reflects the high bit, bit 7, and V represents the "next bit down,"

bit t. The BIT command is used primarily for testing input/output ports

on IA (interface adaptor) chips.

If the V flag is set "on," the BVS (branch overflow set) instruction will

branch to the specified address; otherwise it will be ignored and the next

instruction in sequence will be executed. If the V flag is reset "off," the

BVC (branch overflow clear) instruction will branch.

The V flag may be directly reset by means of the CLV (clear overflow)

instruction. Oddly, there is no equivalent instruction to set the flag.

One special feature of the V flag: on some 650x chips, the V flag can be

set by hardware. There is a pin on the chip that can be used so that an

external logic signal will trigger the V flag.

A Brief Diversion: Overflow

The term overflow means "the result is too big to fit." For example, if I

add EDD to EDO, the total is 4QQ ... but this won't fit in a single byte.

If we have only a single byte to store the result, we say that the addition

has encountered overflow, and we can't produce a meaningful answer.

If we are using unsigned numbers, the C flag tells us about overflow. If

we are using signed numbers, V tells the story. We'll take this up again

in the next chapter.
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Flag Summary
A brief table may help review the four testable flags.

Flag Brief Activity Branch Taken If:
Name Meaning Level Set Not-Set

Z Zero, equal Busy BEQ BNE

C Carry, greater/equal Quiet BCS BCC

N Negative, high-bit Busy BMI BPL

V Signed arithmetic overflow Quiet BVS BVC

The Status Register
The preceding flags—and three others—may be viewed within the status
register (SR). You may recall that the machine language monitor gives

an SR display. If you know how to read it, you can see the condition of
all flags.

Each flag is a bit within the status register. Again, it's useful to be able to

easily translate the hexadecimal display, so as to view the individual flags.

Here's a chart of the flags within the status register:

7bS43ElD

NV-BDIZC

Taking the bits one at a time, starting at the high bit:

N—the N flag, as above

V—the V flag, as above.

Bit 5—unused. You'll often find that this bit is "on."

B—"Break" indicator. When an interrupt occurs, this signals whether or not the

interrupt was caused by a BRK instruction.

D—Decimal mode indicator. This changes the manner in which the add and

subtract instructions operate. In Commodore machines, this flag will always be

off. Don't turn it on unless you know exactly what you're doing. This flag may

be turned on with the SED (set decimal) instruction, and turned off with the

CLD (clear decimal) instruction.

I—Interrupt disable. More exactly, this bit disables the IRQ (interrupt request)

pin activity. More on this control bit much later. This flag may be turned on with

the SEI (set interrupt disable) instruction, and turned off with the CLI (clear

interrupt disable) instruction.

Z—the Z flag, as above.

C—the C flag, as above.
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Flags B, D, and I are not testable flags in that there are no branch instructions

that test them directly. D, the decimal mode flag, and I, the interrupt lockout

flag, may be considered "control" flags. Instead of reporting conditions found

as the program runs, they control how the program operates.

When we see a value displayed in the SR, or status register, we may

examine it to determine the condition of the flags, especially the testable

flags Z, C, N, and V. For example, if we see an SE value of $B1, we

translate to binary *1D11DDD1 and know that the N flag is on, the V

flag is off, the Z flag is off, and the C flag is on.

You may change these flags by typing over the displayed value in the

machine language monitor. Be careful you don't accidentally set the D or

I flags.

A Note on Comparison

If we wish to compare two bytes with each other, we must perform a

comparison. One value must be in a register (A, X, or Y); the other must

either be stored in memory, or must be an immediate value we use in the

instruction.

We will use the appropriate compare instruction depending on the register

involved; CMP for the A register, CPX for the X register, and CPY for the

Y register. Following the comparison, we may use any of the following

branch tests:

BEQ—branches if the two bytes are equal.

BNE—branches if the two bytes are not equal.

BCS—branches if the value in the register is greater than or equal to the other

value.

BCC—branches if the value in the register is less than the other value.

We can use more than one branch instruction after a comparison. Suppose

our program wanted to test the Y register for a value equal to or less than

5. We might code

CPY #$D5

BEQ . .somewhere

BCC ..somewhere

We can see that our code will branch if the value is equal to 5 (using the

BEQ) or less than 5 (using the BCC); otherwise it will continue without

branching. In this case, we could make the coding more efficient by chang

ing it to read
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CPY #$Dt

BCC ..somewhere

A little common sense will tell us that testing a number to see if it is less

than b is the same as testing it to see if it is less than or equal to 5.

Common sense is a valuable programming tool.

Instructions: A Review
We have looked at the three data registers—A, X, and Y—and have seen

three types of operation we can perform with them:

Load: LDA, LDX, LDY

Store: STA, STX, STY

Compare: CMP, CPX, CPY

Up to this point, the registers have identical functions, and we can use

any of them for any of these functions. But new instructions are creeping

in that give a different personality to each of the three.

We have noted that INX, INY, DEX, and DEY for increment and dec

rement are restricted to X and Y only; and we've also mentioned that X

and Y can be used for indexing. Soon, we'll start to examine some of the

functions of the A register, which is often called the accumulator because

of its ability to do arithmetic.

We have seen JSR, which allows us to call a subroutine of prewritten

instructions. We've used RTS, which says, "Go back to the calling point,"

even if the calling point is a BASIC program. And we've almost abandoned

the BRK instruction, which stops the program and goes to the machine

language monitor. BRK will be useful in checking out programs. Specifi

cally, we can stop a program at any time by inserting a BRK instruction,

allowing us to see whether the program is behaving correctly and whether

it has done the things we planned.

There are eight branch instructions. They have already been discussed,

but there is one additional piece of information that is important to keep

in mind. All branches are good only for short hops of up to a hundred

memory locations or so. So long as we write short programs, that won't

be a limitation; but we'll look at this more closely in Chapter 5.

Logical Operators
Three instructions perform what are called logical operations. They are:

AND (Logical AND); ORA (Logical OR); and EOR (Exclusive OR). These
instructions work on the A register only.
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Mathematicians describe these operations as commutative. For example,

a value of $3 A "AND11 $5? gives exactly the same result as $57

"AND" $3A. The order doesn't matter. But we often use these func

tions—and think of them—in a particular order. It's the same as with

addition, where we think of a "total" to which is added an "amount" to

make a "new total." With the logical operators we often think of a "value,"

which we manipulate with a "mask" to make a "modified value."

Logical operators work in such a way that each bit within a byte is treated

independently of all the other bits. This makes these instructions ideal for

extracting bits, or manipulating certain bits while leaving others alone.

We'll look at formal definitions, but the following intuitive concepts are

useful to programmers:

AND—turns bits off.

ORA—turns bits on.

EOR—flips bits over.

AND—Logical AND to A

For each bit in the A register, AND performs the following action:

Original A Bit Mask Resulting A Bit

D 0 0

1 D D

DID

1 1 1

Examine the upper half of this table. When the mask is zero, the original

bit in A is changed to zero. Examine the lower half. When the mask is

one, the original bit is left unchanged. Hence, AND can selectively turn

bits off.

Example: Turn off bits 4, 5, and t in the following value: $C7

Original value: 11DDD111

Mask: AND 1DDD1111 (hex flF)

Result 1DDDD111

xxx

Note that the bits marked have been forced to "off," while all other bits

remain unchanged.
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OR A—Logical OR to A

For each bit in the A register, OR A performs the following action:

Original A Bit Mask Resulting A Bit

D D D

1 D 1

D 1 1

111

Examine the upper half of this table. When the mask is zero, the original

bit in A is left unchanged. Examine the lower half. When the mask is one,

the original bit is forced to "on." Hence, OR A can selectively turn bits on.

Example: Turn on bits 4,5, and t in the following value: $C7

Original value: 11DDD111

Mask: ORA D111DDDD (hex 7D)

Result 1111D111

xxx

Note that the bits marked have been forced to "on," while all other bits

remain unchanged.

EOR—Exclusive OR to A

For each bit in the A register, EOR performs the following action:

Original A Bit Mask Resulting A Bit

ODD

1 D 1

D 1 1

1 1 D

Examine the upper half of this table. When the mask is zero, the original

bit in A is left unchanged. Examine the lower half. When the mask is one,

the original bit is inverted; zero becomes one and one becomes zero.

Hence, EOR can selectively flip bits over.

Example: Invert bits 4, 5, and t in the following value: $C7

Original value: 11DDD111

Mask: EOR D111DDDD (hex 7D)

Result 1D11D111

xxx
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Note that the bits marked have been flipped to the opposite value, while

all other bits remain unchanged.

Why Logical Operations?
We use these three commands—AND, OR a, and EOR—to change or

control individual bits within a byte of information. The commands are

unusual in that each bit may be manipulated independently of the others.

We don't seem to be working with numbers when we use these commands.

Rather, we're working with each individual bit, turning it on or off as we

wish.

Why would we turn individual bits on or off? There are several possible

reasons. For example, we might wish to control external devices through

the I A's (interface adaptors). Within the I&'s input and output ports each

of the eight bits might control a different signal; we might want to switch

one control line on or off without affecting other lines.

When we're looking at input from an IA port, we often read several input

lines mixed together within a byte. If we want to test a specific bit to see

if it is on or off, we might mask out all other bits with the AND instruction

(changing unwanted bits to zero); if the remaining bit is zero, the whole

byte will now be zero and the Z flag will be set.

Why would we want to flip bits over? Many "oscillating" effects—screen

flashing or musical notes—can be accomplished this way.

Finally, the logical operators can be useful in code translation. For ex

ample, here are the values for ASCII 5 and binary 5:

ASCII SDDllDlDl

Binary

We must use the ASCII value for input or output. We must use the binary

value for arithmetic, particularly addition and subtraction. How could we

get from one to the other? By taking bits out (AND) or putting bits in (OR A).

Alternatively, we could use addition or subtraction; the logical operators,

however, are simplier.

Input: The GE TIN Subroutine
We have seen how we can use CHROUTat$FFDEto produce output

to the screen. Now we'll look at the input side—how to use the GETIN

subroutine at $FFE4 to get characters from the keyboard buffer.
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You may be familiar with the GET statement in BASIC. If so, you'll find

the same characteristics in GET IN:

• Input is taken from the keyboard buffer, not the screen.

• If a key is held down, it will still be detected once only.

• The subroutine returns immediately.

• If no key is found, a binary zero is returned in A.

• If a key is found, its ASCII value will be in A.

• Special keys, such as RETURN, RVS, or color codes, will be detected.

To call for a key from the keyboard, code JSR $FFE4. Values in X and

Y are not guaranteed to be preserved, so if you have important information

in either register, put it away into memory.

Subroutine: GETIN

Address: $FFE4

Action: Takes a character from the input channel and places it

into the A register. The input channel is the keyboard input

buffer unless arrangements have been made to switch it.

The character received is usually ASCII (or PET ASCII). When read

from the keyboard, the action is similar to a BASIC GET statement:

one character will be taken from the buffer; it will not be shown on the

screen. If no character is available from the keyboard input buffer, a

value of binary zero will be put into the ft register. The subroutine will

not wait for a key to be pressed but will always return immediately.

Registers: The A register will of course always be affected. X and Y

are likely to be changed; do not have data in these when calling

GETIN.

Status: Status flags may be changed. In most recent Commodore

machines, the C (carry) flag indicates some type of problem with input.

If we want keyboard input to appear on the screen, we should follow a

call to GETIN, $FFE4, with a call to CHRODT, $FFDE, so that the

received character is printed.

STOP

Machine language programs will ignore the RUN/STOP key ... unless

the program checks this key itself. It may do so with a call to STOP,

address $FFE1. This checks the RUN/STOP key at that moment. To

make the key operational, $FFE1 must be called frequently.
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A call to FFE1 should be followed by a BEQ to a program exit so that

the program will terminate when RUN/STOP is pressed.

The RON/STOP key is often brought into play while programs are being

tested, so that unexpected "hangups" can still allow the program to be

terminated. Coding to test the RUN/STOP key is often removed once

testing is complete, on the assumption that no one will want to stop a

perfect program. Incidentally, if you plan to write nothing but 100 percent

perfect programs, you will not need to use this subroutine.

Subroutine: STOP

Address $FFE1

Action: Check the RUN/STOP key. If RUN/STOP is being pressed

at that instant, the Z flag will be set when the subroutine

returns.

In PET/CBM, the system will exit to BASIC and say READY if the

RUN/STOP key is being pressed. In this case, it will not return to the

calling machine language program.

Registers: A will be affected. X will be affected only if the RON/STOP

key is being pressed.

Status: Z signals whether RON/STOP is being pressed.

Programming Project
Here's our task: we wish to write a subroutine that will wait for a numeric

key to be pressed. All other keys (except RUN/STOP) will be ignored.

C128 note: Remember to check Appendix E, under Exercises for the

Commodore 128, for the appropriate coding.

When a numeric key is pressed, it will be echoed to the screen, and then

the subroutine will be finished. One more thing. The numeric character

will arrive in ASCII from the keyboard: we wish to change it to a binary

value before giving the final RTS statement. This last operation has no

useful purpose yet, except as an exercise, but we'll connect it up in the

next chapter.

Coding sheets ready? Here we go.

A D33C JSR $FFE1

We will check the RUN/STOP key first. But wait. Where will we go if we

find that the key is pressed? To the RTS, of course; but we don't know
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where that is, yet. In these circumstances, we usually make a rough guess

and correct it later. Make a note to check this one ...

A 033F BEQ $0351

A D341 JSR $FFE4

Now we've gotten a character; we must check that it's a legitimate numeric.

The ASCII number set D to q has hexadecimal values $3D to $3S. So

if the value is less than $30, it's not a number. How do we say "less

than?" After a compare, it's BCC (branch carry clear). So we code

A U3AA CMP #$3D

A 034b BCC $033C

Did you spot the use of immediate mode at address $D344? Make sure

you follow the logic on this. Another point: what if no key has been pressed?

We're safe. There will be a zero in the A register, which is less than hex

30; this will cause us to go back and try again.

Now for the high side. If the number is greater than hex 3R, we must

reject it since it cannot be an ASCII numeric. Our first instinct is to code

CMP #$3q and BCS. But wait! BCS (branch carry set) means "branch

if greater than or equal to." Our proposed coding would reject the digit q,

since the carry flag would be set when we compared to a value of hex

aq.

We must check against a value that is one higher that $3q. Be careful,

though, for we're in hexadecimal. The next value is $3 A. Code it:

A034B CMP #$3A

A 034A BCS $033C

If we get this far, we must have an ASCII character from 0 to q; let's print

it to the screen so that the user gets visual feedback that the right key

has been pressed:

A 034C JSR $FFDE

Now for our final task. We are asked to change the ASCII character into

true binary. We may do this by knocking off the high bits. We remember,

of course, that to turn bits off we must use AND:

A 034F AND #$0F

A 0351 RTS

It's a good thing that we printed the character first, and then converted to

binary; the character must be ASCII to print correctly.
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One last thing. We had a branch (on the RUN/STOP key) that needed to

connect up with the RTS. Did you make that note about going back and

fixing up the branch? Now is the time to do it, but before you go back,

terminate the assembly with an extra RETURN on the keyboard (the

assembler gets confused if it prompts you for one address and you give

another; get out before you go back).

By a fortunate stroke of luck, we happen to have guessed the right address

for the BE Q at address $ D 3 3 F. But if we hadn't, you know how to change

it, don't you?

Check your coding, disassemble, go back to BASIC and run with a SYS

flEfl. Tap a few letter keys and note that nothing happens. Press a num

ber,1 and see it appear on the screen. The program will terminate. SYS it

again and see if the RUN/STOP works. Try a BASIC loop to confirm that

BASIC and machine language work together.

Project for enthusiasts: Try modifying the program so that it checks for

alphabetic characters only. Alphabetic characters run from $41 to $5A,

inclusive.

Things You Have Learned

—Flags are used to link instructions together. This might be an activity such

as load or compare, followed by a test such as branch on a given condition.

—Some instructions affect one or more flags, and some do not affect flags.

Thus, an instruction that sets a flag might not be followed immediately with

the instruction that tests or uses that flag.

—There are four testable flags: Z (zero, or equals); C (carry, or greater/equal);

N (negative, or high bit); and V (signed arithmetic overflow). The flags are

checked by means of "branch" instructions such as BEQ (branch equal) or

BNE (branch not equal).

—Flags are stored in the status register, sometimes called the processor status

word. The S R contains the four testable flags, plus three other flags: B (break

indicator); D (decimal mode for add/subtract); and I (interrupt lockout). The

hexadecimal value in SR can be changed to binary and used to determine

the exact condition of all flags.

—Usually, the processor is interrupted sixty times a second to do special high-

priority jobs. Everything, including the status register flags, is carefully pre

served so that the main program can continue as though nothing had

happened.

—A number stored in memory can be considered as signed if we decide to

handle it that way. The value of a signed number is held in two's-complement

form. The high bit of the number is zero if the number is positive, one if the
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number is negative. The computer doesn't care. It handles the bits whether

the number is considered signed or not, but we must write our program

keeping in mind the type of number being used.

—There are three logical operator instructions: AND, ORA, and EOR. These

allow us to modify bits selectively within the A register. AND turns bits off;

ORA turns bits on; and EOR inverts bits, or flips them over.

Questions and Projects
Write extra coding to allow both numeric and alphabetic characters, but
nothing else.

Write a program to accept only alphabetic characters. As each ASCII

character is received, turn on its high bit with ORA #$flD and then print

it. How has the character been changed?

Write a program to accept only numeric digits. As each ASCII character

is received, turn off its lowest bit with AND #$FE and then print it. What

happens to the numbers? Can you see why?
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This chapter discusses:

• Numbers: signed and unsigned

• Big numbers: multiple bytes
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• Rotate and shift instructions

• Multiplication

• Home grown subroutines
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Numbers: Signed and Unsigned
We have looked briefly at the question of signed versus unsigned numbers.

The most important concept is that you, the programmer, choose whether

or not a number is to be considered a signed number (for a single byte,

in the decimal range -lEfl to +157) or an unsigned integer (single-

byte range D to 255).

It makes no difference to the computer. If you consider a number signed,

you may wish to test the sign using the N flag. If not, you won't do such

a test.

Big Numbers: Multiple Bytes
You may use more than one byte to hold a number. Again, it's your

decision. If you think the numbers may go up to a million, you might allocate

three bytes (or more or fewer). If you are doing arithmetic on multi-byte

numbers, the computer will help you by signaling in the carry flag that

there's something to be carried across from a lower byte to a higher one.

But it's up to you to write the code to handle the extra bytes.

You may size numbers by using the following table:

Unsigned: Signed:

1 byte 0 to 255 -128 to +127

2 bytes 0 to 65,535 -32768 to +32767

3 bytes 0 to 16,777,215 - 8,388,608 to + 8,388,607

4 bytes to over 4 billion -2 billion to +2 billion

It's possible to work with binary fractions, but that is beyond the scope of

this book. Many applications "scale" numbers, so that dollar-and-cents

amounts are held as integer quantities of pennies. Thus, two bytes un

signed would hold values up to $b55.35, and three bytes up to

$lk7,772.15.

When signed numbers are held in multiple bytes, the sign is the highest

bit of the highest byte only.

We will concentrate on single-byte arithmetic principles here, touching on

multiple-byte numbers as a generalization of the same ideas.

Addition
Principles of addition are similar to those we use in decimal arithmetic;

for decimal "columns," you may substitute "bytes." Let's look at a simple

decimal addition:
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Rule 1: We start at the right-hand column (the low-order byte).

Rule 2: We add the two values, plus any carry from the previous column. A new

carry may be generated; it can never be greater than one. (ADC includes any

carry from a previous activity, and may generate a new carry bit, which is either
D or 1.)

Rule 3: When we start at the right-hand column, there is no carry for the first

addition. (We must clear the carry with CLC before starting a new addition.)

Rule 4: When we have finished the whole addition, if we have a carry and no

column to put it in, we say the answer "won't fit." (If an addition sequence of

unsigned numbers ends up with the carry flag set, it's an overflow condition.)

HIGH BYTE LOW BYTE

START:

OO1O1O11 10111001 N0CAR«Y
4- Q0001010 11100101/

10011110

CARRY

00110110'
/

Figure 4.1

How do we translate these rules into machine language addition?

1. Before we start an addition sequence, clear the carry with CLC.

2. If the numbers are more than one byte in size, start at the low byte and work

up to the high ones. Addition will take place in the A register only; you may

add the contents of an address or an immediate value. The carry flag will

take care of any carries.

3. When the addition sequence is complete, check for overflow:

a) if the numbers are unsigned, a set C flag indicates overflow;

b) if the numbers are signed, a set V flag indicates overflow.

Thus, to add two unsigned numbers located at addresses $D3flO and

$D3fil and to place the result at $D3flE, we might code
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CLC

LDA$D3flD

ADC $D3fll

STA $D3fi2

We might also BCS to an error routine, if desired.

To add a two-byte number located at $D3AD (low) and $D3A1 (high)

to another two-byte number located at $D3BD (low) and $D3B1 (high),

placing the result at $D3CD/1, we might code

CLC

LDA $D3AD

ADC $D3BD

STA $D3CD

LDA $D3A1

ADC $D3B1

STA $D3C1

Again, we might BCS to an overflow error routine.

If we had two-byte signed numbers in the same locations, we'd add them

exactly the same way, using the same code as above. In this case, how

ever, we'd check for overflow by adding the instruction BVS, which would

branch to an error routine. The carry flag would have no meaning at the

end of the addition sequence.

Subtraction
Subtraction might be defined as "upside down" addition. The carry flag

again serves to link the parts of a multibyte subtraction, but its role is

reversed. The carry flag is sometimes called an "inverted borrow" when

used in subtraction. Before performing a subtraction, we must set the C

flag with SEC. If we are worried about unsigned overflow, we look to

confirm that the carry is set at the completion of the subtraction operation.

If the carry is clear, there's a problem.

Thus, to perform a subtraction, we follow these rules:

1. Before we start a subtraction sequence, set the carry with SEC.

2. If the numbers are more than one byte in size, start at the low byte and^work

up to the high ones. Subtraction will take place in the A register only; you

may subtract the contents of an address or an immediate value. The C flag

will take care of any "borrows."

3. When the subtraction sequence is complete, check for overflow:

a) if the numbers are unsigned, a clear C flag indicates overflow;
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b) if the numbers are signed, a set V flag indicates overflow.

Thus, to subtract two unsigned numbers located at addresses $ D 3 fl D

and $D3fll and to place the result at $03fl5, we might code

SEC

LDfi $03flD

SBC $D3fil

STft $D3flE

A BCC could go to an error routine.

Comparing Numbers
If we have two unsigned numbers and wish to know which one is larger,

we can use the appropriate compare instruction—CMP, CPX, or CPY—

and then check the carry flag. We've done this before. If the numbers are

more than one byte long, however, it's not quite so easy. We must then

use a new technique.

The easiest way to go about such a comparison is to subtract one number

from the other. You need not keep the result; all you care about is the

carry flag when the subtraction is complete. If the C flag is set, the first

number (the one you are subtracting from) is greater than or equal to the

second number. Why? Because carry set indicated that the unsigned

subtraction was legal; we have subtracted the two numbers and have

obtained a positive (unsigned) resuit. On the other hand, if the C flag ends
up clear, this would mean that the first number is less than the second.

The subtraction couldn't take place correctly since the result—a negative

number—can't be represented in unsigned arithmetic.

Left Shift: Multiplication by Two

If we write the decimal numbers 1DD and 5DD in binary, we see an

interesting pattern:

1D0: £D11DD1QD

EDD: 211DD1DDQ

To double the number, each bit has moved one position to the left. This

makes sense, since each bit has twice the numeric "weight" of the bit to

its right.

The command to multiply a byte by two is ASL (arithmetic shift left). A

zero bit is pushed into the low (or "right") side of the byte; all bits move
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left one position; and the bit that "fali$ out" of the byte—in this case, a
zero bit—moves into the carry. It can be diagrammed like this:

CARRY 4I|{| T T T
(C FLAG) I I 1 1 1 1 1 1

ASL

IN AN ASL (ARITHMETIC SHIFT LEFT), EACH BIT

MOVES ONE POSITION LEFT. A ZERO MOVES INTO THE

LOW-ORDER BIT.

Figure 4.2

That's good for doubling the value of a single byte. If a "one" bit falls into

the carry flag, we can treat that as an overflow. What about multiple bytes?

It would be ideal if we had another instruction that would work just like

&SL. Instead of pushing a zero bit into the right hand side of the byte,

however, it would push the carry bit, that is, the bit that "fell out" of the

last operation. We have such an instruction: ROL.

ROL (rotate left) works exactly like &SL except that the carry bit is pushed

into the next byte. We can diagram it as follows:

CARRY

RRY

CAR

J^ j,_ J^ ^ J, j, j, '« J
T T T T T T T iT T T T T T T i

CARRY

IN A ROL (ROTATE LEFT), THE CARRY MOVES INTO

THE LOW ORDER BIT; EACH BIT MOVES LEFT; AND THE

HIGH ORDER BIT BECOMES THE NEW CARRY.

Figure 4.3

Thus, we can hook two or more bytes together. If they hold a single

multibyte number, we can double that number by starting at the low-order

end. We ASL the first value and ROL the remainder. As the bits fall out

of each byte, they will be picked up in the next.

Multiplication

Multiplying by two may not seem too powerful. We can build on this starting

point, however, and arrange to multiply by any number we choose.
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0
ASL

(1
^U"1

POL f-\ — ~- ~- 4-C LOW ORDER BYTE

HIGH ORDER BYTE

TO MULTIPLY A THREE-BYTE NUMBER BY TWO, WE

SHIFT THE LOW ORDER BYTE WITH ASL; THEN WE USE

ROL TO ALLOW THE C FLAG TO "LINK" FROM ONE
BYTE TO THE NEXT.

Figure 4.4

We won't deal with a generalized multiplication routine here, but a couple

of specific examples can be shown.

How can we multiply by four? Multiply by two, twice. How can we multiply

by eight? Multiply by two, three times.

Here's an important one. We often want to multiply by ten. For example,

if a decimal number is being typed in at the keyboard, the number will

arrive one digit at a time. The user might type E17, for example. The

program must then input the two and put it away; when the one arrives,

the two must be multiplied by ten, giving twenty, and the one added; when

the seven is typed, the twenty-one must be multiplied by ten before the

seven is added. Result: 217 in binary. But we must first know how to

multiply by ten.

To multiply by ten, you first multiply by two; then multiply by two again.

At this point, we have the original number times four. Now, add the original

number, giving the original number times five. Multiply by two one last

time and you've got it. We'll see an example of this in Chapter 7.

Right Shift and Rotate: Dividing by Two

If we can multiply by two by shifting (and rotating) left, we can divide by

two by moving the bits the other way. If we have a multibyte number, we

must start at the high end.

LSR (logical shift right) puts a zero into the left (high-order) bit, moves all

the bits over to the right, and drops the leftover bit into the carry. ROR

(rotate right) puts the carry bit into the left bit, moves everything right, and
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0 LSR

C FLAG

IN AN LSR, ZERO MOVES INTO THE HIGH BIT, AND ALL

BITS MOVE RIGHT ONE POSITION; THE LOWEST BIT

BECOMES THE CARRY.

9. i i i i i \% i i^
i t~ ~r ~r ~7~ ~r ~r t~

IN A ROR, THE CARRY MOVES INTO THE HIGH BIT AND

ALL BITS MOVE RIGHT ONE POSITION; THE LOWEST

BIT BECOMES THE NEW CARRY.

0 LSR

ROR

C~T —- —- —» \—\ ROR

TO DIVIDE A THREE-BYTE NUMBER BY TWO, WE SHIFT

THE HIGH-ORDER BYTE WITH LSR; THEN WE USE ROR

TO ALLOW THE C FLAG TO "LINK" FROM BYTE TO

BYTE.

Figure 4.5

drops the leftover bit into the carry once again. At the end of a right-shifting

sequence, the final carry bit might be considered a remainder after dividing

by two.

Comments on Shift and Rotate

As you might expect of arithmetic instructions, the shift and rotate instruc

tions normally operate in the ft register. But there's an extra bonus: these

instructions also can operate directly on memory. In other words, the

computer can go to any address in memory and shift the bits at that address

directly, without loading the data into a register.

For this reason, you'll often see the instructions coded with the identity of

the A register coded in the address part of the instruction. We would code
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LSR a so as to distinguish from LSR $1234, where the contents of

memory is being shifted.

When a rotate or shift is performed directly on a memory location, the Z,

N, and C flags are affected according to the contents of memory. Z will

be set if the contents of the location ends up as zero; N if the high bit is

set; and C performs its standard role of catching the leftover bit.

Some programmers wonder about the terms logical and arithmetic, used

as part of the definition. The distinction is related to the way that signed

numbers are treated. "Logical" means that the sign of a number will prob

ably be lost if the number was intended to be signed. "Arithmetic" means

that the sign will probably be preserved. It's purely a terminology question:

the bits themselves move exactly as you would expect them to do.

Subroutines
We have written programs that are subroutines called by BASIC. We have

written subroutine calls to built-in operations such as $FFD5 or $FFE4.

Can we also write our own subroutine and arrange to call it?

Of course we can. RTS (return from subroutine) does not mean "return

to BASIC." It means "return to whoever called this routine." If BASIC

called up the machine language routine, RTS takes you back to BASIC.

If another machine language program called up the subroutine, RTS will

return to the calling point.

We wrote a useful subroutine in the last chapter. Its purpose was to accept

only numeric keys, echo them to the screen, and convert the ASCII value

to binary. Now we'll use this subroutine to build a more powerful program.

Here it is. Be sure it's entered in your computer.

A

A

A

A

A

A

A

A

A

A

033C

033F

0341

D3AA

034b

D3A&

034A

03AC

03AF

0351

JSR

BEQ

JSR

CMP

BCC

CMP

BCS

JSR

AND

RTS

$FFE1

$0351

$FFE4

#$30

$033C

#$3A

$033C

$FFD5

#$0F
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The Project

Here is our mission: using the above subroutine, we wish to build a simple

addition program. Here's how we want it to work. The user will touch a

numeric key, say "3". Immediately, "3 + M will appear on the screen.

Now the user will touch another key, say f' Af', and the program will

complete the addition so that the screen shows fl3 + < = 7M. We will

assume that the total is in the range D to R so that we don't have to worry

about printing a two-digit answer—don't try 5 + 5 or you'll get a wrong

answer.

C128 note: Remember to check Appendix E, Exercises for the Commo

dore 128, for the appropriate coding.

Here we go. We must start our coding at address $D352 so as not to

disturb our subroutine. We'll need to give SYS fl5D to make this one go.

& D352 JSR $D33C

We call our prewritten subroutine, which waits for a numeric key, echos

it to the screen, and converts the value to binary in the a register.

Our next action is to print the plus sign. We know how to do this, once

we look up the ASCII code for this character. Appendix D tells us that it's

$2B, so we'll need to LDft #$2B and JSR $FFD2. But wait a minute!

Our binary value is in the a register, and we don't want to lose it. Let's

store the value somewhere:

A D355 STa $D3CD

a D35fl LDa #$2B

a D35a JSR $FFD2

aD35D JSR $D33C

We picked $D3CD, since nobody seems to be using it, and put the binary

number safely away there. Now we print the plus sign, and go back to

ask for another digit.

When the subroutine returns, it has a new binary value in the a register;

the digit has been neatly printed on the screen behind the plus sign. Now

we need to print the equal sign. But again, wait! We must put our binary

value away first.

We could place the value into memory—perhaps $D3C1 would do—but

there's another way. We don't seem to be using X or Y for anything at
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the moment, so let's slip the value across into one or the other. We have

four "transfer" commands that will move information between a and either

index register:

TAX—Transfer A to X TAY—Transfer A to Y

TX A—Transfer X to A TY A—Transfer Y to A

Like the load series of commands, these instructions make a copy of the

information. Thus, after TAX, whatever information was in A is now also

in X. Again like the load commands, the Z and N status flags are affected

by the information transferred. It doesn't matter whether we use X or Y.

Let's pick X:

AQ3bD TAX

A D3bl LDA #$3D

A D3b3 JSR $FFD5

We have put our second value into X and printed the equal sign ($3D).

Now we can bring the value back and do our addition. The next two

instructions can come in any order:

AD3tb TXA

A D3t7 CLC

A D3tfl ADC $D3CD

We have our total in the A register. It's almost ready to print, except for

one thing: it's in binary. We want it in ASCII.

Assuming the total is in the range D to q, we can convert it directly to a

single ASCII digit with an OR A operation. (If it's greater than nine, you're

cheating and the answer won't make sense.)

A D3tB ORA #$3D

A D3tD JSR $FFD5

Are you basically a neat person? Then you'll want to print a RETURN to

start a new line:

ft D3?D

ft D375

ft D375

LDft

JSR

RTS

#$DD

$FFD5

Check it with a disassembly. If you disassemble starting with the subrou

tine, you'll need more than one screen full of instructions to see it all. No

problem. When the cursor flashes at the bottom of the screen, press the

letter D and RETURN and you'll see a continuation of the listing.
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Back to BASIC. This time we do not give SYS fl 2 fl—that's the subroutine

and we want the main routine, remember?

Give the SYS fl5D command. Tap a couple of numeric keys that total

nine or less. Watch the results appear instantly on the screen.

If you like, set up a BASIC loop and call the routine several times.

Project for enthusiasts: You couldn't resist, could you? You had to type

in two digits that totaled over 9 and got a silly result. OK, your project is

to try to expand the above code to allow for two-digit results. It's not that

hard, since the highest possible total is q + R or Ifl; so if there are two

digits, the first one must be the digit 1. You'll need to compare for the

result over binary nine, and then arrange for printing the one and sub

tracting ten if necessary. Sounds like fun.

Things You Have Learned

—We may decide to use a number as a signed value; in this case, the high bit

of the number will be D if the number is positive and 1 if the number is

negative. It's up to us. As far as the computer is concerned, it's just bits in

either case.

—When a number might have a value that won't fit into an eight-bit byte, we

may use more than one byte to hold the value. We have already done this

to hold addresses in two bytes: there's a high byte to hold the high part of

the value and a low byte to hold the low part.

—We may add two numbers together using the ADC instruction with the A

register; we should always clear the carry flag before starting an addition.

The carry flag will take care of multibyte numbers for us, providing we re

member to start the addition at the low end.

—We may subtract two numbers using the SBC instruction with the A register;

we should always set the carry flag before starting a subtraction. The carry—

which is sometimes called an inverted borrow—will take care of multibyte

numbers for us, providing we remember to start the subtraction at the low

end.

—For unsigned numbers, the carry should end up as it started (clear for addition,

set for subtraction); otherwise we have overflow in the result. For signed

numbers, the carry doesn't matter; the V flag will be set if we have overflow.

—We may multiply a byte by two with the ASL (arithmetic shift left) instruction.

If we have a multiple-byte number, we may carry the multiplication through

to other bytes by using the ROL (rotate left) instruction, starting at the low

byte of the number.

—We may divide a byte by two with the LSR (logical shift right) instruction. If

we have a multiple-byte number, we may carry the division through to other
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bytes by using the ROR (rotate right) instruction, starting at the high byte of

the number.

—The shift and rotate instructions may be used on the contents of the A register

or directly on memory. The N and Z flags are affected, and the C flag plays

an important role in the shift/rotate action.

—If we wish to multiply by a value other than two, we may need to do more

work but we can get there.

—As we might have expected, we may write subroutines in machine language

and then call them from machine language. It's a good way to organize your
code.

Questions and Projects
Write a program to subtract two single-digit numbers, similar to the one

in the above exercise. You may continue to use the subroutine from the

previous chapter.

Write a program to input a single-digit number. If the number is less than

five, double it and print the result. If the number is five or over, divide it

by two (discarding any remainder) and print the result. Try to produce a

neat output.

Write a program to input a single-digit number. Print the word ODD or

EVEN behind the number, depending on whether it is odd or even. Use

the LSR instruction followed byaBCCorBCS test to check for odd or
even.

If you've been following the logic, you have developed quite a bit of ca

pability in machine language. You can input, you can output, and you can

do quite a bit of arithmetic in between.

By now, you should have developed skills with the machine language

monitor and feel much more comfortable zipping in and out. These skills

are not difficult, but they are important to the beginner. Without them, you

can never get comfortably into the real meat: how to code machine lan

guage itself.





5
Address
Modes

This chapter discusses:

• Non-addresses: implied, immediate, register

• Absolute and zero-page

• Indexing

• The relative address for branches

• Indirect addressing

• Indirect, indexed

71
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Addressing Modes
Computer instructions come in two parts: the instruction itself, or op code,

and the address, or operand. The term "address" is a little misleading,

since sometimes the operand does not refer to any memory address.

The term address mode refers to the way in which the instruction obtains

information. Depending on how you count them, there are up to 13 ad

dress modes used by the 650x microprocessor. They may be summarized

as follows:

1. No memory address: implied, accumulator.

2. No address, but a value supplied: immediate.

3. An address designating a single memory location: absolute; zero-page.

4. An indexed address designating a range of E5fc locations: absolute,x; ab

solute^; zero-page,x; zero-page,y.

5. A location in which the real (two-byte) jump address may be found: indirect.

6. An offset value (e.g., forward R, back 17) used for branch instructions:

relative.

7. Combination of indirect and indexed addresses, useful for reaching data

anywhere in memory: indirect, indexed; indexed, indirect.

No Address: Implied Mode
Instructions such as INX (increment X), BRK (break), and TRY (transfer

R to Y) need no address; they make no memory reference and are com

plete in themselves. Such instructions occupy one byte of memory.

We might say that such instructions have "no address." The precise term

is "implied address," which seems to say that there is in fact an address

but we do not need to state it.

Perhaps the word "implied" is usecj in this manner: an instruction such as

INX implies the use of the address register; and an instruction such as

BRK implies the address of the machine language monitor. If so, there's

an instruction that still defies this definition: NOP.

The Do-Nothing Instruction: NOP

NOP (no operation) is an instruction that does nothing. It affects no data

registers or flags. When a NOP instruction is given, nothing happens and

the processor continues to the next instruction. It seems inappropriate to
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me that we say that NOP has an implied address. It doesn't do anything;

it doesn't have an address at all. On the other hand, I suppose that logicians

might say, "Yes, but it does nothing to the X register."

The NOP instruction, whose op code is $EA, is surprisingly useful. It's

not simply that if you're a contract programmer getting paid by the byte

you might be tempted to put a large number of NOP instructions into your

program. NOP can serve two important program testing functions: taking

out unwanted instructions, or leaving space for extra instructions.

It's not as easy to change a machine language program as it is to change

a BASIC program. As you have seen, the instructions are placed in specific

locations. If we wish to eliminate an instruction, we must either move all

the following instructions down or fill in the space with NOP instructions.

If we move the instructions, we may need to correct some of the addresses.

Examine the following code:

D35D LDA#$DD

D35E STA $1Z34

D355 ORA

If we decide to eliminate the instruction atD352(STA$ia34), we must

remove all three bytes. So we place code $E A in locations D352,D353,

and D354.

Suppose we are testing a moderately large program. Most programs will

break into distinct "modules," each of which does a specific job. One

module might clear a portion of memory to zero, another might do a

calculation, and so on. When we are checking out this program, it might

be wise to look at each module as it runs.

In this case, we might deliberately code a BRK (break) command between

each program module. The program will start to run, and then it will break

to the machine language monitor. Within the monitor, we can examine

memory to ensure that this module has done the job as we planned it.

When we are satisfied, we can start the next module using the . G com

mand. In this way, we can have tight testing control over our program.

That's all very well, but when we have finished testing our program and

are satisfied that it runs correctly, we don't want the BRK instructions

there. That's easy to fix. We replace the BRK codes ($DD) with NOP's

($EA), and the program will run through to the end.

If we are writing a program and suspect that we may need to insert one

or two extra instructions within a certain area of the code, we can put a
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number of NOP instructions there. The space will be available for use

when we need it.

No Address: Accumulator Mode

We have observed that the shift and rotate instructions, ASL/ ROL,

LS R, and ROR, allow data manipulation in either the A register of directly

in memory. When we want to use the A register, or accumulator, you

should note this fact as you code your program. For example, you would

write ASL A or sometimes just ASL.

Where accumulator mode addressing is used, it has the same character

istics as implied addressing: the whole instruction fits into one byte.

Where the shift/rotate instruction refers to a memory location, an address

will of course be needed. These address modes will be described later.

Other than the shift and rotate instructions, there is one other set of in

structions that manipulates memory directly. You may recall I NX, I NY,

DEX, and DEY increment or decrement an index register.

INC (increment memory) adds one to any memory location. DEC (dec

rement memory) subtracts one from any memory location. Both instruc

tions affect the Z and N flags.

When an instruction modifies memory, the address mode is neither implied

nor accumulator. Memory reference addressing will be discussed later.

Not Quite an Address: Immediate Mode
Coding such as LDA #$3A does not reference a memory address. In

stead, it designates a specific value (in this case, $34). An instruction

with immediate addressing takes up two bytes: one for the op code and

the second for the immediate value.

We have used immediate addressing several times. It has a "natural" feel,

and it's fast and convenient. There is one potential pitfall: immediate ad

dressing is so easy to use that it may be abused. Each time you code an

immediate address, ask yourself, "Could this value ever change?" By

writing a value into a program, rather than a variable, you may be freezing

that value forever.

An example: a program is written for a VIC-20, which has EE columns on

the screen. At various places in the program, values are compared to 25

(hex It), and 55 is added or subtracted to various screen addresses. In
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each case, immediate mode addressing is used to provide the value of

25. Some time later, the programmer decides to convert to the Com

modore 64, which has A 0 columns on the screen. The programmer must

change each immediate mode reference from 52 to 4D (hex 5fl).

If the value EB had been stored in a memory location so as to be used

as a variable, all this recoding would not be needed. The moral is clear:

excessive use of immediate mode can call for extra programming work at

a later time.

There are certain instructions for which immediate addressing is not pos

sible. For example, we can LDA #$DD, that is, bring in the actual value

zero rather than the contents of an address, but we cannot STA imme

diate—we must store the information somewhere in memory.

A Single Address: Absolute Mode
An instruction might specify any address within memory—from $ D D D D

to $FFFF—and handle information from that address. Giving the full

address is called absolute addressing; if you like, you can deal with in

formation absolutely anywhere in memory.

I MEMORY 1

/

Figure 5.1 Absolute Mode Specifies One Address Anywhere Within Memory.

We have used absolute addresses several times. When we exchanged

the contents of memory locations $ D 3 fl D and $ D 3 fl 1, we named these

addresses as we used them. When we stored a value from the keyboard,

we named location $D3CD. We have also used absolute addresses for

program control: subroutines at $FFD5 and $D33C were called up sim

ply by giving the address.

The JSR (jump subroutine) instruction calls up a subroutine anywhere in

memory by using absolute addressing. There is also a JMP (jump) in

struction, which can transfer program execution to any location in memory;

it's similar to the BASIC GOTO statement. JMP can use absolute ad

dressing—it can go anywhere.

There's a limitation to absolute addressing, however. Once you have writ

ten the instruction, you can go only to the address stated. You cannot

reach a range of locations; only one.

One-location addressing can be good for any of several jobs. On the PET/



76 MACHINE LANGUAGE FOR COMMODORE MACHINES

CBM, we might want to switch between text and graphics modes by ma

nipulating address 5 q A fc fl (hexadecimal E fl A C). On the VIC-20, we might

like to set the volume level of the sound generator by placing a value into

location 3bfl?fl (hex HDDE). On a Commodore 64, the screen's back

ground color can be changed by manipulating address 5 3 E fl 1 (hex D D E1).

In each case, it's one specific address that we want; absolute addressing

will do the job for us. And we will also use absolute addressing to reference

the various RAM locations that we have picked for our own program "var

iables."

Zero-Page Mode
A hexadecimal address such as $D3fll is sixteen bits long and takes up

two bytes of memory. We call the high byte (in this case, $D3), the

"memory page" of the address. We might say (but usually don't) that this

address is in page 3 at position $fll.

$0D $FF $1DO

I 1 ~1
\

Figure 5.2 Zero-Page Mode Specifies A Single Address from $0D to $FF.

Addresses such as $DD4C and $DDF7 are in page zero; in fact, page

zero consists of all addresses from $DDDD to $DDFF. Page-zero lo

cations are very popular and quite busy. There's an address mode spe

cially designed to quickly get to these locations: zero-page addressing.

We may think of it as a short address, and omit the first two digits. Instead

of coding LDA $DDRD, we may write LDA IRQ, and the resulting code

will occupy less space and run slightly faster.

Zero-page locations are so popular that we'll have a hard time finding

spare locations for our own programs. As a result, we tend to conserve

zero-page Ipcations on Commodore machines. We'll need the few that

are available for a special addressing mode, indirect, indexed, that will

be discussed later.

There are many locations in zero page that are useful to read. For example,

the BASIC system variable ST, which is important in input/output handling,

may be examined there (location $qt in PET/CBM, location $qD in VIC-

20 and Commodore 64). If you need to know whether the user is holding

down a key, there's an address in zero page that will tell you that (location

$q? in PET/CBM, $CB in VIC and 64, $D4 in C128).

Zero-page addressing, like absolute addressing, references one location
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only. It's good for a specific value; but for a range of values we need

something more.

A Range of 2 5 b Addresses: Absolute,

Indexed Mode
Indexing has already been used in Chapter 2. We give an absolute ad

dress, and then indicate that the contents of X or Y should be added to

this address to give an effective address.

4

I

>-- -Index

BASE VALUE
ADDRESS

Figure 5.3

Indexing is used only for data handling: it's available for such activities as

load and store, but not for branch or jump. Many instructions give you a

choice of X or Y as an index register; a few are limited specifically to X

or Y. Instructions that compare or store X and Y (CPX, CPY, STX, and

STY) do not have absolute, indexed addressing; neither does the BIT

instruction.

An instruction using absolute, indexed addressing can reach up to E5t

locations. Registers X and Y may hold values from 0 to E55, so that the

effective address may range from the address given to E55 locations

higher. Indexing always increases the address; there is no such thing as

a negative index when used with an absolute address. If the address given

is above $FFDD, a high value in the index may cause the address to

"wrap around" and generate an effective address in the region of $ □ D D D;

otherwise, the effective address is never lower than the instruction ad
dress.

We've seen the use of indexing. An instruction can reference a certain

address, then, as the program loops or as the need for information changes,

the same instruction can reference the contents of a different address.

The maximum range of E5b locations is an important limitation.
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The "reach" of an absolute, indexed instruction allows it to handle infor

mation in buffers (such as the input buffer, keyboard buffer, cassette buffer);

tables (such as the active file table); and short messages (such as HELLO

or error messages). It's not big enough, however, to reach all parts of

screen memory, all parts of a BASIC program, or all of RAM. For that,

we'll use indirect, indexed addressing, which will be described later.

All of Zero Page: Zero-Page, Indexed

Zero-page, indexed addressing seems at first glance to be similar to the

absolute, indexed mode. The address given (this time in zero-page) has

the contents of the selected index added to it. But there's a difference: in

this case, the effective address can never leave zero page.

This mode usually uses the X register; only two instructions, LDX and

STX, use the Yregister for zero-page, indexed addressing. In either case,

the index is added to the zero-page address; if the total goes beyond zero

page, the address "wraps around." As an example, if an instruction is

coded LDA $ED, X and the X register contains 50 at the time of exe

cution, the effective address will be $DD3D. The total ($ED + $50 or

$13 D) will be trimmed back into zero page.

$00 $FF

BASE

ADDRESS

Figure 5.4

Thus, any zero-page address can be indexed to reach any other place in

zero page; the reach of E 5 b locations represents the whole of zero page.

This creates a new possibility: with zero-page, indexed addressing, we

can achieve negative indexing. For this address mode only, we can index

in a downward direction by using index register values such as $FF for

-1, $FE for - E, and so on.

On Commodore machines, zero page is fairly well occupied. There is

limited opportunity to use zero-page, indexed addressing.
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Branching: Relative Address Mode
We have written several branch instructions already; the assembler al

lowed us to enter the actual addresses to which we want to branch. The

assembler translates it to a different form—the relative address.

Figure 5.5

Relative address means, "branch forward or backwards a certain number

of bytes from this point." The relative address is one byte, making the

whole instruction two bytes long. Its value is taken as a signed number.

A branch instruction with a relative address of $D5 would mean, "if the

branch is taken, skip the next 5 bytes." A branch instruction with a relative

address of $F7 would mean, "if the branch is taken, back up R bytes

from where you would otherwise be." As a signed number, $F7 is equal

to a value of -R.

We can calculate a branch by performing hexadecimal subtraction; the

"target" address is subtracted from the PC address. If we have a branch

at $ D 3 A1 that should go to $ D3 3 C, we would work as follows: $ D3 3 C

(the target) minus $D343 (the location following the branch instruction)

would give a result of IFR, or minus 7. This is tedious to do, and often

results in mistakes; such mistakes in calculating a branch address are

often fatal to the program run. We are much better off using an assembler

to work out the arithmetic for us.

The longest branches are: $7 F, or 127 locations ahead; and $flD, or

15 fl locations back. This poses no difficulties with short programs, such

as the ones we are writing here. But in larger programs, the branch may

not be able to reach far enough. The usual solution to this is to place a

JMP Gump) instruction nearby, which is capable of going anywhere in

memory; JMP uses absolute addressing. The appropriate branch instruc

tion will go to the JMP, which in turn will take the program to the desired
location.

Advocates of programming style make the following argument. All pro

grams should be written into neat small modules. Logic blocks should be
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broken into subroutines, and the subroutines into even smaller subrou

tines; this way, everything is neat and testable. If you should find a branch

that won't reach, ask yourself whether it's time to break your program into

smaller chunks before the logic gets too messy. By the liberal use of

subroutines, you can arrange your code so that all branches are short and

easily within reach. If you do break up the program structure, the branches

will then always reach. It's up to you to choose your coding style, but you

might give the question some thought.

An interesting aspect of relative addressing is that code containing branches

is easy to relocate. A piece of code containing a branch to six locations

ahead will work perfectly if the whole code is moved to a different location.

This is not true of jumps and subroutine calls, or any code using absolute

addressing—if the location changes, the address must be changed.

The ROM Link—Jumps in Indirect Mode

We have mentioned the JMP instruction that will take the program to any

specified address. JMP has another address mode: indirect addressing.

Indirect addressing is signaled by the use of parentheses around the

address. It works this way. An address is supplied, but it's not the one we

will eventually use. We take this address, and at the location it specifies,

we'll find the effective address, or the indirect address. The indirect ad

dress is two bytes long, of course, and is stored in the usual 650x manner

of low byte first.

An example will help to make things clear. Suppose that at address $D33C

we have the instruction JMP ($1234). The parentheses tell us that in

direct addressing is involved. The machine code is hex tC 34 12; as

always, the address is "turned around." Now suppose that at addresses

$1234 and $1235 we have stored values $24 and $fcfi. The jump

instruction would behave as follows: it would go to $1234 and $1235,

get the contents, and the program would transfer to address $fcfl24.

INDIRECT

ADDRESS

Figure 5.6
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The JMP indirect has a somewhat specialized use. Normally, if we want

to transfer control to some location, we just JMP there; no need for the

indirect step. But there's one quite important case where indirect jumps

serve an important function.

Within ROM, there are a large amount of permanent instructions that the

computer uses to perform its tasks. Since it's in ROM, we can never change

this code. If the various programs were linked only by means of JMP and

JSR statements, they could not be changed, and we would not be able

to modify the behavior of the machine.

Built into the ROM program, there are a series of carefully planned indirect

jumps. Instead of the ROM leaping from one instruction directly to another,

it jumps indirectly via an address stored in RAM. We can change the

contents of RAM; and if we change the address stored in RAM, we can

modify the behavior of the system. The best-known indirect address is

that associated with the interrupt sequence: it's at lOCHD in PET/CBM

and $D314 in VIC, 64, PLUS/4, and C128.

You might not code many indirect jumps, but you'll be glad that they are
there in ROM.

Data From Anywhere: Indirect, Indexed

The problems with indexed addressing have been noted: the reach of only

S5b bytes limits the data capability of this method.

Indirect addressing seems to offer a total solution. We can write an in

struction that points at an indirect address. Since we can change the

indirect address at will, or add to or subtract from it, we can cause our

instruction to deal with data anywhere in memory.

In fact, we get a limitation and a bonus. First, the limitation: for indirect,

indexed instructions the indirect address must be in zero-page—two bytes,

of course, organized low byte first, as always. Next, the bonus: after the

indirect address is obtained, it will be indexed with the Y register to form

the final effective address.

Let's step our way through the mechanism and see how it works. Suppose

I code LDA ($CD). Y with values $11 in address $DDCD and $EE in

address $DDC1. If the Y register contains a value of 3, the instruction

will follow these steps: The address of $DDCD/1 is extracted, giving

-$ 2 211; then the contents of Y are added to give the effective address

of $221 A. If the contents of Y changed, the effective address would
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change slightly. If the indirect address at $CD and $C1 was changed,

the effective address would change radically.

The combination of indirect and indexing may seem like overkill. If you

can designate any location in memory with an indirect address, why bother

with indexing? After all, anywhere plus one is still anywhere.

Indirect addressing plus indexing proves to be an ideal combination for

the manipulation of data. Almost all data breaks up into logical chunks of

some sort: records, table entries, screen lines, words, and so on. Here's

the technique. We position the indirect address at the start of a given

logical data chunk, and use the Y register to scan through the information.

When we're ready to move to the next item, we move the indirect address

along, and repeat the same scanning of the Y register through the new

data.

00 FF

INDIRECT,

INDEXED

Figure 5.7

One may think of it as a fishing analogy: We anchor the boat in a certain

spot (fix the indirect address) and then use the fishing line (the Y register)

to reach the data we need. When we're ready for the next item, we pull

up the anchor and move along to a new place.

-DATA IN MEMORY-

NAME, ETC. NAME, ETC. NAME, ETC.

B

Figure 5.8

We'll be working through an elaborate example that uses indirect, indexed

addressing to manipulate the computer screen. First, a brief diversion.
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A Rarity: Indexed, Indirect

There is another addressing mode that is little used in Commodore com

puters: indexed, indirect. It uses the X register rather than the Y, and is

coded as in the following example: LD A ($CD, X). In this case, indexing

takes place first. The contents of X are added to the indirect address (in

this case, $CD) to make an effective indirect address. If X were equal to

A in this example, the effective indirect address would be $DDC4, and

the contents of $DDC4 and $DDC5 would be used as the effective

address of the data.

$00 / / $FF \

INDEXED, INDIRECT ALLOWS ONE OF SEVERAL

INDIRECT ADDRESSES TO BE CHOSEN USING
THE X INDEX REGISTER

Figure 5.9

In certain types of control processing, this is a quite useful address mode.

X will contain an even number; since each indirect address is two bytes

long, we will need to skip from one to the other, two bytes at a time.

Let's take a hypothetical communications system that is connected to four

telecommunications lines and see how indexed, indirect addressing might

be used. Characters are being received from the four lines almost simul

taneously. As each character arrives, it must be put away into a memory

buffer belonging to that particular line; in that way, traffic received from

the various sources won't get mixed together. Zero-page will contain four

indirect addresses, one for each line; each indirect address points at an

input area for one line. Suppose a character is received into the A register

from one of the lines; the line number (times two) is in the X register. We
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could then put the character away with the instruction STA ($bD,X).

Thus, if line zero was involved, its indirect address at address $bD/tl

would be used; for line 1, the address at $fc2/b3 would be used; and

so on. After we had stored the character concerned, we'd need to bump

the indirect pointer so that the next character will go into a new position:

INC $t>D , X would do the trick.

The above example is a rather specialized use of the indexed, indirect

address mode. You may never need to use this mode. Indeed, most

programmers lead full, rich lives without ever writing code that uses in

dexed, indirect addressing.

The Great Zero-Page Hunt

Indirect, indexed addresses are very important. They are your gateway to

reaching any part of memory from a single instruction. But you must have

two bytes available in zero-page for each indirect address you want to

use.

The Commodore ROM system helps itself to liberal amounts of zero-page

memory. You don't have much empty space left over. How can you find

space for these indirect pointers?

First, look for unused locations. There are only a few of them: on the VIC

and Commodore 64, you'll find four locations at locations $DDFCto$DDFF.

That's enough for two indirect addresses.

If you need more, look through the memory maps for locations designed

as "work areas" or "utility pointers." They can usually be put to work for

a temporary job.

Finally, you can take working parts of zero-page and copy them to some

other parts of memory. You can use these locations, carefully putting back

the original contents before returning to BASIC. Don't try this with any

values that are used by the interrupt routines (involved with screen, key

board, or RS-232); the interrupt can and does strike while your machine

language program is running. And if the interrupt program changes these

zero-page values, your program is going to behave badly.

Project: Screen Manipulation
This project is intended to show how indirect, indexed addressing can be

used effectively. We'll change something on the screen—enough so that

we reach more than 55b addresses. Ordinary indexing, therefore, won't

do.
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We'll select a number of lines on the screen; within each line, we'll change

a certain group of characters. In other words, we will write the code so as

to manipulate a window on the screen.

To do this, we'll need to code two steps: setting up the start of a screen

line, and later moving on to the next line when needed. Within each line,

we'll work our way through the range of screen columns that we have

selected. In fact, it's a big loop (for the lines) containing a small loop (for

the columns within that line). We'll use indirect addressing to point to the

start of each line, and indexing (the Y register) to select the portion of that

line to change.

Since there's a variety of Commodore machines, we have some problems

to resolve. Except for the C128 in 80-column screen mode, all Commodore

screens are "memory mapped," that is, the information appearing on the

screen is copied directly from some part of memory. We may change the

screen by changing the appropriate memory. But different machines use

different memory addresses; and in VIC and Commodore 64, the screen

may be moved around. Another thing to consider is that the length of line

varies between different machines—it might be E E or A D or fl D columns.

C128 note: Remember to check Appendix E, Exercises for the Commo

dore 128, for the appropriate coding.

No problem. If you have a 40-column machine, AQ equals $Efl; code

fl D33C LDfl #$Efl

For a 22-column machine, change the above to LDfl #$lb; and for an
80-column PET, code LDfl #$5D.

Have you coded the correct value? Let's proceed with our next decision.

In the PET/CBM, screen memory starts at address $flDDD; in VIC or

Commodore 64, the screen starts at whatever page is designated in ad
dress $DEflfl. Let's code as follows:

PET/CBM: fl D33E LDX #$flD

fl D34D NOP

VIC/Commodore 64: fl D33E LDX $DEflfl

The NOP instruction does nothing, but it makes the coding the same length

so that we may continue with address $D341 in either case. The R

register tells us our line length, and the X register tells us the page number

on which the screen starts. Let's put them away. The line length will be
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needed for addition later, so we may put it anywhere safe; the screen

address will be part of an indirect address, so it must go into zero-page.

It's hard to find a zero-page address that may be used in all Commodore

machines; we'll choose $DDBBand$DDBC. $BB contains the low byte

of the address, of course. Let's code

A D341 STA $03AD

A D344 STX $BC

Note that we are using the zero-page addressing mode for the instruction

at address $D344. That puts the high byte of the address in place. Now

we'll set the low byte to zero:

A D34b LDA #$DD

A D34Q STA $BB

Our indirect address is now pointing at the start of screen memory. Let's

discuss in more detail what we want to do with the screen. Specifically,

we want to change a number of lines, let's say K, on the screen. We

will step along our indirect address by adding to the indirect address:

maybe 2E, maybe 4U, maybe 60; whatever is in address $D3AD. And

we won't do the whole line; we'll start in column 5 and go to column Ifl.

Let's count the lines in the X register; we'll start X at zero

A D34A LDX #$DD

Now we're ready to do a screen line. Later, we'll adjust the indirect address

and come back here to do another line. We should make a note to our

selves: "Come back to $D34C for the next screen line."

The indirect address is pointing at the start of the line. We want to start

work in column 5. That means that Y should start with an offset of A (the

start of the line plus 4). Let's do it:

A D34C LDY #$D<

We're going to walk Y up, and loop back to this point for the next character

on the line. We might note: "Come back to $ D 3 4E for the next character."

We're ready to go. Let's dig out the character that's currently on the screen:

A Q34E LDA ($BB) ,Y

This is worth a review. Locations $BB and $BC contain the address of

the start of screen memory; on the PET/CBM, for example, this would be

$fl DDD. To this, we add the contents of Y (value A) to create an effective

address of $fiDD4; and from location $flDD4 we get the screen char

acter.
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We decide that we will leave spaces alone. The space character shows

on the screen as a value of decimal 32, hex ED. Let's skip the next
operation if it's a space:

A 0350 CMP #$20

A 0352 BEQ $035b

We have to guess at the address to which we will skip ahead, since we

haven't gotten there yet. Make a note: "This address may need correction."

A 0354 EOR #$flD

This is where we manipulate the character. The EOR is a "flip-over"

command; we're flipping the high bit of the screen value. You may look

up screen codes to see what this does, or you may wait and see what

happens. At this point, our code from $0352 joins up. As it happens, we

were lucky again: the address is exactly right to rejoin at $035k. But if

it were not, you know how to fix it, don't you? Exit the assembler, then go
back and type over.

Now we put the modified character back to the screen:

A 035b STA ($BB),Y

We have done one character. Let's move along the line to the next char

acter, and if we have passed column Ifl (Y = 17) we should quit and go

to the next line.

A D35fi INY

A 035^ CPY #$12

a D35B BCC $034E

Y moves along to the next character position: five, then six the next time

around, and so on. So long as Y is less than Ifl (hex 12) we'll go back,

since BCC means "branch less than." If we get past this point, we have

completed the line and must move to the next one.

We move to the next line by adding to the indirect address. We must add

22, or 4 0, or fiD; the value is in address $D3AD (you may remember

that we stored it with the instruction at $0341). We must remember to

clear the carry flag before starting the addition, and to add starting at the

low byte of the address (at $BB).

A 035D CLC

A 035E LDA $BB

A 03b0 ADC $03A0
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a D3t3 ST& $BB

A D3&>5 LDA $BC

A D3b7 ADC #$DD

STA $BC

The last three instructions seem odd. Why would we add zero to the

contents of $BC? Surely that changes nothing. The answer is obvious

after a little thought: there might be a carry from the previous addition.

Now we're ready to count the lines: we had decided to use X as a counter.

Let's add one to X, and test to see whether we have done the 14 lines:

A D3tB INX

A Q3tC CPX #$DE

A D3bE BNE $034C

If we've done the required number of lines, we have nothing more to do

other than return to BASIC:

A D37D RTS

Disassemble and check it. Again, you'll find that the code occupies more

than one full screen. Return to BASIC.

This time, we'll write a small BASIC program to exercise the machine

language code. Type NEW to clear out any old BASIC code, and enter

1DD FOR J =1 to ID

11D SYS flEfl

120 FOR K = 1 to 2DD

13D NEXT K,J

The extra loop is to slow things down. Machine language runs so fast that

the effect might not be properly visible if run at full speed.

Project for enthusiasts: Can you change the program to do a different

set of columns? Could you change it so that it affected only the letterfl S "

wherever it appeared on the screen?

Comment for VIC-20 and

Commodore 64
This exercise will work as intended. Other types of screen work might call

for you to set the color nybble memory values before you can successfully

work directly with screen memory. The rules for machine language are no

different from those for BASIC: if you wish to POKE to the screen, you

may need to take the color nybble area into account.
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Things You Have Learned
—Three address modes are not addresses at all. Implied addressing means

no address at all; accumulator addressing uses the A register and means

the same thing; and immediate addressing uses a value, not an address.

—Absolute addresses reference one location only, somewhere in memory.

Zero-page addresses reference a single address in the range $DDDD to

$DOFF—the high byte of the address (DD) is the memory page. These
address modes are used for fixed locations containing work values or system
interfaces.

—Absolute, indexed and zero-page, indexed allows the named address to be
adjusted by the contents of an index register—X or Y. These instructions can
reach a range of up to 25fc addresses. They are commonly used for tables
of data or temporary storage areas.

—Relative addresses are used exclusively with branch instructions. They have
a limited "reach" of about 127 locations forward or backward. It takes a little
arithmetic to calculate the proper values, but the computer usually works this
out for us.

—Indirect addressing is used only for jumps, most often to allow a fixed ROM

program to take a variable jump. The average machine language programmer

will seldom need these, but the principle of indirect addressing is worth learning.

—Indirect, indexed addressing is the most important way to deal with data

anywhere in memory. We may reach anywhere by setting the indirect address,
then we may "fine adjust" that address by indexing it with the contents of Y.

—Indirect, indexed addressing requires the indirect address to be in zero-page.
We need to conserve zero-page locations for this use.

—An addressing mode called indexed, indirect is rarely used when program
ming Commodore computers, but it's there if you want it.

Questions and Projects
Write a program to clear the screen of your computer—check Appendix

C for the location of screen memory if you've forgotten. Don't just print
the clear screen character ($R3); do it another way. Can you write the

entire program without using indirect, indexed addressing?

Write the program again using indirect, indexed addressing. The program

may be a little shorter. Can you think of any other advantages of writing
this way?

A user wishes to type in a line of text on the keyboard, ending with a RETUR N.

He then wants to have the program repeat the line ten times on the screen.

What addressing mode or modes would you use to handle the user's text?

Why? You may try your hand at writing the program if you wish.

Take one of the previous exercises and try to write it again without using
immediate addressing. Is it hard to do? Can you see any reason to want

to code without using immediate addressing at all?
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Linking

BASIC and
Machine

Language

This chapter discusses:

• Where to put a machine language program

• BASIC memory layout

• Loading and the SOV pointer

• BASIC variables: fixed, floating and string

• Exchanging data with BASIC
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Siting the Program
Up to this point, we have been placing all programs in the cassette buffer.

This is a good place for short test programs, but we need to examine

alternatives that are often more attractive.

BASIC Memory Layout
C128 and B-128 note: These two machines keep variables in a separate

memory bank from that in which the BASIC program is held. Some of the

considerations described below—especially regarding dangers with the

Start-of-Variables pointer—don't apply. For C128 details, check Appendix

E, under Exercises for the Commodore 128.

BASIC RAM is organized according to the diagram below. The following

locations are of particular interest:

1. Below the BASIC area, we have the cassette buffer area. This is available

to us, providing we are not engaged in input/output activity.

2. Start-of-BASIC (SOB) is usually a fixed address within the machine. In PET/

CBM, it's at $04Dl (decimal IDE5). In Commodore 64, it's at $DflDl

(decimal ED4R). In the PLUS/4 series, it's at $1DD1 (decimal 4DR7). In

the VIC-20, it may be at one of several places: $UAU1, $lDDlfor$lBDl.

A pointer marks this location. The pointer is located at SEfi/SER (decimal

AU and Al) in PET/CBM, and at $EB/$EC (decimal A3 and AA), in VIC-

20, Commodore 64, and PLUS/4.

You should inspect the pointer and confirm that it contains an appropriate

address. You may notice that it's much easier to do this using the machine

language monitor, since the address is split between the two bytes (low order

first, as always).

3. End-of-BASIC is signaled by three zero bytes somewhere after the SOB. If

you command NEW in BASIC, you'll find the three bytes right at the start of

BASIC; there is no program, so start and end are together. There is no

pointer that indicates end-of-BASIC, just the three zeros; but the next location

(SOV) will often be directly behind the end-of-BASIC

CASSETTE

BUFFER
0

BASIC

PROGRAM

BASIC RAM
A

BASIC

VARIABLES

BASIC

ARRAYS
FREE

DYNAMIC

STRINGS

SOB

I
SOV

I
SOA EOA BOS

I
TOM

Figure 6.1
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The BASIC program that you type in will occupy memory space from start-

of-BASIC to end-of-BASIC. If you add lines to a program, end-of-BASIC will

move up as extra memory IS taken up by your programs. If you delete lines,

end-of-BASIC will move down.

4. Start-of-variables (SO V) is often positioned directly behind the end-of-BASIC.

When the BASIC program runs, the variables will be written into memory

starting at this point; each variable is exactly seven bytes long. A pointer

marks this location. The pointer is located at $EA/$EB (decimal 42 and

43) in PET/CBM, and at $ED/$EE (decimal AS and 4b) in VIC-20, Com

modore 64, and PLUS/4.

The SOV pointer is extremely important during BASIC load and save activ

ities. If we give the BASIC command SAVE in direct mode, the computer

will automatically save all memory from SOB to just before the SOV. Thus,

it saves the whole BASIC program, including the end-of-BASIC marker of

three zero bytes, but does not save any variables. If we give the BASIC

command LOAD in direct mode, the computer will automatically load the

program, and thfcn place the SOV pointer to just behind the last byte loaded.

In this way, variables will never be stored over the BASIC program; they will

be written above the end-of-BASIC. More on this later.

If the BASIC program is changed, the SOV may move up or down as needed.

5. Start-of-arrays (SO A) also represents one location beyond the end-of-BASIC

variables, and thus could be named end-of-variables. Arrays created by the

BASIC program, either by use of a DIM statement or by default dimensioning,

will occupy memory starting at this point. A pointer marks this location. The

pointer is located at $EC/$ED (decimal 44 and 4S) in PET/CBM, and at

$EF/$3D (decimal 47 and A&) in VIC-20, Commodore 64, and PLUS/4.

If the BASIC program is changed, the SOA pointer is set to match the SOV.

Thus, all BASIC variables are wiped out the moment a change is made to

the program.

6. End-of-arrays (EOA) is set one location beyond the last array location in

BASIC. Above this point is seemingly "free" memory—but it's not really free,

as we'll see soon. A pointer marks this location. The pointer is located at

$EE/$EF (decimal 4h and 47) in PET/CBM, and at $31/$3E (decimal

41 and 5D) in VIC-20, Commodore 64, and PLUS/4.

If the BASIC program is changed, the EOA pointer is set to match the SOA

and SOV. Thus, all BASIC arrays are wiped out the moment a change is

made to the BASIC program.

Let's change direction and start to work our way down from the top of BASIC

memory.

7. Top-of-memory (TOM) is set one location beyond the last byte available to

BASIC. On the PET/CBM and VIC-20, its location depends on the amount

of memory fitted; a 32K PET would locate TOM at $flDDD. On the Com-
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modore 64, the TOM will normally be located at $ ADD D. A pointer marks

this location. The pointer is located at $34/$3 5 (decimal 55 and

53) in PET/CBM, and at $3?/$3fl (decimal 55 and 5b) in VIC-20, Com

modore 64, and PLUS/4.

If you examine the TOM pointer, you may find that it does not point at the

expected position. That may be because of the machine language monitor,

which has taken up residence at the top of memory and stolen away some

memory.

8. Bottom-of-strings, (BOS) is set to the last "dynamic" string that has been

created. If there are no BASIC strings, the BOS will be set to the same

address as TOM. As new dynamic strings are created, this pointer moves

down from the top-of-memory towards the EOA address. A pointer marks

this location. The pointer is located at $3D/$31 (decimal 4fi and A^) in

PET/CBM, and at $3 3/$3 A (decimal 51 and 55) in VIC-20, Commodore

64, and PLUS/4.

A dynamic string is one that cannot be used directly from the program

where it is defined; you might like to think of it as a manufactured string.

If, within a BASIC program, I type: 1DD X$ = "HAPPY NEW YEAR",

the BASIC interpreter will not need to store the string in upper memory;

it will use the string directly from where it lies within the program. On the

other hand, if I define strings with commands such as R$ = R$ + " *fl or

INPUT N$, the strings must be built into some spare part of memory.

That's where the BOS pointer comes in: the computed string is placed

high in memory, and the BOS moved down to mark the next free place.

If the BASIC program is changed, the BOS pointer is set to match the

TOM. Thus, all strings are wiped out the moment a change is made to

the BASIC program.

Free Memory: The Dangerous Place

It seems to beginners that there is a great deal of free memory available

above the end-of-arrays and below the bottom-of-strings, and that this

would be an ideal place to put a machine language program. This is a

pitfall: it usually won't work.

Here's the danger. As more and more dynamic strings are created, the

bottom-of-strings location keeps moving down. Even when strings are no

longer needed, they are abandoned and left dead in memory, taking up

space.

The BOS keeps moving down. Only when it touches the EOA will the

dead strings be cleaned up and the good ones repacked, an action called

garbage collection. It's important for BASIC programmers to know about
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garbage collection: except on BASIC 4.0 and Commodore PLUS/4 sys

tems, it can be a cause of serious program slowdown.

It's evident that the space between EO& and BOS is not safe. If you put

a program there, the strings will eventually destroy it. We must look else

where.

Where to Put Your ML Program

First, you may put your program in the cassette buffer. Providing you are

not performing input/output activity, your program will be safe. Your space

here is limited to 1RD characters or so.

sov SOAOA EOiEOA BOS TOM

CASSETTE 'A

BUFFER ^ BASIC VAR ARR STR

Figure 6.2

Second, move down the top-of-memory pointer and place the program in

the space that has been freed. Your spdce here is unlimited. Programs

placed here will take up permanent residence until the power is turned

off. Many monitors, such as Supermon, live here.

SOB SOV SOA EOA BOS NEW OLD

I III TOMTOM

C.B.

Figure 6.3

SOB OLD NEW SOA

SOV SOV |
EOA B<

f
TOM

C.B.
00

0

Figure 6.4

Third, move up the start-of-variables pointer, and place the program after

the end of BASIC and before the new start-of-variables. Your space here
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is unlimited. Programs placed here will tend to "join company" with the

BASIC program; the two will save and load together.

After moving a pointer—as was done in the last two methods—it's a good

idea to return to BASIC and command CLR, so that all other variable

pointers will align correctly with the ones that have moved.

These three areas will be discussed more in a few moments. First, there

are one or two extra locations available to VIC-20 and Commodore 64.

Extras for VIC and Commodore 64

The Commodore 64 has a free block of RAM at locations $CDDD to

$CFFF (decimal 4^152 to 53E47). That's 4K of RAM not being used;

you may write your programs there. Before you do so, check to make sure

that the memory is not being used by any other programs. It's a popular

place in the Commodore 64, and many utilities and commercial programs

zero in on this available memory.

If you intend to write programs entirely in machine language, with no BASIC

content at all, you may completely remove BASIC from the Commodore

64 system and claim the space as available RAM. This gives you the

whole block from $DflDl up to $CFFF for programs and data—a whop

ping 50K—and even more could be liberated if necessary. BASIC may

be made to disappear from the Commodore 64 with the equivalent of

POKE 1,54 (LDA #$3b, STA $D1). It may be reinstated with the

equivalent of POKE 1, 55 (LDA #$37, STA$D1). Be very careful.

With BASIC gone, the computer doesn't even know how to say READY.

On all Commodore machines it's possible to move up the start-of-BASIC

pointer and use the space freed below. To do so, it's essential to store a

value of zero into the location immediately before the new start-of-BASIC,

and to align all other pointers, usually by going to BASIC and commanding

NEW.

This works, and will make as much space available as is needed. BASIC

programs will relocate as they load. But since the computer needs to be

reconfigured before the main program is loaded, and often needs to be

restored to its original configuration after the program is run, the method

is not popular in most Commodore machines. It's used fairly often in the

VIC-20, however.

The video chip in the VIC-20 can "see" RAM memory only in the memory

space $DDDD to $1FFF (decimal D to fllSl). Whatever variable in

formation appears on the screen must be taken from this memory area.
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The VIC-20 can also get information from $flOOOto$cIFFF,but there's

no RAM there; we can't manipulate this memory area.

If we want to perform special visual effects on the VIC-20, we must ma

nipulate data in the area $DDDDto$lFFF. Let's look at what is available.

$0000 to $03FF is used by the "system;" other than the cassette

buffer, we must leave it alone. $0400 to $0FFF contains no memory

unless a 3K RAM expansion is added. $1000to$lDFF contains the

BASIC program, and $1EOO to $1FFF is screen memory. Details may

vary, but the answer always comes out the same: there's no space to do

our video effects.

A popular VIC-20 solution, especially where 8K or more of RAM expansion

has been added, is to increase the start-of-BASIC pointer, thus liberating

space in low memory. This may now be used for visual effects and for

machine language programming, too, if any space is left over. In the VIC-

20, this approach is necessary, but it's still a bit clumsy.

The Wicked SO V
The start-of-variables pointer can be the cause of many troubles, if it's not

understood. The rules covering it are as follows:

1. Variables are written starting at the SOV.

2. BASIC S A VEs will save from memory beginning at start-of-BASIC and stop

ping at SOV.

3. Direct command BASIC LOADs will bring a program into memory, relocating

if appropriate, and then set the SO V pointer to the location following the last

byte loaded.

4. Changes to BASIC programs cause memory to be moved—up or down—

starting from the point where the change is made and stopping at the SOV.

The SOV will then be moved the appropriate distance up or down.

These seem to be innocent rules. Rule 1 defines the purpose of the SO V.

Rule 2 shows how the SOV controls the SAVE command so that the

entire BASIC program is saved, but not the variables. Rule 3 arranges

that short programs will have a large amount of variable space available;

long ones will have less. Rule 4 ensures that a BASIC change makes

extra room in memory or reclaims memory space.

But if the SOV gets the wrong address, we're in trouble. The rules work

against us. Variables may be written into disastrous places. SAVEs will

cause too much or too little to be saved. LOADs may fix things, since

SOV will be changed by the load action. An attempt to change a program

with a bad SOV may cause too little or far too much memory to be moved

around. We must get the SOV right.
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How can the SO V go bad on us? Let's take three examples, corresponding

to the three major places that we might put machine language programs:

We have a program in the cassette buffer, and a BASIC program that

goes with it. We enter or load the BASIC program (the SOV is all right so

far), and then we LOAD the machine language program; the SOV ends

up disastrously somewhere in the cassette buffer area.

We're in trouble. The program seems to list correctly, but it's sick. If we

RUN, variables will start to be placed in the cassette buffer area; as more

variables are created, they are placed in progressively higher memory

locations. Eventually, the variables start to write over the BASIC program.

Everything stops. The poor programmer says LIST to see what's hap

pened; his BASIC program is gone, and all that's left is gibberish.

We're in more trouble. Alternatively, the programmer decides to save his

BASIC program and commands SAVE. BASIC starts to save memory

beginning at start-of-BASIC... and keeps saving, and saving, and saving.

It won't stop until it reaches the SOV, but that's below where we started.

We won't get there until the address "wraps around" and comes back up

through zero. The poor programmer—if he or she waits long enough—

discovers that the tiny five-line BASIC program has been saved as over

25 D blocks on disk, or fifteen minutes worth of tape. And the saved

program is useless.

We're in still more trouble. Alternatively, the programmer lists the program,

and decides to delete one character from a line of BASIC. BASIC im

mediately starts to move memory, starting at the change point. It won't

stop moving memory until it reaches SOV, but that, again, is below where

we started. It will move everything that can be moved. RAM will be moved

along, which may not hurt anything; then the IA chips will be moved,

which may scramble colors or make the display go crazy; then it will try

to move ROM, which won't work because ROM can't be changed; then it

will wrap around to zero-page and move everything there, which is fatal

to the system. Eventually, it will collapse before reaching SOV since it

destroys its own working pointers.

All this could have been avoided if the programmer had loaded the machine

language program first, and then loaded the BASIC program. The SOV

would be placed behind the BASIC program, which is where it belongs in

this case.

Quiet Interlude

It's easy to see how the problem occurs, once you understand about the

SOV and its role. But if you don't understand the SOV, the results can
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shake your self-confidence. Many programmers have given up on machine

language because of a bad experience with SOV .

It works this way. The student writes a perfect program into the cassette

buffer and saves it using the machine language monitor. Later, with a

BASIC program in place, the student recalls the program and inadvertently

moves SOV to an impossible location. When BASIC runs, the variables

will start to be written behind the machine language program, ahead of

the BASIC program. As more and more variables come into play, they
creep relentlessly toward the BASIC coding.

Our eager student—with a perfect machine language program and a per

fect BASIC program—now decides to say RUN. The BASIC program runs

for a while, and then grinds to a halt, usually with a crazy screen or reporting

an error in a nonexistent line. We know what's happened, of course: the

variables have started to write over the BASIC program. But our unfor

tunate student doesn't know that. The command LIST is entered, and

out comes nonsense.

What goes through the programmer's mind at this time? "I was so sure

that the program is correct [in fact, it is]; but it's so bad that it's destroyed

memory! I suppose that machine language is much more difficult than I

thought."

And the student loses hope and gives up, not knowing that there's only

one small piece of information needed to fix everything up. This is only

one of the things that might go wrong when the SOV pointer is improperly

placed; even an attempt to change or save a BASIC program can cause

system failure.

Such experiences destroy confidence. They are responsible for the myth

that machine language is hard and only super-clever programmers can

cope with it.

The Machine Language Monitor SAVE

Now that we're becoming aware of the SO V pitfall, we're ready to discuss

how to save a program in machine language. You probably understand

why I've been delaying this command until this time. The MLM save com

mand typically goes

S "PROGRAM",Dl,D33C,D3bl

This would be the tape format. The command is S and is followed by

the program name. The device is tape, so we type Dl—be sure to give

two digits. Next comes the beginning address (in the example $D33C)
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followed by the end address plus one. In the example, the last location

saved will be $D3fcD. For disk saves, we might want to add the drive

number:

S "D:PR0GRAM", Dfi, D33C, D3bl

These programs, once saved, may be loaded directly from BASIC, but

watch the SOV carefully. VIC-20 and Commodore 64 BASIC LOAD com

mands should contain the extra field to defeat relocation: LOAD "PRO

GRAM » , fl 11 will insist that the program load back into the same memory

locations from which it was saved.

More on LOAD

There is a machine language L command to do a program load without

changing any pointer (especially SOV). There are a number of different

machine language monitors around, and the L command does not work

the same way on all of them. You might check out the one you are using:

ideally, the L command (format: L "PROGRAM", Dl) should bring back

the program without relocation.

The L command is of limited value. A program user often cannot be

expected to load up a machine language monitor and use it to go through

a L load sequence. The program should take care of things for the user.

We have been careful to say that the BASIC LOAD command changes

the SOV when given as a direct command. If a LOAD command is given

from within a program, SOV is not changed; but there's a new item to be

taken care of.

Programmed LOAD has been carefully designed to perform a function

called "chaining." That's a BASIC technique, and not within the scope of

this book. Chaining, however, has two important characteristics:

1. No pointers are affected. The program will not lose any variables when it

performs a LOAD. That's good: we will not lose any of our computations.

2. Once a LOAD is complete, the BASIC program will resume execution at the

first statement. It will not continue from where it left off; it will go back to the

beginning. For our application, that's bad; we seem to have lost our place

in BASIC.

If we understand the problem that item 2 creates, we can easily fix it by

using item 1. Here's an example to illustrate the problem: we have a

program on disk written for the cassette buffer called fl ML ", and we want

to have a BASIC program bring it in. We could code as a first line: 1DD

LOAD " ML M / fl—but we'd have a problem. First, the program would load
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ML. Then it would go back to the beginning and load ML. Then it would

go back to the beginning ... and so on. This is not satisfactory. Let's use

rule 1 to fix everything:

1DD IF A = l GOTO 13D

11DA=l

150 LOAD »ML»,fl,l

13D . . . continues

When we say RUN, the first line is executed. A is not equal to one, so

we continue on line 110. A is set to one, and line 12D causes a load

of the desired program. BASIC goes back to the beginning, but all variables

are preserved, so A is still equal to 1. Line 1DD tests A and goes to line

13 D, the next statement beyond the load. Everything works as required.

If there are multiple LOADs, line 1DD might be changed to IDD ON A

GOTO 130,150,170 . . . as necessary.

Caution: we are discussing the programmed LOAD command only in the

context of loading machine language modules. If you want to have a

program load in another BASIC program (chaining or loading) the above

rules still apply but may need to be used differently.

Other SOV Blunders

We have discussed the horrible results of loading a machine language

program into the cassette buffer (using a direct command) after BASIC

has been loaded. By now, we should have learned to avoid making this

mistake. What about programs stored in other areas, such as high memory

or after BASIC?

Suppose we want to place a program into high memory, either by moving

the top-of-memory pointer down to make room, or by using the spare RAM

at $C000 to $CFFF of the Commodore 64. We also have a BASIC

program to load. Will loading in the wrong order harm SOV?

The answer is yes, although the problem is not so severe. You can see

that after loading a program to high memory using a direct command,

SOV will be positioned immediately above it. But that's too high—there's

no room for variables and we'll get an OUT OF MEMORY error for almost

anything we do.

Obviously, we can't leave SOV in the upper stratosphere. We must load

the high memory first, and then the BASIC program. The second load will

straighten out the SO V pointer. If you try this, you'll find that it is necessary

to fix up the top-of-memory pointer and command NEW between the two
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loads; you cannot even give the next LOAD command if you're apparently

totally out of memory.

Review: Fixing Pointers

If in doubt, examine the pointers by displaying them with a M command.

For VIC/64/PLUS/4, the command would be M DDEB DD3A; with

PET/CBM, use M DDES DD37; in either case, be sure that the start-

of-variables pointer is set to a "sound" value.

As always, you can change an incorrect memory value—in this case, an

incorrect vector—by moving the cursor back, typing over the values to be

changed, and pressing RETURN.

After End-of-BASIC—Harmony

Suppose we place the machine language program behind the end-of-

BASIC—that's the three zeros in memory—and move up the SOV so that

variables won't disturb this program. How will everything work now?

Things will work very well indeed. This time, we need to load our BASIC

program first; the SOV will go immediately behind BASIC. Then we may

load our machine language program, and the SOV moves right behind it.

The SOV is in exactly the right place, assuming we load in the right order.

(If we don't, the variables will destroy our machine language program.)

Once our two programs are together, and we say SAVE, the combination

program—BASIC and machine language together—will be saved. A little

thought will reveal that memory from start-of-BASIC to just before start-

of-variables contains everything we need. A subsequent load will bring

everything back in, and position SOV to exactly the right place. We now

have a "unit" program—BASIC and machine language working together,

loading and saving as one program.

There's one small problem in this arrangement. Once we have married

the BASIC and machine language programs, we must not change the

BASIC program. If we added to or subtracted from this program, the

machine language program would move up or down—the relocation of

memory goes right up to SOV. The program might not be able to work in

the new place, and, of course, our SYS commands would be wrong.

BASIC Variables
There are four types of entry in the BASIC variable table. All variables,

regardless of type, occupy seven bytes; the first two bytes are the name,
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and the remaining five bytes (not always fully used) contain the value or

definition. The variable type is signaled as part of the name: high bits are

set over one or both letters of the name to signal a specific type.

SOV SOA

EACH VARIABLE IS EXACTLY 7 BYTES LONG.
VARIABLES APPEAR IN THE ORDER IN
WHICH THEY ARE USED.

Figure 6.5

For example, if a floating point variable had a name AB, the name would

be stored in the two bytes as $41, $4 E—the ASCII codes for A and B.

The same would be true if the variable were named ABACUS, since only

the first two letters of the name are kept. In contrast, if the variable were

named AB£, meaning that it was an integer variable, the name would be

stored as $C1, $C5. The ASCII codes are the same, but the high bit

has been set over them. To complete the picture, a string variable named

AB$ would be coded with the name $41, $CE—the high bit is set over

the second character only.

HIGH BIT SET FOR INTEGER VARIABLES AND FUNCTIONS

HIGH BIT SET FOR INTEGER AND STRING VARIABLES

NAME

2 BYTES

VALUE

5 BYTES

Figure 6.6

There's a fourth type of entry that can go into the variable table, but it's

not a variable: it's a function definition. If we give the variable command

DEFFNA ( . . . an entry will be made in this table. It will be distinguished

by the high bit being set over the first character only.

String variables use only three of the five bytes provided; the first byte

signals the length of the string, and the next two bytes give the string's

address. This group of three bytes is called a descriptor.
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There are two types of numeric variables: floating point and integer. Float

ing point variables use all five bytes; integer variables use the first two

bytes only. It's possible to extract the value from a floating point variable

and put it to work, but it's not a simple procedure. A description of how

to do this is given in Appendix F. In contrast, it's quite easy to take the

value from an integer variable and use it.

Let's try an example. Type NEW, followed by A = 5 = : B% = 5. This cre

ates two different variables: A and B%. Now go to the machine language

monitor. The variables should be near the start-of-BASIC, but if you wish

you can find their exact address by examining the SOV pointer ($2A/

$EB on PET/CBM, or $2D/$EE on VIC, Commodore 64 or PLUS/4). On

the Commodore 64, we might find that the variables start at $DflD3; to

display both of them, we type M DflD3 DfllD. We see the floating

point variable, A:

41 DD fl3 ED DD DD DD

The first two bytes are the name—$41 is ASCII for A, and the zero

signifies no second letter—but where's the 5? Embedded within the fl3

EDDDDDDO, that's where; and it's a good deal of work to extract the

5 for further processing.

Behind this variable, we see the integer variable, B:

CE flD □□ D5 DD DD DD

Hex CE is the ASCII for the letter B ( $4E ) with the high bit set. $flO is

zero with the high bit set—again, there's no second letter. The value is

in the next two bytes, and it's easy to read. The last three bytes are not

used.

Which is easier for machine language to interface with? Obviously, the

integer variable. It's often quite suitable for the program work at hand:

counting characters, setting pointers, and similar tasks.

Exchanging Data: BASIC and Machine

Language
If BASIC and machine language wish to pass data back and forth, there

are several approaches. Perhaps the simplest is to have BASIC POKE

the values into a given location, and machine language load them as

needed; in the opposite direction, machine language will store the values

and BASIC will PEEK them.

Another method is more sophisticated. BASIC variables are stored in
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memory: why can't a machine language program go after the variables

exactly where they lie and extract their value or change them? It sounds

like a good idea.

By now, we know how to ask machine language to search for a specific

BASIC variable. Given the name, we can get the address of the first

variable from the SOV pointer and store it as an indirect address. Using

indirect, indexed addressing and stepping the Y register from D to 1 we

can see if the name matches. If not, we add seven to the indirect address

to take us to the next variable. If it does match, our indirect address is set

up at the start of the variable; we can set Y to 5, 3 , 4 , 5, and t and

extract the whole value. If the variable is type integer, we need only extract

the first two bytes (Y = 5 and 3). If the variable is not in the variable table,

we'll step our indirect address until it matches the start-of-arrays; at that

point, we know that we have missed the variable.

For a small number of variables, there's a short cut. Variables are placed

into the variable table in the order in which they are defined: whichever

variable is defined first in the BASIC program will be first in the variable

table. So if we arrange for our variables to be defined in a certain order,

we can streamline our machine language search to "first variable," "sec

ond variable," and so on, with no need to examine the names.

Let's take this one step further. If we want to use the first variable, all we

need to have is the address of the first variable somewhere in zero-page

so that we may use it as an indirect address. We already have that ad

dress—it's the SO V, the start-of-variables, and it's there pointing helpfully

at the first variable for us. By increasing the value of Y appropriately, we

can reach beyond the first variable and into the second or, for that matter,

the third or the thirty-sixth.

Project: We plan to place the machine language program behind the end-

of-BASIC. This will vary, depending on the machine being used. The

following code shows the correct addresses for the Commodore 64. Refer

to Appendix E for other machines.

C128 note: Remember to check Appendix E, under Exercises for the

Commodore 128, for the appropriate coding. There's a lot here on how

to dig out information from another memory bank.

First, let's do our BASIC coding to estimate its size. We need to guess at

the location of the end-of-BASIC so as to place our machine language

program. This program will ask machine language to take a value, V%,

and multiply it by ten. Remember to say NEW. We write the BASIC program

as follows:
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1DD V£ = D

110 FOR J = l TO 5

15D INPUT "VALUE";1%

13D SYS + + + +

14D PRINT "TIMES TEN = " ; 1%

15D NEXT J

It seems likely that our BASIC program will occupy less than 157 bytes.

We may check this later, but it seems safe to plan to start our machine

language program at around ED^n + lET.orElTb (hexadecimal flflD).

On that basis, we may change line 13D to SYS 517 b. Do not\ry to run

the program yet.

At this point, we could save the BASIC program to tape or disk and develop

the machine language program. This would allow us to refine each of the

two parts independently. For the sake of brevity—and because our ex

ample is an easy one and won't need touching up—we'll write the machine

code directly into memory.

Switch into the machine language monitor. Assemble the following code:

A DflflD LDY #$D2

A

A

A

A

A

A

A

DflflE

DflflD

Dflfl?

DflfiA

DflflC

DflflE

DflRl

LDA

STA

STA

LDY

LDA

STA

STA

($2D),

$D33C

$Q33E

#$D3

($SD),

$D33D

$D33F

Y

Y

We have now extracted two bytes from the first variable, V%. The high

byte has been stored at both $D33C and $D33E; we'll see why in a

moment. The low byte of the value has gone to$D33Dand$D33F.

Project for enthusiasts: You might be able to code the above more com

pactly by more effective use of indexing.

a Dflq< asl $D33D

a Dfiq7 ROL $D33C

a Dflqa asL $D33D

a DfiSD ROL $D33C

We have multiplied the contents of $D33D/$D33C by two, and then we

have multiplied it by two again. These locations now contain the original

value times four. Note that we aSL the low byte and then ROL the high
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byte. Perhaps we should be checking for overflow; but let's trust the num
ber to be within range for now.

Since we have the original number times four in $ D 3 3 D/$ D 3 3 C, we can
add it to the original number in $ D 3 3 F/$ D 3 3E to get the original number
times five:

A

A

A

A

A

A

A

□ SAD

DflAl

0flA4

DflA?

DflAA

DflAD

DflBD

CLC

LDA

ADC

STA

LDA

ADC

STA

$033D

$D33F

$D33D

$D33C

$D33E

$D33C

Now locations $D33C/$D33D contain the original number times five. If

we double the number one last time, we'll have the value times ten:

A DflB3 ASL $D33D

a QflBb ROL $D33C

We have multiplied the number by ten. Now let's put it back into the variable

a DflBq LDY #$DE

a DflBB LDa $D33C

a DflBE STa ($ED),Y

a DflCD LDY #$D3

a DflCE LDa $D33D

a DflCE STa ($ED),Y

a DflC? RTS

The numbers go back exactly the same way we drew them out. We must

be careful to keep the high and low bytes correct. Integer variables have

the high-order byte first, followed by the low-order byte; this is exactly the

reverse of the way we use 650x addresses.

We must perform one more task before wrapping up the program. We

must change the start-of-variables pointer to a location above the machine

language program. That would be $DflCfl, and so we display the SOV

pointer with M D D E D DDEE and change the pointer to

:DDED Cfl Dfl

Check ... disassemble ... and then back to BASIC. List, and you'll

see your BASIC program again. There's no sign of the machine language

program, of course, but SaVE will now save everything together.
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RUN the BASIC program. Enter numbers as requested. Confirm that they

are multiplied by ten.

You may recall that our machine language program does not check for

overflow. RUN the program again, and see if you can find the highest

number that can be multiplied by ten without error. What happens at time

of overflow? Is it what you expected?

Project for enthusiasts: Can you add checks for overflow to the above

program? You must decide what to do if overflow occurs: print a message;

set the value to zero; or whatever you decide. But you shouldn't stop the

program or break to the monitor. Such a thing would upset the program

user. Your program will be longer. Don't forget, therefore, to change the

SOV pointer at $ED/$5E so that your program is safe from variables

Things You Have Learned
—Small machine language programs can be conveniently written and checked

out in the cassette buffer. We have been doing this during the exercises. This

area is not satisfactory for large programs, or programs we want to save on

tape.

—Programs can take up semi-permanent residence near the top-of-BASIC

memory; the top-of-memory pointer needs to be moved down to protect it.

These programs often need a separate "setup" to place them.

—Programs can be placed behind the end-of-BASIC, which is marked by three

consecutive zero bytes in memory. The start-of-variables pointer must be

increased so that variables don't write over the program. Care must be taken

not to change the BASIC program after this is done.

—The VIC-20 frequently has the start-of-BASIC moved up to make room for

video information in lower memory. As long as we're moving this pointer, we

might move it a little further and make room for some machine code.

—The Commodore 64 has an unused block of RAM at addresses $CDDD to

$CFFF; check to see that no other programs are using this area.

—The start-of-variables pointer is intimately tied in with BASIC'S SAVE and

LOAD commands. It is extremely important to ensure that any LOAD se

quence leaves this pointer in a safe place, so that variables cannot write over

program code and thus cause program destruction.

—Machine language monitor S (save) and L (load) commands can be used

for staging programs in various parts of memory. Again, great care should

be taken to ensure that the pointers are sound after the use of such instruc

tions.

—A BASIC program may contain LOAD commands that will bring in any of the

following: a different BASIC program, a machine language program, or data.

Again, careful handling is needed.
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—BASIC variables are of three major types: integer, real (floating point), and

string. Machine language programs are capable of reading and using any of

them; in particular, integer variables are quite straightforward.

—If we want, we can simplify the task of searching for BASIC variables by

deliberately creating them in a certain sequence.

Questions and Projects
Write a simple BASIC and machine language program set that allows

BASIC to input a number less than 5Sb; POKE it somewhere in memory;

call machine language that will divide the number by two; PEEK it back
and print it.

A program that brings in other programs is called a "boot," or, more

accurately, a bootstrap program. Write a simple BASIC boot program to

bring in a previous program exercise that was located in a cassette buffer

(say, the program from Chapter 2 that printed HELLO), and then call it
with a SYS.

Bootstrap programs are especially popular with VIC, Commodore 64, and

PLUS/4 for bringing in chunks of data such as sprites, new character sets,

or whole display screens of information. You might like to try your hand

at setting up such a system.

Try your hand at this. I have a BASIC program that reads

1DDX = 5

11D SYS . . .

1ED PRINT A

Write the machine language to be called by the SYS so that it changes

the name of the variable X to A. Caution: this may be fun, but it's dangerous

in real programs since you may end up with two variables that have the

same name.
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Stack, USR,

Interrupt,
and Wedge

This chapter discusses:

• The stack for temporary storage

• USR: an alternative to SYS

• Interrupts: IRQ, NMI, and BRK

• The IA chips: PIA and VIA

• Infiltrating BASIC: the wedge

111



112 MACHINE LANGUAGE FOR COMMODORE MACHINES

A Brief Intermission
If you have been following along and performing the various projects, you

should know a great deal about the principles of machine language. You

should be capable of trying your hand at a number of small projects, and

investigating areas that may be of special interest.

This is a good time to stop and take stock. The remaining chapters are

"icing on the cake" ... they give extra detail and fine tuning on aspects

of machine language. If you feel uncertain about any material covered so

far, go back. Fix the fundamentals firmly in focus before you proceed and

plunge into ponderous points of interest.

Temporary Storage: The Stack
The stack is a convenient place to put temporary information. It works like

a stack of documents: you may drop (or "push") an item onto the stack;

when you take an item back again (or "pull"), you'll get the last one that

you put there. Formally, it's called a last-in, first-out (LIFO) discipline; it's

natural and easy to understand.

The important rule to keep in mind about the stack is: "Leave these prem

ises as clean as when you found them." In other words, if you push three

items onto the stack, be sure you pull those three items back off again.

Don't ever branch away and leave the stack littered.

The stack is in memory at page 1. The stack pointer (SP) is one of the

items displayed in the register. To look for the information on the stack,

you must add $ D1D D to the value to get the next available stack position.

As an example, if the SP shows a value of $Ffl, the next item to go on

the stack will go into address $DlFfl; the moment we put an item onto

the stack, the pointer will move down so that it becomes $F7.

As the stack is filled, the stack pointer goes down. As the items are brought

back out of the stack, the stack pointer goes up. A low value in the stack

pointer means a full stack: a value below $40 signals trouble.

The 650x chip itself doesn't give the stack any special treatment. If a

machine language program—probably because of a coding error—wanted

to push one thousand items onto the stack, that would be OK as far as

the microprocessor was concerned. The stack would never leave page 1:

as the stack pointer went down beyond zero, it would wrap around to $FF

and keep going. You'd never get those thousand distinct items back, of

course. Similarly, if a program wanted to pull a thousand items from the
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SP
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NEXT ITEM
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01FF

01FE

01FD

01FC

01FB

01 FA

01F9

01F8

Figure 7.1

stack—whether or not they had been put there before—the processor

would happily move the stack pointer round and round page 1, delivering

bytes. There would only be 551 different values delivered, of course, but

the processor doesn't care.

Within the BASIC environment, the stack pointer starts around $FA (the

first item will go into the stack at address $D1FA), and goes down from

there. When the stack pointer goes below about $AU, BASIC will signal

OUT OF MEMORY. That's over ibO available locations on the stack,

plenty of room for most applications

PHA (push A) and PLA (pull A)

How may we use the stack? Suppose we have a value in the A register

and in a moment we will want to use it. First we need to print something,

and the character to be printed must be loaded into the A register. How

can we put away the value in A and bring it back later? We could slip it

into another register with a transfer instruction (TAX or TAY) and bring

it back from there; or, we could store it into memory and load it back.

Alternatively, we could PUSH the A register (PHA) to the stack and PULL

(PLA) the value back later.

Again, let's do an example. Suppose the A register contains 5, and the
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stack pointer is at $F3. If the program says PHA, the value 5 is stored

at address $ OIF3, and the stack pointer changes to $F2. Later in the

program, we encounter the instruction PL A: the stack pointer moves back

to $F3 and the value 5 is read from address $D1F3 and placed into

the A register.

It's a handy way to put away a value in A for a moment.

PHP (push processor status) and PLP

Sometimes when we are writing a program, we want to test for a condition

now but act on the result of that test later. We can arrange to do this by

putting the flags away for the time being, and then bringing them back

when we want to test the flags. We use the instruction PHP (push the

processor status word) to place all the flags on the stack, and PLP (pull

the processor status word) to restore the flags to the status register (SR).

Why would we need to do this? Perhaps an example will illustrate. Suppose

we are reading a file of customer purchases, and as we input a data item,

we discover that this is the last one—it's the end of the file. That means

that we want to close the file and summarize the customer's activity—

though not just yet. First, we must handle the item of information that we

have input. So we can "stack" our end-of-file information, handle the last

record in the same way as previous records, then bring back the status

to see whether it's time to close the file and print the totals. We'll be using

PHP and PLP for exactly this kind of task in the next chapter.

PH A and PHP both put exactly one item onto the stack; PL A and PLP

pull one item. There are other commands that handle more than one stack

location.

JSR and RTS

We know these commands. What are they doing here?

When a JSR command is executed, the return address is placed onto

the stack. When an RTS command is executed, the return address is

picked from the stack, and that's where the program returns to.

More precisely, when a JSR occurs, the processor places onto the stack

the return address minus one as two bytes; the high-order part of the

address goes to the stack first. When an RTS is encountered, the pro

cessor takes the two bytes from the stack, adds one, and then proceeds

from the address so formed.

Example: If address $D355 contains the command JSR $D33C, the
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following events occur. The return address would be $D355, the instruc

tion directly behind the JSR; but an address of $D354 is calculated—

the D3 goes to the stack first, and the SA below it. The subroutine at

$D33C now starts to run. Eventually, it encounters an RTS. The values

54 and D3 are pulled from the stack and formed into address $D354;

one is added, and the processor resumes execution at address $D355.

You hardly need to know this. We have been using subroutines for some

time without knowing that all this happened. But sometimes, it's useful to

be able to examine the stack, asking, "Who called this subroutine?" The

answer is there.

Interrupts and RTI

There are three types of interrupt: IRQ, NMI, and the BRK instruction.

IRQ (interrupt request) and NMI (non-maskable interrupt) are pins on

the 650x. A suitable signal applied to the appropriate pin will cause the

processor to stop what it's doing and run an interrupt routine. The BRK

instruction might be thought of as a fake interrupt—it behaves in a similar

manner to IRQ.

When an interrupt signal occurs, the processor completes the instruction

it is currently working on. Then it takes the PC (the program counter, which

contains the address of the next instruction) and pushes it onto the stack,

high byte first. Finally, it pushes the status register to the stack. That's a

total of three bytes that go to the stack.

The processor then takes its execution address from one of the following

locations:

IRQ or BRK—from $FFFE and $FFFF

NMI —from $FFFA and $FFFB

Whatever value is found in these pointers becomes the interrupt execution

address: the processor starts to run at this address. Eventually, the pro

cessor encounters an RTI instruction. The status register and the PC

address are taken from the stack, and the interrupted program resumes

where it left off.

Note that the address on the stack is the return address. This differs from

JSR/RTS, where the return address minus one is stored.

On all Commodore machines, the IRQ strikes about sixty times a second.

The NMI is unused (but available) on PET/CBM; it isn't available in the
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Plus-4 series; and on VIC-20, Commodore 64, and Commodore 128, it is

used for the RESTORE key and for RS-232 communications.

The BRK command can be distinguished from the IRQ signal by means

of a bit in the status register. Bit A is the B, or break flag; if it's set, the

last interrupt was caused by a BRK and not by an IRQ.

Later, we will discuss using the interrupt routines for our own programming.

By the time we can "catch" the interrupt, several more things will have

been pushed to the stack: the A, X, and Y registers. This is done by a

ROM program, not the processor; but it will prove handy since we can use

these registers, safe in the knowledge that they will be restored at the end

of the interrupt.

Mixing and Matching

The processor uses the stack mechanically. If we know how to manipulate

the stack, we can use it for surprising things. For example, an RTS can

be given even though there was no subroutine call; all we have to do is

prepare the stack with the proper address. Try to figure out what the

following code will do:

LDA #$24

PHA

LDA #$fcfl

PHA

RTS

This coding is identical to JMP $24 bR. We have placed a "false return

address" onto the stack, and RTS has removed it and used it. This may

not seem very useful, since we could easily have coded the JMP $24 tn

directly. But look at the following code:

LDA TABLE1, X

PHA

LDA TABLE2, X

PHA

RTS

The principle of coding is the same, but now we can "fan out" to any of

several different addresses, depending on the value contained in X.

U SR: A Brother to SYS
We have used SYS a number of times. It means, "Go to the address

supplied and execute machine code there as a subroutine." U S R is similar
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in many respects: it means, "Go to a fixed address and execute machine

code there as a subroutine." The fixed address may be POKEd into the

USE vector. On most Commodore machines this is at addresses 1 and

2; on the Commodore 64, it's at addresses 7fl5 and 7flb (hex D311

and D31E).

There's another difference that seems important at first. SYS is a com

mand; USE is a function. You cannot type the command USR ( D )—all

you'll get is SYNTAX ERROR. You must say something like PRINT

USR ( D ) or X = OSR ( D ), where USR is used as a function. It seems

as if SYS was meant to connect to action programs, and USR was meant

to link to evaluation programs. In reality, the difference in usage is not that

great.

Whatever value is within the parentheses—the argument of the US R func

tion—is computed and placed into the floating accumulator before the

USR function is called. The floating accumulator is located at $5E to $b3

in most PET/CBM computers, and at $fcl to $tfc in VIC-20, Commodore

64, and PLUS/4. Floating-point representation is complex, as we have

hinted in Chapter 6. Most beginning programmers prefer to leave this area

alone and pass values through memory POKEs or integer variables.

When the USR function returns control to BASIC, the function value will

be whatever is in the floating accumulator. If we have not modified it, this

will be the same as the argument, so that in many cases PRINT USR(5)

would print a value of 5.

Interrupts: NMI, IRQ, and BRK

We have mentioned the mechanical aspects of interrupt. Now let's look

at how to use the interrupt for simple jobs.

The IRQ connects through a vector in RAM; if we change the address

within the vector, we will change the address to which the interrupt goes.

The interrupt vector is located as follows:

Most PET/CBM: DDRO-DDRl (decimal

VIC/Commodore 64: D314-D315 (decimal 7flfl-7flcl)

Before we change this vector, we should realize something quite important:

the interrupt does a lot of work sixty times a second. It updates the clock,

checks the RUN/STOP key, gives service to the cassette motors, flashes

the cursor, and handles keyboard input. If you thoughtlessly change the

IRQ vector, it will stop doing these things; and it's hard to handle a
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computer when it has a dead keyboard. You could try to program all these

functions yourself; but there's an easier way.

Suppose we use the vector to temporarily divert to our own program, and

at the end of our program we allow the interrupt to continue with whatever

it was going to do anyway. That way, our program would get service sixty

times a second, and the usually interrupted jobs would still get done.

It's not hard to do, and we can achieve many interesting effects by diverting

the interrupt. Remember that the interrupt runs all the time, even when

no BASIC program is running. By playing with the interrupt, we can make

a permanent computer system change that is in effect even when no

programs are in place.

Care must be taken in changing an interrupt vector. Suppose we are

beginning to change the two-byte address; we have changed the first byte,

and suddenly, the interrupt strikes. It will use an address that's neither

fish nor fowl: half is the old address, and half is the new. In such a case,

it's likely that the interrupt will become confused; and if the interrupt is

confused, the whole computer is in trouble. We must find a way to prevent

interrupt from striking when we change the vector.

We could do this in machine language: before a routine to change the

IRQ vector, we could give the instruction SEI (set interrupt disable). After

this instruction is given, the IRQ cannot interrupt us. We may set the

vector and then re-enable the interrupt with the instruction CLI (clear

interrupt disable). Be sure that you do this, since the interrupt routine

performs many vital functions. We may say that we have masked off the

interrupt in the time period between execution of SEI and CLI. The NMI

interrupt, however, is non-maskable, and SEI will have no effect on it.

There's a second way of turning off the interrupt—that is, by shutting off

the interrupt source. Something makes an interrupt happen—it might be

a timer, it might be an external signal, or it might even be a screen event.

Whatever it is, we can get to the source of the interrupt and disconnect

it.

Almost all interrupt signals are delivered through an IR (interface adaptor)

chip; and these chips invariably allow the path of the interrupt signal to

be blocked temporarily. We'll discuss the I a chips later; for the moment,

the normal interrupt signals can be blocked with the following actions:

Commodore 64: Store $7F into address $DCDD (POKE 5b333 ,12?)

to disable; store $fll into the same address (POKE 5b333,12cl)to

re-enable.
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VIC-20: Store $7F into address SRIEE (POKE 371bb,157) to dis

able; store $CD into the same address (POKE 371kb, 1R2) to re-

enable.

PET/CBM: Store $3C into address $Efll3 (POKE 5^11, bD) to dis

able; store $3D into the same address (POKE 5^411, bl) to re-enable.

It goes without saying that the above POKEs should not normally be given

as direct commands; the first POKE in each case will disable the keyboard

(among other things), and you won't be able to type the restoring POKE.

A warning about interrupt programs: changing the IRQ vector is likely to

make it difficult to load and save programs. You may need to put the vector

back to its original state before you attempt any of these activities.

An Interrupt Project
The following project is written for the Commodore 64 only. The equivalent

coding for PET/CBM and VIC-20 may be found in Appendix E. Appendix

E, under Exercises for the Commodore 128, also contains appropriate

coding for the C128.

Let's write the coding for the interrupt itself. Sixty times a second, we'd

like to copy the contents of address SHI to the top of the screen. Here

goes:

A D33C LDA $R1 .

A D33E STfi $04DD

A D341 JMP ($D3aD)

Why the indirect jump? We want to "pick up" the regular interrupt routine,

but we don't know .where it is yet. When we find the address, we'll put it

into locations $ D 3 a D/$ D 3 a 1 so that the indirect jump will link things up

for us.

Now let's write the routine to enable the above interrupt coding. First, let's

copy the interrupt address from $ D 314 into the indirect address at $ D 3 a D:

A

A

A

A

0344

0347

034A

034D

LDA

STA

LDA

STA

$D314

$03AD

$D315

$O3A1

Now we are ready to put the address of our own interrupt routine (at

$D33C) into the IRQ vector:

a D35D SEI
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ft 0351 LDR #$3C

A 0353 STft $0314

ft 035b LDR #$03

ft 035fl STft $D315

ft 035B CLI

ft 035C RTS

We will enable the new interrupt procedure byaSYSto$0344, above

(SYS fl 3 b). Before we give that command, let's write the coding to put

everything back:

ft

A

A

ft

A

A

A

035D

D35E

03bl

03b4

03fc7

03bA

03bB

SEI

LDA

STA

LDA

STft

CLI

RTS

$03fi0

$0314

$O3A1

$0315

As you can see, we put the original address back, copying it from the

indirect address area where it was saved.

Once this code is in place, disassembled, and checked, you may return

to BASIC. SYS 631 will invoke the new interrupt code; SYS flfcl will

turn it off. Note that the character (a copy of the contents of address $ q 1)

appears at the top left of the screen. The character seems to be affected

by pressing some keys; can you establish how many keys are involved?

Some models of Commodore 64 may print blue-on-blue when screen

memory is POKEd, as we are doing now. If so, the character may not

always appear in the left-hand corner. Project for enthusiasts: Fix this

problem by storing a value into the color nybble table at address $ D fl D D.

The IA Chips: PI A, VIA, and CIA
The interface adaptor (I a) chips are richly detailed. To understand them

fully, you'll need to read the specifications in some detail. Here, we'll give

their main functions.

PI a stands for peripheral interface adaptor, Via for versatile interface

adaptor, and Cia for complex interface adaptor. There is speculation

among Commodore owners that the next interface chip will be called "FBI."

The functions performed by an interface adaptor are:
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. Event latching and interrupt control. We have noted that these chips can be

manipulated to block the interrupt signal. In fact, they do more than "gating"

the signal—allowing it through to the processor's IRQ trigger or alternatively

blocking it. They also often latch a signal into an event flag, sometimes called
an interrupt flag.

Latching is important. A triggering event may be brief; so short, in fact, that

the original signal causing interrupt might go away before the processor can

look at it. An IA event flag locks in the signal and holds it until the program
turns it off.

ON. .OFF

INTERRUPTING H LATCH 1
EVENT '

| COMPUTER
EVENT ACKNOWLEDGEMENT

FLAG

Figure 7.2

If an event has time importance—that is, if the event's timing must be ac

curately measured, or if the event flag must be cleared quickly so as to allow

for the detection of a new event—we may link the event flag to the interrupt
line. If we do so, the occurrence of the event will cause the processor to be

interrupted. We must write coding linked to the interrupt routines to detect
this event, clear the flag, and do whatever processing is needed. We set up

this link to the interrupt line by means of a register usually called the interrupt
enable register.

On the other hand, the event might not be particularly time critical. In this

case, you can simply check the appropriate event flag from time to time.

When the event occurs, you may then clear the flag and handle it. No interrupt

is needed. Even when an event flag is not connected to the interrupt, it may

be called an interrupt flag; don't let the terminology confuse you.

Whether or not you handle these events through interrupt sequences, it's

important to know that it's your job to turn the event flag off. The flag will

hold the signal until it's turned off—and it usually won't turn off unless your

program takes some action to do this.

The various flags are triggered by timers or external signals. You can read

a flag's state by checking the interrupt flag register. Several flags will be

packed together in this register; as always, you will use the logical operators—

AND, OR A, or EOR—to extract or modify the particular flags in which you

are interested. You may also use the IFR (interrupt flag register) to clear

the flags.
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2. Timing. Certain addresses within the IA chip are often assigned as "timers."

These timers count down; in other words, if we place a value of $R? into a

timer and look at the value immediately, we might find that it has gone down

to $^3. Timers come in many shapes and sizes—again, check the chip

reference for details—but most of them toggle an interrupt flag when they

have counted down to zero. As discussed, you may choose whether or not

this flag will really cause an interrupt signal.

3. Input/output. Certain addresses within the IA chip are connected to "ports,"

which extend outside the computer. Thus, the computer can detect external

events or control external devices. Output signals are usually latching in

nature: in other words, a store command might be taken to mean, "turn on

port 5 and leave it on."

Tips on IK Chips

Many addresses within an I a chip have a different meaning, depending

on whether they are being written to (stored) or read (loaded). Watch for

this when you are reading the chip specifications.

Often, the action required to turn an interrupt flag off is odd. It looks like

the kind of thing you should do to turn the flag on. Keep in mind that a

flag may be turned on only by the external activity to which it is linked.

So, although it may seem odd to turn the flag in bit zero off by storing a

value of 1 (which would seem to want to turn bit zero on), don't worry.

You'll get used to it.

The IER (interrupt enable register) is often a source of problems. In many

cases, the high bit of a value we are storing has a special meaning: if it's

set, the other bits will cause the appropriate interrupt connections to turn

on; if it's clear, the other bits will cause the appropriate interrupt connec

tions to be turned off. You may recall that we shut off the Commodore 64

interrupt by storing $7F into address $DCDD. This may seem odd: we're

storing a binary value of$Dlllllll, which might seem to be turning

bits on. In fact, the high bit of zero signals that all the remaining bits

are"turn off" signals; so the value causes all interrupts to be blocked.

Infiltrating BASIC: The Wedge
In zero-page, there's a subroutine that the BASIC interpreter uses fre

quently to obtain information from your BASIC program. It's used to get

a character from your BASIC program, and to check it for type (numeric,

end-of-command, or other).

The routine is normally entered at either of two points: CHRGET, to get
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the next character from your BASIC program; and CHRGOT, to recheck

the last character. The subroutine is located at$DD7Dto$DDfl?in most

PET/CBM computers, and at $ D D7 3 to $ D D fl A in VIC-20 or Commodore

64. You may disassemble it there if you wish. The coding is described
below.

Since CHRGET is in different locations, depending on the machine, the

following coding is shown with symbolic addresses. That is, instead of

showing the hex address value, the address is given a name, or symbol.

Thus, CHRGOT might represent address SDD?^, CHRGOT+ 1 would

represent address $DD7 A, and so on.

CHRGET INC CHRGOT+1

BNE CHRGOT

INC CHRGOT+E

CHRGOT LDA xxxx

This subroutine is self-modifying, that is, it changes part of itself as it runs.

That's not always a good programming technique, but it works well here.

The first part of the subroutine adds one to the address used by instruction

CHRGOT. This is a standard way of coding an address increment: add

one to the low byte of the address; if that makes it zero, the low byte must

have gone from $FF to $DD, in which case, add one to the high byte.

The address loaded by CHRGOT is within your BASIC program, or within

the input buffer if you have just typed a direct command. Before we follow

the next piece of code, let's look at our objectives:

1. If we find a space, go back and get the next character.

2. If we find a zero (BASIC end of line) or a colon (hex $3 A, BASIC end-of-

statement), we wish to set the Z flag and exit.

3. If we find a numeric, we wish the C flag to be clear; if we do not find a

numeric, we wish the C flag to be set.

CHRGOT LDA xxxx

CMP #$3A

BCS EXIT

If the character is a colon ($3 A), we'll leave the subroutine with the Z

flag set. That's one of our objectives. Here's part of another one: if the

character is $3A or higher, it can't possibly be an ASCII numeric-

numerics are in the range of $30 to $3^.

CMP #$ED

BEQ CHRGET
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If the character is a space, we go back and get another character.

The following coding looks rather strange, but it's correct. After the two

subtractions, the R register will be back where it started:

SEC

SBC#$3D

SEC

SBC #$DD

After this, the R register is not changed; but the C flag will be set if the

number is less than $3D, which means that it is not an ASCII numeric.

Additionally, the Z flag will bet set if fl contains a binary zero. We have

met all our objectives and may now return:

EXIT RTS

Breaking Into BASIC

Since BASIC comes to this subroutine often, we can infiltrate BASIC by

changing this subroutine. Extra coding in this area is often called a "wedge"

program. We must be very careful:

• We must leave A, X, and Y unchanged; either we must not use them or we

must save them away and bring them back.

• We must not interfere with the flags.

• We must be careful not to slow BASIC down too much.

This is a tall order. The last requirement is often helped by two techniques:

use the wedge to implement extra commands in direct mode only; and

make use of a special character to identify our special commands.

In PET/CBM, we may choose to modify this subroutine in either of two

places: near the beginning, in CHRGET; or after the LDR, in CHRGOT.

Each location has its advantages. In the CHRGET area, we don't need

to preserve the R register or status flags, since CHRGOT will fix them up

for us. In the area following CHRGOT, we have the character we wish to

examine in the fi register.

But in either case, it's an exacting job.

VIC-20 and Commodore 64 have made the job much more easy by pro

viding a vector at address SDBDfl/SDBDR that will give us control of the

computer, if we wish, immediately before each BASIC command is exe

cuted. We still need to use due care, but we have much more latitude.
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The address of the instruction at C H RG0T is often referred to as T X T P T R,

the text pointer. This address always points to the BASIC command being

executed at the moment. If we want to participate in reading BASIC, we

must learn to use TXTPTR to get the information—usually by means of

indirect, indexed addressing—and to leave this address pointing at a suit

able place when we return control back to the normal BASIC handling

programs.

Project: Adding a Command
Let's add a simple command to the VIC and Commodore 64 by using the

$D3Dfl vector. The ampersand (&) character isn't used in most BASIC

programs, so we'll make it mean this: whenever you see the code "&»,

print ten asterisk (*) characters to the computer screen, followed by a

carriage return.

C128 note: Remember to check Appendix E, under Exercises for the

Commodore 128, for the appropriate coding.

As with our interrupt program, we'll copy the old address from $D3Dfl/

D3DC1 into an indirect address location, so that we can link up with the

normal computer routines as necessary.

An important point: the vector will give us control, if we want it, with

TXTPTR positioned immediately before the next instruction. When we

return control to BASIC, we must be sure that TXTPTR is similarly po

sitioned.

Here's our instruction "intercept":

ft D33C LDY #$D1

We're going to use indirect, indexed addressing to "look ahead" at the

instruction. Let's look, using TXTPTR as an indirect address:

A D33E LDft ($7ft) ,Y

Since Y equals one, we'll look just beyond the address to which TXTPTR

is pointing:

ft D34D CMP #$Et

ft D345 BEQ $D34?

A D3AA JMP ($D3ftD)

If the character is an ampersand, we'll branch ahead to $D347. If not,

we'll connect through the indirect vector to the regular BASIC interpreter

code:
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A 0347 JSR $0073

We may call CHRGET to move the pointer along. Now TXTPTR points

squarely at the ampersand character. We are ready to print ten asterisks:

A

A

A

A

A

A

A

A

A

034A

Q3AC

D3AE

0351

0352

0354

035b

035fl

035B

LDY

LDA

JSR

INY

CPY

BCC

LDA

JSR

JMP

#$00

#$2A

$FFDE

#$0A

$034E

#$0D

$FFDB

$U3AA

The above code prints an asterisk ($EA) ten times and then prints a

RETURN ($DD). It then goes to the regular BASIC interpreter, which will

look behind the ampersand character for a new BASIC command.

Now we! need to set up the link to our program. We'll write the code to do

this starting at $03 5E, so that SYS flbE will put the new command

(ampersand) into effect:

A

A

A

A

A

A

A

A

A

035E

03bl

03fc4

Q3b7

03tA

03fcC

03bF

0371

0374

LDA

STA

LDA

STA

LDA

STA

LDA

STA

RTS

$030fl

$03A0

$D30R

$O3A1

#$3C

$030fl

#$03

$D30R

When you have completed and checked the code (remember this is for

VIC and Commodore 64 only), return to BASIC. Type NEW and write the

following program:

1DD PRINT 3 4:&:PRINT 5 + b

11D &

1E0 PRINT "THAT'S ALL"

If you type RUN, you will get a SYNTAX ERROR in line 1DD. We have

not yet implemented our "ampersand" command. Type the command SYS

fit2. Now type RUN again. The ampersand command obediently prints

ten asterisks each time it is invoked.

Infiltrating BASIC isn't an easy job. But it can be done.
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Things You Have Learned
—The stack is located in page 1, from $D1FF moving down to $D1DD. It is

used for holding temporary information. A program may push information to

the stack, and then pull it back later. The last item that has been pushed onto

the stack will be the first item to be pulled back off.

—Great care must be taken to ensure that your program pulls exactly the same

number of items back from the stack as it pushed. In particular, be sure that

a branch or jump does not inadvertently omit a needed stack activity. A badly

handled stack is often fatal to the program run.

—PHA pushes the contents of A to the stack; PL A pulls from the stack into

the A register. These two commands are often used to temporarily save A.

PHP pushes the status register (S R); PL A pulls it back. These two commands

are often used for "deferred decisions."

—JSR pushes a return address (minus 1) to the stack; RTS recalls this ad

dress. We may use JSR and RTS without needing to know the role the stack

plays, since the two commands take care of the details for us.

—Interrupts, including the BRK instruction, push three items to the stack; RTI

brings them back so that the interrupted program may resume.

—USR is a function, as opposed to SYS, which is a command. USR goes to

a preset address, takes a numeric argument, and can return a value. In

practice, USR and SYS are used in quite similar ways.

—Commodore ROM systems contain coding for the interrupt sequences that

cause the data registers—A, X, and Y—to be pushed to the stack, and a

branch to be taken through an indirect address that the user can modify.

Since interrupt is active virtually all the time, it may be used to create activities

that are active even when no BASIC program is running.

—The various IA chips—PI A, VIA, and CIA—perform many different func

tions, including: recording events in latching flags and controlling interrupts;

timing; and connecting input/output ports. The detailed specification sheets

must be studied for these rather complex details.

—A subroutine called CHRGET is used frequently by the BASIC interpreter

when a BASIC program is running. We may modify or add to this subroutine

in order to add to or modify the BASIC language itself.

Questions and Projects
If you redirect the interrupt vector to your own machine language program,

you can copy all of zero page to the screen. Use indexing; start X at zero;

and walk through the whole of zero page, loading the memory contents

and storing (indexed again, of course) to the screen. Don't forget to connect

up your code to the regular interrupt entry address.
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You'll get a fascinating screen. There will be timers going, and as you

type on the keyboard you'll see various inner values changing around.

Enjoy the view.

It's sometimes suggested that a good way to pass information to a sub

routine is to push the information onto the stack and call the subroutine.

The subroutine can pull the information from the stack. What's wrong with

this suggestion?

The above suggestion can be implemented, but it takes a lot of careful

stack work. You might like to work through the logic needed to do this.

There are some utility programs which, when placed in the computer,

allow a listing to be "scrolled." In other words, if the screen shows BASIC

lines 5 5 D to A b D, the user can take the cursor to the bottom of the screen

and continue to press the cursor-down key. New BASIC lines (following

4bD) will then appear. This is not an easy thing to code, but here's the

question: do you think that this feature is done with a SYS command, a

wedge, or an interrupt technique? Why?

A SYS command from BASIC is like a subroutine call; so it must place

an address on the stack to allow RTS to return to BASIC. Take a look at

the stack and see if you can determine what address is used to return to

BASIC on your machine.
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Conclusion

This chapter discusses:

• How to estimate the speed of your program

• Input and output from tape, disk, and printer

• Review of instructions

• Debugging

• Symbolic assemblers

• Where to go from here

131
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Timing
For many applications, machine language programs seem to run instan

taneously. The speed of the 650x is much greater than that of other

devices, including the human user. The machine language program usually

ends up waiting for something: waiting for the keyboard, waiting for the

printer, waiting for the disk, or waiting for the human to read and react to

information presented on the screen.

Occasionally, it may be important to get fairly precise timing for a machine

language program. If so, the following rules of thumb may be kept in mind:

—All timing estimates are crude if the interrupt routines are still active. The

effect of interrupt on timing can be crudely estimated by adding 10 percent

to the running time.

—Remember to allow for loops. If an instruction within a loop is repeated ten

times, its timing will need to be counted ten times.

—The "clock speed," or memory cycle speed, of most Commodore machines

is roughly 1 microsecond—one millionth of a second. The precise number

varies from one machine to another, and also varies between North America

and other regions.

—Most instructions run at the fastest imaginable speed. Count the memory

cycles, and that's how fast the instruction will execute. For example,

LDA #$DD will need two memory cycles just to get the instruction—and

that's how fast it runs. LDA$D5DD,X will usually take four memory cycles:

three to get the instruction, and one to fetch the data from page 5. Exceptions:

no instruction runs in less than two cycles; and shift/rotate instructions, INC/

DEC, and JSR/RTS take longer than you might expect by this rule.

—Branches time differently, depending on whether the branch is taken (three

cycles) or not taken (two cycles).

—When a page boundary is crossed, the computer needs an extra cycle to do

the arithmetic. If the program branches from $DFE4to$lDE3, there will

be an extra cycle; if we LDA $E4E7, Y, there will be an extra cycle if Y

contains a value of $151 or greater.

Detailed timing values can be obtained from most tables of instructions.

Let's take a simple routine and estimate its timing. The following program

logically ANDs the contents of 1DD locations from $17ED to $1&AA :

D33C LDX #$□□

D33E LDA #$DD

D34D AND $1?ED,X

D343 INX
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D345 CPX

D3A? BCC $D34D

RTS

We may work out timing as follows:

LDX #$DD—executed once: 2

LDA #$DD—executed once: 2

AND SITED,X: 32 times at 4 cycles: 128

68 times at 5 cycles (page cross): 340

INX—100 times at 2 cycles: 200

CPX #$b4—100 times at 2 cycles: 200

BCC—99 times at 3 cycles: 297

1 time at 2 cycles (no branch): 2

RTS—6 cycles: 6

Total time: 1171 cycles, or slightly over one thousandth of a second. We

might add 10 percent to allow for the effects of interrupt; and since this is

a subroutine, we could also add the extra six cycles needed to perform

the JSR.

Where timing is critical, the interrupt could be locked out with SEI. Be

careful: it's seldom necessary, and is potentially dangerous.

Input and Output
We know that calling the kernal routine CHR00T at $FFD5 will send an

ASCII character to the screen. We may also redirect output to any logical
file.

We have seen that we may obtain input from the keyboard buffer into the

a register by calling kernal routine GETIN at $FFE4. We may also

redirect the input so that we draw information from any logical file.

The same commands—$FFD2 and $FFE4—still perform the input and

output. But we "switch" either of them to connect to a chosen device—or

more accurately, a chosen logical file. The file must be open; we may

switch to the file, and then switch back to normal I/O as we wish.

Switching Output

We use subroutine CHKOUT at address SFFC^ to switch output to a

logical file. When we want to restore output to the screen, we call sub

routine CLRCHN at $FFCC. This is not the same as an OPEN and
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KEYBOARD

INPUT

DEVICES

CHKIN ($FFC6)

SETS THE

INPUT SWITCH

SCREEN

OUTPUT

DEVICES

CHKOUT ($FFC9)

SETS THE

OUTPUT SWITCH

CLRCHN ($FFCC)

RESTORES BOTH

SWITCHES TO "NORMAL"

Figure 8.1

CLOSE—we simply connect to the file and disconnect, and we can do

this as many times as we want.

Subroutine: CHKOUT

Address: $FFCR

Action: Switches the output path (used by CHROUT, $FFDE)

so that output is directed to the logical file specified in the

X register. The logical file must previously have been

opened.

The character subsequently sent by $FFD2 is usually ASCII (or PET
ASCII). When sent to the printer, special characters—text/graphics,

width—will be honored in the usual way. Similarly, disk commands can

be transmitted over secondary address 15 if desired; a logical "com

mand channel" file must be previously opened.

Registers: Registers A and X will be changed during the CHKOUT

call. Be sure to save any sensitive data in these registers before calling

CHKOOT.

Status: Status flags may be changed. In most recent Commodore

machines, the C (carry) flag indicates some type of problem with con

necting to the output channel.

To switch output to logical file 1, we would need to follow these steps:
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1. Load a value of 1 into X (LDX #$01).

2. JSR to address SFFCR.

Once the output is switched, we may send as many characters as we

wish using subroutine $FFD2. Eventually, we must disconnect from the

logical file and return to our default output, the screen. We do this by

calling subroutine CLRCHN at address $FFCC.

Subroutine: CLRCHN

Address: $FFCC

Action: Disconnects input and output from any logical files and

restores them to the "default" input and output channels,

keyboard and screen. The logical files are not closed, and

may be reconnected at a later time.

Registers: Registers A and X will be changed during the CLRCHN

call. Be sure to save any sensitive data in these registers.

Status: Status flags may be changed. In most recent Commodore

machines the C (carry) flag indicates some type of problem with output.

The logical file concept is important. I may send to any destination-

cassette, printer, disk, or screen—without knowing which device is in

volved. I send the characters on their way and the operating system sees

that they are delivered wherever they need to go.

This simplifies the machine language programmer's job. It's a simple task

to send the characters to some logical channel; the programmer does not

need to take special coding action depending on which device is involved.

Output Example

If we wanted to print the message HI on the printer, we might code as

follows.

C128 note: Remember to check Appendix E, under Exercises for the

Commodore 128, for the appropriate coding.

First, we'll open the printer channel in BASIC. Let's use logical file num

ber 1:

1QD OPEN 1,4

11D SYS flEfl

120 CLOSE 1

If you don't have a printer, you may open the file to cassette (OPEN
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1,1, E) or to disk (OPEN 1, fl, 3, " D : DEMO, S, H"). The machine

language program won't care: it will send to logical file number 1 no matter

what it is; it might even be the screen (OPEN 1, 3). Let's write the coding:

ft D33C LDX #$D1

ft D33E JSR SFFCR

Now the output is connected to logical file 1. Let's say HI:

a

ft

ft

a

r

A

ft

&

U3AI

Q3A3

D34b

D34fl

D34B

Q34D

D35D

D353

LDft

JSR

LDft

JSR

LDft

JSR

JSR

RTS

#$4fl

$FFDE

$FFDE

#$DD

$FFDE

$FFCC

Don't forget to send the RETURN—the printer needs it. After the machine

language program says HI, the program will return to BASIC and close

the file. Notice that the machine language program doesn't care what it's

saying HI to ... it sends the data to logical file 1.

Switching Input

We use subroutine CHKIN at address $FFCb to switch input so as to

draw data from a logical file. When we want to restore input from the

keyboard, we call subroutine CLRCHN at $FFCC. Again, this is not the

same as an OPEN and CLOSE—we simply connect to the file and dis

connect, and we can do this as many times as we want.

Subroutine: CHKIN

Address: $FFCk

Action: Switches the input path (used by GET, $FFE4) so that input is

taken from the logical file specified in the X register. The logical

file must previously have been opened.

The character subsequently obtained by $FFE4 into the A register is usually

ASCII (or PET ASCII). A binary zero received from a file usually represents exactly

that: an input character whose value is CHR$(D); this is different from keyboard

GET where a binary zero means "no key pressed." When accessing a file, ST

(address SHD for VIC and Commodore 64, SHb for most PET/CBM) is used

for its usual functions of signalling end-of-file or error. Similarly, disk status in

formation can be received over secondary address 15 if desired; a logical "com

mand channel" file must be previously opened.

Registers: Registers A and X will be changed during the CHKIN call. Be sure

to save any sensitive data in these registers before calling CHKIN.

Status: Status flags may be changed. In VIC and Commodore 64, the C (carry)

flag indicates some type of problem with connecting to the input channel.
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To switch input to logical file 1, we would need to follow these steps:

—Load a value of 1 into X (LDX #$D1)

—JSR to address $FFCb.

Once the input is switched, we may obtain as many characters as we wish

using subroutine $FFE4. Eventually, we must disconnect from the logical

file and return to our default input—the keyboard. We do this by calling

subroutine CLRCHN at address $FFCC. This is the same subroutine that

disconnects output from a logical file.

Input Example

We can write a program to read an input file from disk or cassette. First,

let's write the file. We open the file according to its type:

Disk: OPEN 1,£,3,"D:DEMO,S,W"

Cassette: OPEN 1,1/1

C128 note: Remember to check Appendix E, in the section, Exercises for
the Commodore 128, for the appropriate coding.

This may be done with a direct statement. Now let's write a few things to
the file:

PRINT#1, "HELLO THIS IS A TEST"

PRINT#1,"THIS IS THE LAST LINE"

CLOSE 1

If we have typed in the above statements correctly, we should have a

completed sequential file written on cassette or disk. Before writing the

machine language input program, let's examine how we might read the

file back in BASIC:

Disk: 1DD OPEN 1, fl , 3 , "DEMO"

Cassette: 1DD OPEN 1

110 INPUT #1,X$

12D PRINT X$

130 IF ST = D GOTO 110

140 CLOSE 1

We might alternatively have written lines 11D and 1SD as

11D GET #1,X$

15D PRINT X$;

This more closely approximates the logic flow of our machine language

program, since it will get the characters one at a time. If you are unsure
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about the role of ST, read up on it. We will use the same variable (at its

address of $ R D or $ q fc) to do exactly the same thing in machine language.

Type NEW and enter the following program:

Disk: 1DD OPEN I, fl / 3 , "DEMO11

Cassette: 1DD OPEN 1

11D SYS flEfl

1ED CLOSE 1

We will read the file and copy it to the screen entirely in machine language.

Let's start coding at $D33C :

A D33C LDX #$D1

R D33E JSR $FFCb

Now the input is connected to logical file 1. Let's get information from it

and put it on the screen:

a D341 JSR $FFE4

a D344 JSR $FFDE

We must check ST as we would in BASIC. ST might be at either of two

addresses, depending on the system:

VIC, Commodore 64: AD347LDA$C1Q

CBM/PET: A Q34? LDA

If ST is zero, there is more to come from the file; we may go back. If ST

is nonzero, there could be an error or we may be at the end of the file. In

either case, we don't want to read more from the file.

a D34R BEQ

a D34B JSR $FFCC

a D34E RTS

Check it and try it. The file is delivered to the screen quickly.

A File Transfer Program

Let's write a program to transfer a sequential file from any common device

to any other. BASIC will sort out which files to handle; once the files are

opened, machine language will take from and deliver to the appropriate

logical devices as desired.

C128 note: Remember to check Appendix E, in the section, Exercises for

the Commodore 128, for the appropriate coding, both BASIC and machine

language.
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It's not a good idea to switch input and output at the same time—in other

words, to call both $FFCb and SFFCH without canceling either via $FFCC.

The kernal doesn't mind, but it confuses the peripheral devices, which

expect to have exclusive occupancy of the data bus to the computer. So

we'll follow the pattern: switching on, sending or receiving, switching off,

and then going to the other device.

One more thing. S T tells us the status of the last device handled. Consider:

if we input a character, then output a character, and then check the value

of ST, we have a problem. ST will not tell us about the input, since the

last device handled was output; thus, we won't know if we are at the end

of the file or not. In machine language, as in BASIC, we must code carefully

to solve this problem.

Here comes BASIC:

1DD PRINT "FILE TRANSFER"

11D INPUT "INPUT FROM (DISK/ TAPE)" ; A$

1ED IF LEFT$(A$,1) = "T" THEN OPEN 1:GOTO ibD

13D IF LEFT$(A$,1)<> "D" GOTO 11D

14D INPUT "DISK FILE NAME" ;N$

15D OPEN l,fl,3,N$

ltD INPUT "TO (DISK, TAPE, SCREEN)";B$

17D IF LEFT$(B$,1) = "S" THEN OPEN E,3:G0T0 E4D

iflD IF LEFTS(B$,l) = "D" GOTO E1D

ISD IF LEFT$(B$,1) <> "T" GOTO ifcD

EDD IF LEFT$(A$,1)="T" GOTO ibD

E1D INPUT "OUTPUT FILE NAME";F$

BED IF LEFTS(B$,l) = "D"

THEN OPEN E,fl,4,"D: " + F$ + ",S,W"

E3D IF LEFT$(B$,1) = "T" THEN OPEN E,1,1,F$

BAD SYS xxxx

E5D CLOSE ErCLOSE 1

We'll work this out for the Commodore 64 computer; you can adjust it for

PET/CBM or VIC-20. The above BASIC program should not take up more

than 511 bytes; on a standard Commodore 64, that means that we'll have

clear space for our machine language program starting at $DADD (dec

imal E5tiD). We'll move the start-of-variables along, of course, so that

our machine language program won't be disturbed by them.

When we first type line E4D, we won't know what SYS address to use.

After the program is typed in (with SYS xxxx at line E4D), we can easily

confirm that the machine language can start at $DADD by checking the
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start-of-variables pointer. We go back and change 24DtoSYS25bD;

now we're ready to put in the machine language code:

A DADO LDX #$D1

A DAD2 JSR $FFCb

A DAD5 JSR $FFE4

By this time, we have a character in the A register from the input source.

We also have a value in ST, telling us if this is the last character. Let's

examine the ST problem: we must check its value now, since ST will be

changed after we do the output. But we don't want to take any action

based on ST yet; we must first send the character we have received. Let's

check ST, and put the results of the check onto the stack:

A DADfl LDX $RD

A DADA PHP

If ST is zero, the Z flag will be set; we'll preserve this flag along with the

others until we call it back from the stack. If you are adapting this program

for the PET/CBM, don't forget that S T is at address $ q fc for your machine.

The next thing we want to do is to disconnect the input by calling $FFCC;

but this will destroy the A register. How can we preserve this value? By

transferring to another register, or by pushing A to the stack. Let's do that.

There will now be two things on the stack.

A DADB PHA

We are now free to disconnect from the input channel and connect to the

output. Here we go:

A DADC JSR $FFCC

A DADF LDX #$D5

A DA11 JSR $FFCq

A OMA PLA

The A register gets back the last thing saved to the stack, and that, of

course, is our input character. We're ready to send it to the output device:

A DAIS JSR $FFDE

A DAlfl JSR $FFCC

Now we may pick up on the condition of ST that we stacked away earlier.

Here come the flags that we stored:

A DA1B PLP



TIMING, INPUT/OUTPUT, AND CONCLUSION 141

If the Z flag is set, we want to go back and get another character. If not,

we're finished and can return to BASIC, allowing BASIC to close the files
for us:

A DA1C BEQ $DADD

ft DftlE RTS

Important: Before running this program, be sure to move the start-of-

variables pointer ($DD5D/$DDZE) so that it points at address $DA1F;

otherwise, the BASIC variables will destroy this program.

Review: The Instruction Set
We started with the load, save and compare for the three data registers:

LDA

STft

CMP

LDX

STX

CPX

LDY

STY

CPY

The instructions are almost identical in action, although only the A register

has indirect, indexed addressing modes. We continued with the logical

and arithmetic routines that apply only to A:

AND ORA EOR ADC SBC

Arithmetic also includes the shift and rotate instructions, which may be

used on the A register or directly upon memory:

ASL ROL LSR ROR

Memory may also be directly modified by the increment and decrement

instructions, which have related instructions that operate on X and Y:

INC DEC

INX DEX

INY DEY

We may transfer control by means of branch instructions, which are all

conditional:

BEQ BCS BMI BVS

BNE BCC BPL BVC

The branch instructions can make only short "hops"; the jump instruction

is unconditional:

JMP
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Subroutines are called with the jump-subroutine, and returned with return-

from-subroutine; we may also return from interrupts:

JSR RTS RTI

We may modify any of several flags with the appropriate set or clear

command. Some of the flags control internal processor operation: for ex

ample, the I (interrupt disable) flag locks out the interrupt; the D (decimal

mode) affects the way the ADC and SBC work with numbers.

SEC SEI SED

CLC CLV CLI CLD

We may transfer information between the ft register and X or Y; and for

checking or setting the stack location, we may move the stack pointer to

X, or X to the stack pointer. The latter is a powerful command, so use it

with care.

TAX TAY TSX

TXA TYA TXS

We may push or pull information from the stack:

PHA PHP

PLA PLP

There's a special test, used mostly for checking IA chips:

BIT

The BIT test is used only for specific locations: no indexing is allowed.

The high bit from the location being tested is transferred straight to the N

flag. The next highest bit (bit b) goes straight to the V flag. Finally, the Z

flag is set according to whether the location has any bits set that match

bits set in the A register. Thus, we can check a location with BIT $ ....

followed by BMI to test the high bit, or BVS to test bit fc, or BNE to test

any selected bit or group of bits. It's a rather specialized instruction, but

useful for testing input/output ports.

Finally, the instruction that does nothing, and the BRK instruction that

causes a "false interrupt," usually taking us to the monitor:

NOP BRK

That's the whole set. With these instructions, you can write programs to

make the computer do whatever you choose.
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Debugging
When a program has been written, the next step is to look for any possible

errors, or bugs. The process of searching for and systematically elimi

nating these bugs is called debugging.

Most programs are made up of sections, each of which has a clear task

to perform. When a program misbehaves, it may be easy to go to the area

of the bug, since you can see which parts of the program are working and

where things start to go wrong.

In case of doubt, you may insert breakpoints into your program. Replace

selected instructions with the instruction BRK; this may be done by re

placing the instructions' op codes with the value DD. Run the program;

when it reaches the first breakpoint, it will stop and the machine language

monitor will become active. Examine the registers carefully to see whether

they contain the values expected. Display memory locations that the pro

gram should have written; the contents will tell you whether the program

has been doing its job correctly.

When you have confirmed that the program is behaving correctly up to

the breakpoint, replace the BRK command at that point with the original

op code. Command . G to that address, and the program will continue to

the next breakpoint. If it helps your investigation, you may even change

memory or registers before continuing program execution.

If you carried this procedure to the extreme, you might stop your program

after every instruction. It would take time, but you would certainly track

down everything the program did.

The best debugging takes place at the time you write the program. Write

sensibly, not "super cleverly." If you fear getting caught in an endless

loop, insert a stop key test (JSR $FFE1) so that you'll still have control

of the computer.

Get to know your machine language monitor. The monitor uses a number

of locations in memory; you'll have trouble debugging a program if it uses

the same storage addresses as does your program. Every time you try to

check the contents of a memory location to see what your program has

done, you'll see the monitor working values instead—and that would be

misleading and annoying.

Symbolic Assemblers
Throughout these exercises, we have used small, "nonsymbolic" assem

blers such as would be found within a machine language monitor. These
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are good for beginners; they parallel the machine code quite closely and

allow you to keep the working machine clearly in focus.

As you write bigger and better programs, these small assemblers will be

less convenient. Forward, branches and subroutines we have not yet writ

ten make it necessary for us to "guess" at the address and fix up our

guess later. There is the possible danger that an address will be typed in

wrongly ($D34 5 instead of $D354), causing the program to fail.

To help us write more ambitious programs, we may wish to turn to com

mercially available assembler systems that allow labels or symbolic ad

dresses. If we wish to write code to call a subroutine to input numbers—

we might not have written this subroutine yet—we can code JSR NUMIN.

When we write the subroutine, we'll put the identifying label NUMIN at the

start. As your program is assembled, the proper address of NUMIN is de
termined, and this address will be inserted as needed.

It saves work and helps guard against errors. But symbolic assemblers

allow a more powerful capability: they help documentation and allow pro

gram updating.

Your assembly may be listed to the printer. This allows you to examine

and annotate the program, and file the details away for later reference.

The assembler allows you to include comments, which improve the read

ability of the listing but don't affect the machine language program.

The source program you have written may be saved and used again later.

If you find it is necessary to change the program, bring back the source

code from cassette or disk, make the changes, and reassemble. In this

way, programs can be easily corrected or updated.

Where To Go From Here

Almost anywhere. Up to this point, we've been building confidence: trying

to give you a feel as to how the pieces work. Now, the real fun—the

creative programming—is up to you.

Users have varying objectives. You may want to do mathematical oper

ations. You may want to interact upon BASIC programs—analyzing,

searching, renumbering. Whatever suits you. Your interest area may be

music, graphics, or animation. Machine language will open the door to all

of these; its amazing speed makes spectacular effects possible. You may

plan to go into hardware and interface new devices to your computer; an

understanding of machine language, and IA chips in particular, will be

useful. The possibilities are endless.
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Even if you have no immediate plans to write new programs in machine

language, you will have gained an insight into the workings of your ma

chine. Everything that the machine does—BASIC, kernal, everything—is

either hardware or machine language.

With the elementary concepts we have introduced here, you will be able

to go deeper into more advanced texts. Many programming books deal

with the abstract 650x chip. That's hard for the beginner; it's difficult to

see how the instructions fit within the architecture of a real machine, or

how the programs can actually be placed within the computer. By now,

you should be able to take a piece of abstract coding and fit it into your

system.

Many things start to happen at once when you take your first steps in

machine language programming. You must learn how to use the monitor.

You must learn a good deal about how your machine is designed. And

you must learn how to fit the pieces together. It takes a while to adapt to

the "information shock"—but things start to fit together. Eventually, you'll

have a stronger and sounder view of the whole computer: hardware, soft

ware, languages, and usage.

What You Have Learned

-Machine language programs can have run times estimated fairly accurately.

In many cases, however, machine language is so fast that detailed speed

calculations are not needed.

-We can handle input from devices other than the keyboard by switching the

identity of the designated input device. If an input channel has been opened

as a file, we may connect to it with JSR $FFCb and disconnect with JSR

$FFCC.

-We can handle output to devices other than the screen by switching the

identity of the designated output device. If an output channel has been opened

as a file, we may connect to it with JSR SFFCR and disconnect with JSR

$FFCC.

-Once input or output has been switched, we may receive in the usual way

with the subroutine at $FFE4, or send in the usual way with the subroutine

at $FFD2.

-Be careful not to confuse connecting to a channel with opening a file. In a

typical program, we open a file only once, but we may connect to it and

disconnect from it hundreds of times as we read or write data.

-You have met all the instructions of the 650x microprocessor. There are

enough for versatility, but not so many that you can't keep track of them all.
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You have made a worthwhile start in the art and science of machine language

programming.

Questions and Projects
Write a program to read a sequential file and count the number of times

the letter "A" (hex 41) appears in the file. Use a BASIC PEEK to print

the value. You may assume that "A" will not appear more than 255

times.

Rewrite the above to count the number of occurrences of the RETURN

character ($ DD) in a sequential file. Allow for up to 15 5 3 5 appearances.

Can you attach a meaning to this count?

Write a program to print HAPPY NEW YEAR to the printer ten times.

If you own a disk system, you know that you can scratch a program named

JUNK by using the sequence:

OPEN 15,0,15: PRINT#15, "SD : JUNK". Convert the PRINT#

statement to machine language and write a program to scratch JUNK.

Careful: don't scratch a program that you will need.

Write a "typewriter" program to read a line of text from the keyboard and

then transfer it to the printer. It will be a more useful program if you show

what is being typed on the screen and if you write extra code to honor

the DELETE key.



A
The 6502/

6510/6509/
7501/8500
Instruction

Set

The four chips differ only in their use of addresses 0 and 1:

On the 6502, the addresses are normal memory.

On the 6510 and 7501, address D is a directional register and address 1 is an

input/output register, used for such things as cassette tape and memory control.

On the 6509, address D is used to switch program execution to a new memory

bank; address 1 is used to switch the memory bank accessed by the two

instructions LDA ( . . ), Y and STA ( . . ) / Y.

147
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Addressing Modes
Accumulator Addressing—This form of addressing is represented with a

one byte instruction, implying an operation on the accumulator.

Immediate Addressing—In immediate addressing, the operand is con

tained in the second byte of the instruction, with no further memory ad

dressing required.

Absolute Addressing—In absolute addressing, the second byte of the

instruction specifies the eight low order bits of the effective address while

the third byte specifies the eight high order bits. Thus, the absolute ad

dressing mode allows access to the entire 64K bytes of addressable mem

ory.

Zero Page Addressing—The zero page instructions allow for shorter code

and execution times by only fetching the second byte of the instruction

and assuming a zero high address byte. Careful use of the zero page can

result in significant increase in code efficiency.

Indexed Zero Page Addressing—{X, Y indexing)—This form of address

ing is used in conjunction with the index register and is referred to as

"Zero Page, X" or "Zero Page, Y." The effective address is calculated by

adding the second byte to the contents of the index register. Since this is

a form of "Zero Page" addressing, the content of the second byte refer

ences a location in page zero. Additionally, due to the "Zero Page" ad
dressing nature of this mode, no carry is added to the high order eight

bits of memory and crossing of page boundaries does not occur.

Indexed Absolute Addressing—(X, Y indexing)—This form of addressing

is used in conjunction with X and Y index register and is referred to as

"Absolute, X," and "Absolute, Y." The effective address is formed by

adding the contents of X and Y to the address contained in the second

and third bytes of the instruction. This mode allows the index register to

contain the index or count value and the instruction to contain the base

address. This type of indexing allows any location referencing and the

index to modify multiple fields resulting in reduced coding and execution

time.

Implied Addressing—In the implied addressing mode, the address con

taining the operand is implicitly stated in the operation code of the instruc

tion.

Relative Addressing—Relative addressing is used only with branch in

structions and establishes a destination for the conditional branch.

The second byte of the instruction becomes the operand which is an

"Offset" added to the contents of the lower eight bits of the program counter
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when the counter is set at the next instruction. The range of the offset is

-lEfl to +127 bytes from the next instruction.

Indexed Indirect Addressing—In indexed indirect addressing (referred to

as [Indirect, X]), the second byte of the instruction is added to the contents

of the X index register, discarding the carry. The result of this addition

points to a memory location on page zero whose contents are the low

order eight bits of the effective address. The next memory location in page

zero contains the high order eight bits of the effective address. Both mem

ory locations specifying the high and low order bytes of the effective ad

dress must be in page zero.

Indirect Indexed Addressing—In indirect indexed addressing (referred to

as [Indirect, Y]), the second byte of the instruction points to a memory

location in page zero. The contents of this memory location are added to

the contents of the Y index register, the result being the low order eight

bits of the effective address. The carry from this addition is added to the

contents of the next page zero memory location, the result being the high

order eight bits of the effective address.

Absolute Indirect—-The second byte of the instruction contains the low

order eight bits of a memory location. The high order eight bits of that

memory location is contained in the third byte of the instruction. The con

tents of the fully specified memory location are the low order byte of the

effective address. The next memory location contains the high order byte

of the effective address which is loaded into the sixteen bits of the program

counter.

Instruction Set—Alphabetic Sequence

ADC Add Memory to Accumulator with Carry

AND "AND" Memory with Accumulator

ASL Shift Left One Bit (Memory or Accumulator)

BCC Branch on Carry Clear

BCS Branch on Carry Set

BEQ Branch on Result Zero

BIT Test Bits in Memory with Accumulator

BMI Branch on Result Minus

BNE Branch on Result not Zero

BPL Branch on Result Plus

BRK Force Break
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BVC Branch on Overflow Clear

BVS Branch on Overflow Set

CLC Clear Carry Flag

CLD Clear Decimal Mode

CLI Clear Interrupt Disable Bit

CLV Clear Overflow Flag

CMP Compare Memory and Accumulator

CPX Compare Memory and Index X

CPY Compare Memory and Index Y

DEC Decrement Memory by One

DEX Decrement Index X by One

DEY Decrement Index Y by One

EOR "Exclusive-OR" Memory with Accumulator

INC Increment Memory by One

INX Increment Index X by One

INY Increment Index Y by One

JMP Jump to New Location

JSR Jump to New Location Saving Return Address

LDA Load Accumulator with Memory

LDX Load Index X with Memory

LDY Load Index Y with Memory

LSR Shift One Bit Right (Memory or Accumulator)

NOP No Operation

OR A "OR" Memory with Accumulator

PHA Push Accumulator on Stack

PHP Push Processor Status on Stack

PL A Pull Accumulator from Stack

PLP Pull Processor Status from Stack

ROL Rotate One Bit Left (Memory or Accumulator)

ROR Rotate One Bit Right (Memory or Accumulator)

RTI Return from Interrupt
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RTS Return from Subroutine

SBC Subtract Memory from Accumulator with Borrow

SEC Set Carry Flag

SED Set Decimal Mode

SEI Set Interrupt Disable Status

STA Store Accumulator in Memory

STX Store Index X in Memory

STY Store Index Y in Memory

TAX Transfer Accumulator to Index X

TAY Transfer Accumulator to Index Y

TSX Transfer Stack Pointer to Index X

TXA Transfer Index X to Accumulator

TXS Transfer Index X to Stack Register

TYA Transfer Index Y to Accumulator

Programming Model

15

PCH

7 0

PCL

8 7

ACCUMULATOR

INDEX REGISTER

INDEX REGISTER

PROGRAM COUNTER

STACK POINTER

N I V | | B| D| I | Z |c| PROCESSOR STATUS REG

A

Y

X

"PC"

"S"

"P"

L CARRY 1 = TRUE

-► ZERO 1 = RESULT ZERO

-► IRQ DISABLE 1 = DISABLE

-► DECIMAL MODE 1 = TRUE

-► BRK COMMAND

-► OVERFLOW

-► NEGATIVE

1 = TRUE

1 = NEG

Figure A.1
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PET—Original ROM

The first PET. It can be recognized by the message seen at power up:

*** COMMODORE BRSIC ***

using asterisks but with no identifying number after the word BASIC.

The original machine may be upgraded to Upgrade ROM by fitting a new

set of ROM chips. This is a good idea, since the original logic cannot
handle disk, does a poor job on cassette data files, has no built-in machine
language monitor, and has a zero page architecture that differs significantly

from all later PET/CBM's. The BASIC language on this unit is also limited;

arrays may not contain over 256 elements, for example.

This early machine is becoming rare.

PET/CBM—Upgrade ROM

The first PET that can handle disk. It can be recognized by the message

seen at power up:

### COMMODORE BRSIC ###

using the numbers sign (or octothorpe, if you like).

This is much cleaner logic than the previous machine. Its internal structure

is similar to that of later PET/CBM units (the 4.0 machines), so that it has

much in common with them.

It does not have specialized disk commands such as CATALOG,

SCRATCH, or DLOAD (the 4.0 disk commands); but these are "conve

nience" commands and the Upgrade ROM unit can do everything that the

later units do.

Upgrade ROM machines have a BASIC annoyance: under some circum

stances, string variables need to be tidied up using a technique called

"garbage collection." This takes place automatically when needed; but

when it does, the machine will freeze and seemingly will be dead for a

period that may last from a few seconds to as long as a half hour or more.

PET/CBM—4.0 ROM and 80 Characters

This class of machine has been a mainstay of the Commodore line for

years. It may be recognized by the message seen at power up:

*** COMMODORE BASIC A .D ***

For the first time, a number appears in the message.
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These machines are characterized by new BASIC disk commands

(CATALOG, etc.) and elimination of garbage-collection delays. Their in

ternal architecture, especially zero page, is quite similar to the previous

Upgrade ROM computers.

Some time after the initial production of 40-column machines, 80-column

machines were introduced, as well as a new 40-column version called the
"fat 40." The later machines are distinguished by new screen/keyboard

features, most noticeable of which is that the cursor movement keys repeat

automatically.

Subsequently, two memory-expanded machines became available. The
8096 came fitted with 96K of RAM; the extra 64K was "bank switched"

into memory as needed in blocks of 16K. The SuperPET, too, had an

extra 64K of RAM that was bank switched in 4K blocks; it also came with

an additional microprocessor (the 6809) used primarily for implementing

high-level languages. Both the 8096 and the SuperPET may be used as

conventional CBM 8032 computers; the extra memory may be ignored.

VIC-20

The VIC-20 was a new design concept for Commodore. Color, graphics,

and sound were built into the computer. The memory architecture changed

radically. Zero-page locations were shifted significantly as compared to

previous PET/CBM computers.

BASIC reverted to Upgrade ROM style—no special disk commands and

potentially slow garbage collection. Other than that, BASIC was not trimmed.

All the functions and features remained, and some attractive new screen

editing features were added, such as automatic repeating keys.

The VIC comes with no machine language monitor; it's necessary to load

one. The S YS command has a new attractive feature that allows registers

A, X, and Y to be "preloaded" by POKEing values into addresses 780,

781, and 782. Location 783 could also be used to set the status register,

but that's dangerous; unless it's done carefully, the decimal mode or in

terrupt disable flags might be set inadvertently.

The VIC-20 is somewhat vexing for machine language programming work.

Depending on the amount of extra memory fitted (none, 3K, or 8K and

over), the location of start-of-BASIC and of screen memory will vary.

Commodore 64

The Commodore 64 has much in common with the VIC-20. In particular,

its zero page organization is almost identical to that of VIC. The Com-
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modore 64 comes with a 6510 microprocessor; addresses D and 1 are

reserved for "bank switching" of memory.

BASIC is identical to that of the VIC—no special disk commands and

potentially slow garbage collection. There's no built-in machine language

monitor, so one must be loaded. The SYS command, as with the VIC,

allows preloading of registers A, X, and Y if desired.

The Commodore 64 has a more stable architecture than the VIC. BASIC

starts in a consistent place, and the screen is always at hex DA DD unless

you move it. There's a bank of memory at $CDDD to $CFFF that is not

used by the computer system; it's useful for staging machine language

coding.

The Commodore 64 is the first Commodore machine in which it is some

times desirable to write totally in machine language, with no BASIC at all.

BASIC can be swapped out to release extra RAM, and large applications

(word processors, spread sheets, and so on) are likely to do this.

Commodore PLUS/4

Similar to the Commodore 64 in many ways. The processor is a 7501,

which has the same instruction set as the 6502. Screen memory and

BASIC RAM have been moved a little higher. BASIC itself is greatly ex

panded.

Color and sound are implemented differently to the Commodore 64.

There's a built-in machine language monitor with expanded features, such

as assemble and disassemble. This one is convenient for machine lan

guage programmers.

The memory arrangement is more sophisticated than on previous ma

chines; large implementations may require insight into the machine's de

tailed architecture.

B Series

The B-128, B-256, CBM-128, and CBM-256 were designed as successors

to the 80-column PET/CBM units. Architecture has been radically changed:

the processor is a 6509, memory is bank switched, and zero page is

significantly different from that of other models.

The cassette buffer is no longer at $D33D, so that the examples given

in this book will need to be moved to a new part of RAM (addresses

$D4DD to $D7FF are available). Bank switching is more complex than

on other models. Beginners will find that there are more things to be kept
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track of in this machine. If possible, beginners should try to find a simpler

computer on which to take their first steps.

Implementation of large-scale programs require setting up a "transfer se

quence" program to link the program's memory bank to that of the kernal.

Usually, a bootstrap program will be needed to set everything up.

A machine language monitor is built into this line of machines. A few new

commands have been made available: . V to switch banks, . @ to test

disk status.
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Commodore 128
The Commodore 128 is three machines in one.

1. In C64 mode, it is identical in almost all aspects to the Commodore 64. As

such, the machine in this mode has access to only 64K of memory, and

normally uses only standard Commodore 64 peripherals and screen formats.

2. In C128 mode, it is an extended version of the 64 with extra features: 128K

of memory (arranged in two banks of 64K per bank); the possibility of using

an 80-column screen; the possibility of interfacing a disk unit that will operate

at a much higher speed than that of the Commodore 64.

The C128 has extensive hardware compatibility with the Commodore 64.

The 64's standard disk and printer can be hooked up in the usual way, but

with no speed improvement. Sound and 40-column graphics may be achieved

with POKEs to the same memory locations as for the 64.

The processor used for the C64 and C128 is the 8500, which has the same

instruction set as other machines such as the Commodore 64. Machine

language software is not generally upwardly compatible with the Commodore

64 because of differing RAM usage between the two machines.

3. CP/M mode uses the Z80-A microprocessor, whose machine language in

struction set is completely different from that of the 650x. These are outside

the scope of this book.

Introduction (128)

The Commodore 128 may be used as if it were a Commodore 64 or in

CP/M mode. The following material deals with its use in C128 mode.

The Commodore 128 comes with a 8501 microprocessor. As in the Com

modore 64, addresses D and 1 are reserved for control ports.

BASIC is rich with extra commands, and there's a good built-in machine

language monitor, which will be useful for us. The SYS command allows

preloading of registers ft, X, and Y if desired, and reading the contents

of these registers after a return to BASIC.

The Commodore 128 has a large amount of memory, and this calls for

an elaborate architecture. There is 128K of RAM, 44K of ROM, the input/

output chips, and the potential for much more ROM and RftM to be added

internally or through a cartridge. The processor can reach only 64K of

memory at a time, so that a sophisticated system of "memory banking"

must be used to get access to everything.

The term "bank" is misleading; the word "configuration" might be more

appropriate. For example, when a programmer calls for BANK 13 the
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computer supplies a configuration which is partly RAM and partly ROM. A

call for BANK 15 would invoke a different configuration of RAM and ROM.

Some of the RAM and ROM are the same as in the previous configuration.

The details are not important at this stage, but a drawing of some of the

popular "bank" configurations might be helpful.

In this book, we will be using Bank 15 almost exclusively. That will allow

us to put our own programs into RAM at a low address in memory, and

call upon the built-in programs that are stored in ROM at high memory

addresses.

Since the Commodore 128 contains a "built-in" Commodore 64, it will not

be surprising to learn that many of the interface chips—for video, sound,

and other purposes—are almost identical to those of the Commodore 64.

Do not worry if all this sounds technical. You will learn about many of

these features as you go.

Here's the important thing to remember: when you reach the exercises

that are found in each chapter, check Appendix E, under Exercises for

the Commodore 128, to get the C128 version. The principles are the

same—we're doing the same thing using the same techniques—but small

adjustments are needed for the special characteristics of the Commodore

128.

If you have not read the main part of the book, stop here and return to

Chapter 1. When you're ready to dig for more technical information, you

will find it here, and in Appendix E and Appendix C and Appendix H. But

first: read, learn, and enjoy.

Choosing a Bank for Your Program (128)

You can move from one bank to another, but it takes extra work. It's best,

when you can, to pick an initial bank configuration that you can live with

during the running of your program. A quick rundown of the most popular

configurations follows. Choose Bank 15 if you can.

First, a general rule: Addresses D and 1 are reserved, and so are ad

dresses hexadecimal FFDD to FFD4. These addresses don't "bank" and

are always there. The 251 addresses above $FFD4 are bank switched,

but are seldom useful to the average programmer. In a standard C128,

addresses from $3to$D3FF always refer to RAM Bank 0 regardless of

the bank selected.

Banks 0, 1, 2, and 3 are pure RAM—no ROM to help you do things, no

I/O chips to help you input and output data. Banks 2 and 3 are reserved
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FEFF

"Bank 0"—Almost 64K of RAM. This is where BASIC programs are stored. RAM exists

above $FF04, but is not normally used.

$0400i

"Bank 1 "—Addresses from $0400 up are RAM 1, where BASIC variables, arrays, and strings

are stored. Below $0400, RAM 0 is used.

$D0OO SE000

$8000

K—Kernal

K(l/O)—Kernal (Input/Output)

"Bank 13"—Below $8000, addresses RAM 0. Cartridge ROM (if present) occupies addresses

$8000 to $BFFF. From $000 to $FFFF, we have Kernal ROM, except for the area from

$D000 to $DFFF, which holds input/output chips.
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SDOOO $E000

K-«-4-K—Kernal

C—Character generator ROM

"Bank 14"—Memory below $4000 is RAM 0. From $4000 up, we have ROM for BASIC and

Kernal, exceptfor a slot from $D000 to $DFFF, which contains the character generator ROM.

K—Kernal

I/O—Input/Output

"Bank 15"—Memory below $4000 is RAM 0. From $4000 up, we have ROM for BASIC and

Kernal except for a slot from $D000 to $DFFF, which contains input/output chips.
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for the addition of extra RAM. None of these are good configurations for

programs—you will always want to do input and output—but they are

often called in briefly to get or store data. Bank 0 uses the RAM that

normally holds BASIC programs; Bank 1 uses the RAM that holds BASIC

variables, arrays, and strings.

Banks 4, 5, 6, and 7 are similar to Banks 0-3 below address $flDDD. A

set of ROM lies over the RAM at addresses $flDDD to $FFFF, except

for addresses $DDDD to $DFFF which contain I/O chip registers. This

ROM is internal, which means that it can be plugged into spare sockets

within the C128. Unless you plan to make your own ROM-like chips, in

cluding your own Kernal program, stay away from these.

Banks 8, 9, 10, and 11 are similar to Banks 0-3 below address IflODD.

A set of ROM lies over the RAM at addresses $BDDD to $FFFF, except

for addresses $DDDD to $DFFF which contain I/O chip registers. This

ROM is external, which means that it is plugged into the cartridge port.

Again, stay away; using these configurations calls for you to supply the

entire logic of the machine.

Banks 12 and 13 are similar to Bank 0 below address $flDDD. A set of

ROM (internal for Bank 12, external for Bank 13) lies over the RAM at

addresses $flDDD to $BFFF, and the standard Kernal ROM lies over

the RAM at addresses $CDDDto$FFFF, except for addresses $DDDD

to $DFFF which contain I/O chip registers. These look good for the

average application if you don't need BASIC. You'll get lots of RAM memory

to play with, yet the I/O chips and Kernal are there and available to you.

Banks 14 and 15 are similar to Bank 0 below address $4DDD. System

ROM (Basic and Kernal) lies over the RAM at addresses $4UU0 to $FFFF,

except for addresses $DDDD to $DFFF which contain the character

generator ROM (Bank 14) or I/O chip registers (Bank 15). These are the

easiest to use, especially Bank 15 with free access to I/O. The only

limitation is the more limited access to RAM for your program. Since you

still have over 12K of RAM to play with, that shouldn't be a major problem.

On rare occasions you may find a need to tuck a program into high RAM.

That makes the job harder. You will certainly be located beneath ROM,

and that means you need to call to make bank transfers as your program

calls the Kernal and returns. It can be done. But it is messier, and if you

can relocate your program to eliminate the problem, do so.
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Data in Other Banks (128)

Wherever your program ends up, you may find a need to reference data

in other banks—to load it, store it, or compare it. Three Kernal subroutines
are available to help you do these actions. They are:

Action Name Address

Load

Store

Compare

INDFET

INDSTA

INDCMP

$FF74

$FF7?

$FF?A

All these use indirect, indexed addressing to reference the desired data.

Thus, you must set up the indirect address in zero page as usual and load

Y with the index value desired. You must give these subroutines two extra

pieces of information: where the indirect address is located, and what data
bank is desired.

The indirect address information is passed to the subroutine in one of
several ways:

For INDFET, load the address to register A;

For INDSTA, put the address into location SDEBR;

For INDCMP, put the address into location $DECfl.

Indicate the desired bank (0 to 15) by loading its value into register X.

It is wise to lock out interrupts with SEI before starting any of the above

calling sequences; do not forget to release the interrupt with CLI after

the call. Chapter 6 has an example of these routines.

Jumping to Other Banks (C128)

A JMP is slightly easier than a JS R, but neither is hard. The call addresses

are:

Action Name Address Alternate

JMP JMPFAR $FF?1 $DEE3

JSR JSRFAR $FFbE $DECD

You must place the address of your desired destination into addresses E,

3, and A. Oddly, the address is not "backwards" like most 650x addresses.

The bank number goes into address E, the high address byte into 3, and

the low byte into address A. Address 5 is a "status register" image, if you

want it; usually it is best to leave this value as zero. If you want to pass

information via the processor's registers, the values must be stored in
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memory: A at t, X at 7, and Y at 6. Remember, you must set up addresses

2 to 4 before making the call.

The same setup applies to both JMPFARandJSRFAR. About the al

ternate address: you cannot JMP or JSR to $FF71 or $FFbE if the

ROM isn't there—in which case you must use the alternate address in

low memory which is never switched. When you have everything set up,

you may JMP to JMPFAR, since you will not need to come back. You

must JSR to JSRFAR, and it's worth noting that this call will normally

return to Bank 15 only. If you want to look at registers after the return,

they will be saved in the locations noted above.

The Screen (C128)

The 40-column screen is mapped in the "usual" way. That is, whatever

characters are stored in screen memory (usually $D4DDto$D7E7) will

be seen on the screen, and whatever appears on the nongraphics screen

may be inspected at the corresponding point within memory. Material

dealing with how to use the 64's video chip will normally be valid for the

128.

The 80-column screen is driven in an entirely different manner. The char

acters on screen are mapped from memory—but not the computer's main

memory. Instead, the video controller uses a "private" memory. We have

to do a moderate amount of work to inspect or change this memory; a

minimum of six commands are usually needed to reference a screen

memory byte. For an illustration of the cumbersome method needed to

do this, look at the character stored in the second position of the top row

of the 80-column screen. The internal memory address of this character

is DDD1 (high byte D, low byte 1); here we go. POKE 547 64, 16 : POKE

547 64 , D to set the high address byte. POKE 547 64 ,iq : POKE

54764,1 to set the low address byte. Finally, POKE

54764,31:PRINT PEEK(54765). We'll finally get the character

(in screen code, not ASCII) ... but that's a lot of work compared to a

single PEEK on 40 columns.

This system is not all bad. For one thing, blocks of "private" memory can

be moved internally to provide for fast scrolling. For another, the 80-column

controller has no need to dip into main memory to keep its screen alive;

with the result that the 80-column machine can be much faster than the

40-column one, which needs to reference memory almost continuously.



Memory

Maps

A word about memory maps: they are always too big or too small for the
use you have in mind.

The beginner may feel swamped by the wealth of detail. There's no threat,

however. The information is there when you're ready for it. Browse through

the information; it may be thought-provoking. Try reading or changing
locations to see what happens.

The advanced programmer may want more: lengthy details on how each

location is used, which parts of the system use these locations, and so

on. Time and space don't permit such detail.

The maps are intended to be fairly complete. Those who want more detail

may find them cryptic; but at least each location will be associated with a

type of activity. Different machines may be compared by checking their

respective maps. In some cases, programs may be converted with their

use, since they will help to find the corresponding memory location in the
target machine.

When you see a reference to a POKE or PEEK location—in this book or

from other sources—check it in these maps. They will help add perspec
tive.

767
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"Original ROM" PET

The Great Zero-Page Hunt

Most users help themselves to the high part of the input buffer ($004 0

to $ D D 5 q, which is not used except when long lines of data are inputted.

Most zero-page locations may be copied to another part of memory so

that their original contents can be restored after use. However, the pro

grammer should take great care in modifying the following locations, which

are critical within the operating system or BASIC: $03, $05, $E>4 to

$t7, $7fi to $fl?, $flR, $&2 to $&3, $B7, $C2 to $Dq, $E0 to $EZ,

$F5.

Memory Map

Hex

0000-000B

0003

0005

oooa-oooq

OOOft-OOSq

005ft

005B

D05C

005D

005E

005F

ooto

00E.1

00t>2

00t3

00b4

OObS-OOfc?

Decimal

0-2

3

5

a-q

iD-aq

qo

qi

qa

q3

q^i

qs

qt

q?

qa

qq

100

1D1-1D3

Description

USE jump

Current I/O -prompt

suppress

Cursor control position

Integer value (for SYS, GOTO,

and so on)

Input buffer

Search character

Scan-between-quotes flag

Input buffer pointer; number of

subscripts

Default DIM flag

Type: FF= string;

00 = numeric

Type: 80 = integer; 00=floating

point

Flag: DATA scan; LIST quote;

memory

Subscript flag; FNX flag

0=INPUT; $40=GET;

$qa=RERD

RTN sign/comparison

evaluation flag

Input flag (suppress output)

Pointers for descriptor stack
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Hex

DDta-DD7D

DD71-0074

DD75-DD7a

DD7A-DD7B

DD7C-DD7D

D07E-DD7F

oaaD-ooai

DDaE-DDa3

DDa<-DDa5

ooab-QDa7

oaaa-DDaq

DDBA-DDaB

DDac-DoaD

DQaE-DOaF

DoqD-ODqi

0DqE-D0q3

DDq^-DDqs

DDqt-DDq?

Doqa-DDqq

ooqA-ooqB

DDqc

DDqD-DDAE

DDA3-DDA5

DDAb-DDAF

Decimal

104-113

113-llt

117-130

133-133

134-135

13k-13?

iEa-iEq

13D-131

133-133

134-135

13k-137

13S-13S

Jj £-\ LJ ~~" \f ^-\ \\

Jj M C "~~ At M f

144-145

JJ ^~i O ^~ Jj M 1

Jj +-\ U ~~ JJ ^ 1

1SD-151

155-153

154-155

15b

157-lbE

It3-lt5

lbb-175

Description

Descriptor stack (temporary

strings)

Utility pointer area

Product area for multiplication

Pointer: start-of-BASIC

Pointer: start-of-variables

Pointer: start-of-arrays

Pointer: end-of-arrays

Pointer: string-storage (moving

down)

Utility string pointer

Pointer: limit-of-memory

Current BASIC line number

Previous BASIC line number

PointerBASIC statement for

CONT

Current DATA line number

Current DATA address

Input vector

Current variable name

Current variable address

Variable pointer for FOR/NEXT

Y-save; op-save; BASIC

pointer save

Comparison symbol

accumulator

Miscellaneous work area,

pointers, and so on

Jump vector for functions

Miscellaneous numeric work

DDBO

DDB1-DDB4

DDB5

DDBb

DDB7

DDBa-DDBD

DDBE

DDBF

17k

177-iaD

iai

Ifl3

103

IRQ

iqi

area

Accum#1: exponent

Accum#1: mantissa

Accum#1 :sign

Series evaluation constant

pointer

Accum#1 hi-order (overflow)

Accum#2: exponent, and so on

Sign comparison, Acc#1 versus

#2

Accum#1 lo-order (rounding)
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Hex

DDCD-DDC1

DDCE-DDDR

DDCR-DDCfi

DODA-DDDE

ODED-ODE1

DDEE

DDE3-D0E4

0DE5-DDEb

DDE7-DDEQ

DOEI

DDEA

DDEB

DDEC

DDED

DDEE

DDEF

DDFD

DDF1

OOFE

D0F3-DDF4

DDF5

DDFt

DDF7-DDFS

OOFq-OOFR

DDFB

DDFC

DDFD

DDFE

D1DD-D1D&

D1D0-D13E

D1DD-D1FF

Decimal

112-113

114-217

ED1-EDE

Elfl-522

EEb

ES7-E5fl

EEq-E3D

E31-E3E

E33

B3A

E35

23b

E37

E3fl

E3R

EAO

241

2A3-EAA

S45

E4fc

E47-E4fl

E4R-E5D

E51

E53

E54

25t-2tt

25t-31fl

2St-511

Description

Cassette buffer length/series

pointer

CHRGET subroutine; get

BASIC character

BASIC pointer (within

subroutine)

Random number seed

Pointer to screen line

Position of cursor on above line

Utility pointer: tape, scroll

Tape end address/end of

current program

Tape timing constants

Tape buffer character

Direct/programmed cursor:

D= direct

Tape read timer 1 enabled

EOT received from tape

Read character error

Number of characters in file

name

Current file logical address

Current file secondary address

Current file device number

Line margin

Pointer: start of tape buffer

Line where cursor lives

Last key/checksum/

miscellaneous

Tape start address

File name pointer

Number of INSERTS

outstanding

Write shift word/read character

in

Tape blocks remaining to write/

read

Serial word buffer

STR$ work area

Tape read error log

Processor stack
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Hex Decimal Description

DEOO-OEDE

0E03

0ED4

0E05-0EDt

0ED7-DE0fl

OEDH

OEDA

OEDB

DEDC

QEDD

DEDE

DEDF-QElfl

OElS-CTElft

DE1B-DE1C

DE1D

DE1E

OEEO-OEE1

DEEE

DEE3

0EE4

DEES

OEEt

DEE?

DEEfl

QEEq-DE41

QE4E-QE4B

0E4C-DESS

QE5t-0E5F

DEtD

DEtl

OEtE

DEt3

DEt4

DELS

DEtt

DEtfl-OEbH

51E-513

515

Sit

517-51fl

5iq-5ED

5E1

5EE

5E3

SBA

5E5

5Eb

5E?-53b

537-53fl

53^-540

541

5<E

544-545

54t

547

54fl

54R

55D

551

55E

553-577

57fl-5fi7

saa-sq?

5qa-bD7

bDfl

bDq

blO

bll

tlE

bl3

fcl4

bl5-t.lt

Jiffy clock for TI and TI$

Which key down: 255 = no key

Shift key: 1 if depressed

Correction clock

Cassette status, #1 and #2

Keyswitch PI A: STOP and

RVS flags

Timing constant for tape

Load = 0; verify =1

Status word ST

Number of characters in

keyboard buffer

Screen reverse flag

Keyboard input buffer

IRQ vector

BRK interrupt vector

IEEE output: 25 5 = character

pending

End-of-line-for-input pointer

Cursor log (row, column)

IEEE output buffer

Key image

D= flash cursor

Cursor timing countdown

Character under cursor

Cursor in blink phase

EOT received from tape

Screen line wrap table

File logical address table

File device number table

File secondary address table

Input from screen/from

keyboard

X save

How many open files

Input device, normally D

Output CMD device, normally 3

Tape character parity

Byte-received flag

File name pointer; counter
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Hex

DEbC

DEbF

DE7D

DE71-DE7E

DE73

DE74

DE75

DE7b-DE77

DE7fl

DS7R

DE7A-D33C1

D33A-03FS

D3FA-D3FB

D4DD-7FFF

flDDD-fi3E7

CDDD-E7Ffl

EfllD-Efil3

EflED-EflE3

Efi4D-Efl4F

■pnnn-FFFP

Decimal

tan

tE3

bE4

fcE5-bEfc

ta?

bEfl

fcER

t3D-fc31

b3E

t33

fc3^i-flE5

flEt-lD17

IDlfl-lDIR

lDE4-3E7b7

3E7tfl-337b7

z;qi5E-5c13flzi

ER^E^i-ER^E?

5cK5t--5cl471

fn!44 D —15535

Description

Serial bit count

Cycle counter

Tape writer countdown

Tape buffer pointers, #1 and

#E

Write leader count; read pass

1/2

Write new byte; read error flag

Write start bit; read bit

sequence error

Error log pointers, pass 1/2

D= scan/1-15= count/

$ A D = load/$ fl D = end

Write leader length; read

checksum

Tape#l input buffer

Tape#E input buffer

Monitor extension vector

Available RAM including

expansion

Screen RAM memory

BASIC ROM; part of kernal

ROM

PI A 1 (6520)-keyboard

interface

PI A S (6520)-IEEE interface

VIA (6522)-Miscellaneous

interface, timers

Kernal ROM routines.

PI A and VIA charts are the same as shown for Upgrade/4.0 units.

UPGRADE and BASIC 4.0 Systems

The Great Zero-Page Hunt

Zero-page locations are tough to find in these areas. Locations $1F to

$E7, $4Bto$50, and $54 to $5D are work areas available for tem

porary use. If tape is not being read or written, addresses $B1 to $C3

are available.
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Most zero-page locations may be copied to another part of memory so

that their original contents can be restored after use. The programmer

should take great care, however, in modifying the following locations, which

are critical withjn the operating system of BASIC: $1D, $13 to $15,

$Eflto$3 5, $37, $5Dto$51, $b5, $7Dto$fl7, $flDto$BD,
to $FA.

Memory Map

Where Upgrade ROM differs from 4.0, an asterisk (*) is shown and the 4.0

value is given. There are some differences in usage between the 40- and

80-column machines.

Hex Decimal Description

ODDD-DDDE

DDD3

OQUA

0OD5

DDDb

DDD7

DDOfl

OQDft

DDDB

DDDC

DDDD-DDDF

DD1O

DD11-DD1E

DD13-DD15

DDlt-DDlE

DD1F-DDEE

0DE3-D0E7

DDES-ODER

OOE&-DQEB

DDSC-DDED

D-E

3

A

5

b

7

a

ID

11

IE

13-15

17-lfl

iq-Ei

EE-3D

31-3^

35-3^

AD-Al

AE-A3

AA-AS

USR jump

Search character

Scan-between-quotes flag

Input buffer pointer; number of

subscripts

Default DIM flag

Type: FF = string; DD = numeric

Type: 00 = integer;

DD=floating point

Flag: DATA scan; LIST quote;

memory

Subscript flag; FNX flag

D=INPUT; $4D=GET;

$qfl=READ

ATN sign/comparison

evaluation flag

*Disk status DS$ descriptor
^Current I/O device for prompt-
suppress

Integer value (for SYS, GOTO,

and so on)

Pointers for descriptor stack

Descriptor stack (temporary

strings)

Utility pointer area

Product area for multiplication

Pointer: start-of-BASIC

Pointer: start-of-variables

Pointer: start-of-arrays
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Hex Decimal Description

005E-005F

DD3D-DD31

DD3E-DD33

0034-0035

0D3b-0037

0033-003=1

003R-003B

003C-003D

003E-003F

0040-0041

0045-0043

004b-0047

004fl-004q

004A

004B-0050

0051-0053

0054-005D

005E

00SF-00b5

D0fc3

00b4

00L5

DDtt-DDtB

ootc

OObD

OObE-OObF

0070-0057

0077-0073

OOflfl-OOflC

OOflD-OOflF

4b-47

4B-4q

50-51

55-53

54-55

5fc-57

5fl-5R

fcO-tl

fc5-b3

fc4-t5

fcfc-fc7

70-71

75-73

74

75-fiD

fll-fl3

fl4-R3

^4

qs-qa

qq

100

101

105-107

loa

lot

110-111

115-135

iiq-150

13fc-140

141-143

Pointer: end-of-arrays

Pointer: string-storage (moving

down)

Utility string pointer

Pointer: limit-of-memory

Current BASIC line number

Previous BASIC line number

Pointer: BASIC statement for

CONT

Current DflT& line number

Current DATS address

Input vector

Current variable name

Variable pointer for FOR/NEXT

Y-save; op-save; BASIC

pointer save

Comparison symbol

accumulator

Miscellaneous work area,

pointers, and so on

Jump vector for functions

Miscellaneous numeric work

area

Accum#1: exponent

Accum#1: mantissa

Accum#1: sign

Series evaluation constant

pointer

Accum#1 hi-order (overflow)

Accum#2: exponent, and so on

Sign comparison, Acc#1 versus

#2

Accum#1 lo-order (rounding)

Cassette buffer length/series

pointer

CHRGET subroutine; get

BASIC character

BASIC pointer (within

subroutine)

Random number seed

Jiffy clock for TI and TI$
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Hex Decimal Description

DQqD-ooqi

Doqa-QDqa

aoq^-oaqs

DDSt

DDq?

oaqa

Daqq-Doqa

DDRB

aoqc

ODRD

DDRE

DDqF

DDAD

QOfll

0DR3-D0A4

DD&5

DQAb

DOfi?

DOflfl

DDfiq

DDfifi

DDAB

DDfiC

ODAD

DOAE

DDfiF

DDBD

DDB1

0DB2

DDB3

DDB4

DDB5

D0B7

ODBq

ODBfi

1A&-1A1*

15D

151

155

153-154

155

15fc

157

15fl

isq

ifcD

Ibl

It3-lt4

It5

It?

Ibfl

itq

170

171

17a

173

174

175

17b

177

17fl

i?q

iflD

Ifll

Ifl3

Ifl5

Iflfc

IRQ vector

BRK interrupt vector

NMI interrupt vector

Status word ST

Which key down: 255 = no key

Shift key: 1 if depressed

Correction clock

Keyswitch PIfi: STOP and

RVS flags

Timing constant for tape

Load = D; verify =1

Number of characters in

keyboard buffer

Screen reverse flag

IEEE output: E55 = character

pending

End-of-line-for-input pointer

Cursor log (row, column)

IEEE output buffer

Key image

D= flash cursor

Cursor timing countdown

Character under cursor

Cursor in blink phase

EOT received from tape

Input from screen/from

keyboard

X save

How many open files

Input device, normally D

Output CMD device, normally 3

Tape character parity

Byte-received flag

Logical address temporary save

Tape buffer character; MLM

command

File name pointer; MLM flag;

counter

Serial bit count

Cycle counter

Tape writer countdown
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Hex Decimal Description

DDBB-DDBC

DOBD

DDBE

DDBF

DDCD-DDC1

DOCE

DDC3

0DC4-D0C5

DOCb

DDC7-0DCfi

OOCR-DOCA

DDCB-DDCC

DDCD

DDCE

DDCF

DODD

DDD1

ODDS

DDD3

D0D4

DDD5

DDDb-DDD?

DDDfl

DDDR

DODft-DDDB

DDDC

DDDD

DDDE

Ifl7-lflfi

1QR

IRQ

1R1

1R2-1R3

1R4

1R5

IRt-lR?

IRQ

ISR-EDD

ED1-EDE

S03-ED4

ED5

EOb

ED?

EDfl

EDR

SID

Ell

E1E

E13

514-515

Elk

E17

Slfl-SIR

EED

EE1

SEE

Tape buffer pointers, #1 and

#a

Write leader count; read pass

1/2

Write new byte; read error flag

Write start bit; read bit

sequence error

Error log pointers, pass 1/2

D = scan/1-15= count/

$4D = load/$flD = end

Write leader length; read

checksum

Pointer to screen line

Position of cursor on above line

Utility pointer: tape, scroll

Tape end address/end of

current program

Tape timing constants

D = direct cursor; else

programmed

Tape read timer 1 enabled

EOT received from tape

Read character error

Number of characters in file

name

Current file logical address

Current file secondary address

Current file device number

Right-hand window or line

margin

Pointer: start of tape buffer

Line'where cursor lives

Last key/checksum/

miscellaneous

File name pointer

Number of INSERTS

outstanding

Write shift word/read character

in

Tape blocks remaining to write/

read
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Hex Decimal Description

DDDF

DDED-DDFfl

DDED-DDE1

00E2

0QE3

00E4

DDES

DDEfc

DDE?

DDES

ODER-DOER

DDEB-DDEC

OOFS-OOFR

DDFB-DDFC

DDFD-DDFE

0100-010R

D1DD-D13E

D1DD-D1FF

0200-0250

0251-025R

02SB-02b4

02b5-02kE

02bF-027fl

027ft-033cl

033A-03Fcl

D33fi-D3fiO

D3ECI

03EA

D3EB

D3EC

D3ED

D3EE

03EE-D3F7

03EF

03FD-q

D3FR-03FB

223

224-24S

224-225

22b

227

22fi

22R

23D

231

232

233-234

235-23fc

24R-250

251-252

253-254

25b-2bb

25b-31fi

25b-511

512-5R2

5R3-tD2

E.D3-bl2

bl3-fc22

E.23-b32

fc34-S25

fl2fc-1017

fl2t-flRfc

10D1

1D02

1003

1004

1D05

100b

100b-1015

10D7

lDOfi-1017

loia-ioiq

Serial word buffer

(40-column) Screen line wrap

table

*(80-column) Top, bottom of

window

*(80-column) Left window

margin

*(80-column) Limit of keyboard

buffer

*(80-column) Key repeat flag

*(80-column) Repeat countdown

*(80-column) New key marker

*(80-column) Chime time

*(80-column) HOME count

*(80-column) Input vector

*(80-column) Output vector

Cassette status, #1 and #5

MLM pointer/tape start address

MLM/ DOS pointer,

miscellaneous

STR$ work area, MLM work

Tape read error log

Processor stack

MLM work area; input buffer

File logical address table

File device number table

File secondary address table

Keyboard input buffer

Tape#l input buffer

Tape#2 input buffer

*DOS work area
(Fat 40) New key marker

(Fat 40) Key repeat countdown

(Fat 40) Keyboard buffer limit

(Fat 40) Chime time

(Fat 40) Decisecond timer

(Fat 40) Key repeat flag

(80-column) Tab stop table

(Fat 40) Tab work value

(Fat 40) Tab stops

Monitor extension vector
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Hex Decimal Description

1D2QD3FC

D40D-7FFF

flODD-fl3E7 357tfl-337b7

flDDD-fl7CF 3E7bfl-347b7

qQDD-aFFF 3bflfc4-45D55

BDDD-E7FF 45DSb-5q3qi

EfllD-Efll3

Efl5D-EflE3

Efl4D-Efi4F

EflflD-Eflfll 5q55D-E

FDDD-FFFF

*IEEE timeout defeat

Available RAM including

expansion

(40-column) Video RAM

*(80-column) Video RAM

Available ROM expansion area

BASIC ROM, part of kernal

PI A 1-keyboard I/O

PI A 2-IEEE-488 I/O

VIA-I/O and timers

(80-column and Fat 40) CRT

controller

Kernal ROM

6520

E810

E811

E812

E813

Figure C.1

PIA1 chart

Diag Sens/

Uncrash

Tape#1 In

Latch

EOlin
Tape Switch Sense

#1 #2

(Screen Blank—Orig

ROM) EOI Out

Keyboard Row Select

DDRA

Access

Tape#1 Input L

Control

Keyboard Input for selected row

Retrace

Latch

Cassette#1 Motor

Output

DDRB

Access

Retrace Interrupt

Control

59408

59409

59410

59411

E820

E821

E822

E823

6520

IEEE-488 Input

ATN Int NDAC Out
DDRA

Access
ATN Int Control

IEEE-488 Output

SRQInt DAV Out
DDRB

Access
SQR Int Control

59424

59425

59426

59427

Figure C.2

PIA 2 chart
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6522

E840

E841

E842

E843

E844

E845

E846

E847

E848

E849

E84A

E84B

E84C

E84D

E84E

E846F

Figure C.3

VIA chart

DAVIn NRFD In
Retrace

In

Tape#2

Motor

Tape

Output
ATNOu

NRFD

Out
NDAC In

Unused (See E84F)

Data Direction Reg ster B (for E840)

Data Direction Register A (for E84F)

Timer 1

Timer 1 Latch

Timer 2

Shift Register (unused)

T1 Control T2 Cont

CB2 (PUP) Control

Irq Stats

Int Enabl

Timer

1

Int

Timer

2

Int

Shift Register Control

CB1 Cntl

Tape#2

CB1

Tape#2

Int

Latch Controls

PB PA

CA2 Control

Graphics/Text Mode

CB2

(PUB)

Int

SR

Unused

CA1

(PUP)

Int

CA1

(PUP)

Control

CA2

G/TMode

unused..

Parallel User Port Data Register PA

59456

59457

59458

59459

59460

59461

59462

59463

59464

59465

59466

59467

59468

59469

59470

59471

CBM 8032 and FAT-40

6545 CRT Controller

NOTES: 1. Registers are write-only.

2. Avoid extreme changes in Register 0. CRT damage could

result.

3. Register 0 will adjust scan to allow interfacing to external

monitor.

4. Register 12, Bit 4, will "invert" the video signal.

5. Register 12, Bit 5, switches to an alternate character set. The

character set is not implemented on most machines except

Super-PET.
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$E880

59520

$E881

59521

i

TYPICAL VALUES

(DECIMAL)

TEXT GRAPHICS

0

1

2

3

4

5

6

7

8

9

10

11

12

13

HORIZONTAL TOTAL

HOR. CHAR. DISPLAYED

H. SYNC POSITION

v SYNC WIDTH H

XI VERTICAL TOTAL

^X^| VERT. TOT. ADJUST

x
x

VERTICAL DISPLAYED

VERT. SYNC POSITION

^><3 MODE
SCAN LINES

:URSOR START (UNUSED)—

XI c R DISPLAY

ADDRESS

49

40

41

15

32

3

25

29

0

9

0

0

16

0

49

40

41

15

40

5

25

33

0

7

0

0

16

0

NOTES: 1. REGISTERS ARE WRITE-ONLY

2. AVOID EXTREME CHANGES IN

REGISTER, OR CRT DAMAGE

COULD RESULT

3. REGISTER 0 WILL ADJUST SCAN

TO ALLOW INTERFACING TO

EXTERNAL MONITOR

4. REGISTER 12, BIT 4, WILL "INVERT"

THE VIDEO SIGNAL.

5. REGISTER 12, BIT 5, SWITCHES TO

AN ALTERNATE CHARACTER SET.

THE CHARACTER SET IS NOT

IMPLEMENTED ON MOST MACHINES

EXCEPT SUPER-PET.

Figure C.4
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VIC-20

The Great Zero-Page Hunt

Locations $FC to $FF are available. Locations $22 to $EA, $4E to

$53, and $57 to $bD are work areas available for temporary use.

Most zero-page locations may be copied to another part of memory so

that their original contents can be restored after use. However, the pro

grammer should take great care in modifying the following locations, which

are critical within the operating system or BASIC: $13, $lb to $lfl,

$EBto$3fl, $3 A, $53to$54,$kfl, $73 to $fiA, $RD to $RA, $AD

to $AE, $Bfi to $BA, $C5 to $FA.

Memory Map

Hex Decimal Description

DDDD-OODE

DD03-DQD4

Q005-D00E.

DDD7

DQDfi

DDDR

DODA

DDDB

DDDC

DDDD

DDDE

DDDF

0D1D

DD11

DD1E

DD13

DD14-0D15

DDlfc

DD17-0Dia

D-E

3-4

5-b

7

a

q

ID

ii

IE

13

IA

15

1b

17

ia

iq

ED-El

BE

23-EA

USE jump

Float-fixed vector

Fixed-float vector

Search character

Scan-quotes flag

TAB column save

D=L0AD,l=VERIFY

Input buffer pointer/number of

subscripts

Default DIM flag

Type: FF = string; DD = numeric

Type: flD = integer;

DD=floating point

DATA scan/LIST quote/

memory flag

Subscript/FNx flag

0=INPUT;$40=GET;

$qa=READ

ATN sign/Comparison

evaluation flag

Current I/O prompt flag

Integer value

Pointer: temporary string stack

Last temporary string vector
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Hex Decimal Description

DDl^-DDEl

Q0EE-DDE5

DDEb-QQEA

DDEB-DDEC

DDED-DDEE

DDEF-DD3D

DD31-DD3E

DD33-DD34

0035-DD3t

DD37-DD3fl

DDSR-DDSR

DD3B-DD3C

DD3D-DD3E

DD3F-DD4D

DD41-QD4E

D043-DD44

DD45-DD4t

DD47-DD4fl

DD4cl-DD4fi

DD4B-DD4C

DD4D

DD4E-DD53

DD54-DD5t

0057-DQbQ

OQtl

DOLE-DDtS

QDbb

DQL7

DDbfl

DOtq-DDfcE

DDtF

E5-33

34-37

3fl-4E

43-44

45-4b

47-4fl

4CI-5D

51-5E

53-54

55-5t

57-5fl

5R-tD

ti-ta

b3-b4

b5-bb

b7-bfl

bH-7D

71-7E

73-74

75-7t

77

7fl-fl3

fl4-flb

fl7-qt

qa-iDi

IDE

103

1D4

1D5-11D

111

DD7D

Stack for temporary strings

Utility pointer area

Product area for multiplication

Pointer: start-of-BASIC

Pointer: start-of-variables

Pointer: start-of-arrays

Pointer: end-of-arrays

Pointer: string-storage (moving

down)

Utility string pointer

Pointer: limit-of-memory

Current BASIC line number

Previous BASIC line number

Pointer: BASIC statement for

CONT

Current DATA line number

Current DATA address

Input vector

Current variable name

Current variable address

Variable pointer for FOR/NEXT

Y-save; op-save; BASIC

pointer save

Comparison symbol

accumulator

Miscellaneous work area,

pointers, and so on

Jump vector for functions

Miscellaneous numeric work

area

Accum#l: exponent

Accum#l: mantissa

Accum#l: sign

Series evaluation constant

pointer

Accum#1 hi-order (overflow)

Accum#2: exponent, and so on

Sign comparison, Acc#l versus

#5

Accum#l lo-order (rounding)
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Hex Decimal Description

DD71-DD7E

QQ73-0DfiA

DD7A-DD7B

DDfiB-DDflF

DDSO

DDHl

DDR3

00^4

00^5

DDRt

00^7

DDRfl

DDR^

DORA

DDSB

Doqc

DDRD

DDqE

DD^F

DDAD-0DA5

DDA3

DDA4

DDA5

DDAfc

DDA7

DDAfl

DDAR

OOAA

DOAB

113-114

115-130

1BB-1B3

13=1-143

144

145

147

14fl

14R

15D

151

155

153

154

155

15t

157

15fl

15R

ltD-ltB

It3

It4

Ifc5

Itb

It?

ita

itq

17D

171

Cassette buffer length/series

pointer

CHRGET subroutine; get

BASIC character

BASIC pointer (within

subroutine)

END seed value

Status word ST

Keyswitch PI A: STOP and

RVS flags

Timing constant for tape

Load = D; verify =1

Serial output: deferred character

flag

Serial deferred character

Tape EOT received

Register save

How many open files

Input device, normally D

Output CMD device, normally 3

Tape character parity

Byte-received flag

Direct = $ fl D/RUN = D output

control

Tape pass 1 error log/character
buffer

Tape pass E error log corrected

Jiffy Clock HML

Serial bitcount/EOI flag

Cycle count

Countdown, tape write/bit count

Tape buffer pointer

Tape write leader count/read

pass/inbit

Tape write new byte/read error/

inbit count

Write start bit/read bit error/stbit

Tape Scan;Cnt;Load;End/byte
assembly

Write lead length/read

checksum/parity
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Hex Decimal Description

ODRC-DDAD

DDftE-DDAF

DDBD-DOB1

DDB5-00B3

00B4

00B5

DDBb

DDB?

DDBfl

DDBq

ODBR

DDBB-DDBC

DDBD

DDBE

OQBF

DDCD

00C1-00C2

DQC3-DDC4

QDC5

DDCt

DDC7

DDCfi

DDCq-DDCR

DOCB

DDCC

DDCD

DDCE

DDCF

DDDD

DDD1-DDDE

DDD3

172-173

174-175

17E.-177

17B-17R

1QD

Ifll

ifiE

103

Ifl5

Iflb

Ifi7-lfifl

iaq

iqD

iqi

iqa

1R5-1SE.

1R7

isa

iqq

aoD

5D1-EDE

ED3

2U4

205

ZDt,

5D7

EDfi

SDS-EID

Ell

Pointer: tape buffer, scrolling

Tape end address/end of

program

Tape timing constants

Pointer: start of tape buffer

1 =tape timer enabled; bit count

Tape EOT/RS232 next bit to

send

Read character error/outbyte

buffer

Number of characters in file

name

Current logical file

Current secondary address

Current device

Pointer to file name

Write shift word/read input

char

Number of blocks remaining to

write/read

Serial word buffer

Tape motor interlock

I/O start address

Kernal setup pointer

Last key pressed

Number of characters in

keyboard buffer

Screen reverse flag

End-of-line for input pointer

Input cursor log (row, column)

Which key: b4 if no key

D= flash cursor

Cursor timing countdown

Character under cursor

Cursor in blink phase

Input from screen/from

keyboard

Pointer to screen line

Position of cursor on above line



APPENDIX C — VIC 20 185

Hex

D0D4

DDD5

DDDfc

ODD?

DDDfl

QODR-OOFO

DDF1

ODFS

DDF3-00F4

DDF5-DDFfc

DDF7-DDFfl

DOFR-ODFA

DDFF-DlDfi

D100-1D3E

D1D0-D1FF

QEQD-0E5O

DE5q-DEbE

QEb3-QEbC

DEbD-D£7b

DE77-QEflD

OEfil-OEflE

D£fl3-0Efi4

DEfl5

DEflb

DEfl?

DEflfl

DEflR

OEfifl

DEflB

DEflC

DEflD

DEflE

DEflF-OERD

DE^l

DESE

DEH3

DEq<

Decimal

E1E

E13

E15

ait

E17-E4D

341

E4E

E43-E44

E45-E4t

E47-E46

E^q-ESD

ESfc-Efct

E5b-31fl

35E.-511

5ia-tDD

tOl-tlD

tn-tao

tai-t3D

t31-t4D

t41-t43

t»<3-fc^4

fc47

fc5D

t>51

tsa

fc53

fc55-fc5t

fc57

fc5fl

fc5R

bfcD

Descr/pfton

D = direct cursor; else

programmed

Current screen line length

Row where cursor lives

Last inkey/checks urn/buffer

Number of INSERTS

outstanding

Screen link table

Dummy screen link

Screen row marker

Screen color pointer

Keyboard pointer

RS-232 Rev pntr

RS-232 Tx pntr

Floating to ASCII work area

Tape error log

Processor stack area

BASIC input buffer

Logical file table

Device number table

Secondary address table

Keyboard buffer

Start of BASIC memory

Top of BASIC memory

Serial bus timeout flag

Current color code

Color under cursor

Screen memory page

Maximum size of keyboard

buffer

Repeat all keys

Repeat speed counter

Repeat delay counter

Keyboard shift/control flag

Last shift pattern

Keyboard table setup pointer

Keymode (Kattacanna)

D = scroll enable

RS-232 chip control

RS-232 chip command
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Hex

osqs-OERb

OER?

DERfl

oe^-derb

DERB

OERC

DERD

QESE

DERF-OEaD

D3Q0-0301

D3QE-D303

03D4-D305

D3Qb-0307

D3Dfl-030R

D3Da-D3DB

D3DC

D3DD

D3DE

D3DF

D314-0315

031b-0317

031fl-D31R

D31&-D31B

D31C-D31D

D31E-031F

03E0-D3E1

D3EE-D3E3

03E4-Q3E5

D3Efc-D3E7

D3Efl-Q3ER

D3Eft-D3EB

D3EC-D3ED

03EE-D3EF

D33D-D331

D33E-D333

D33C-D3FB

D40D-QFFF

1DDD-1FFF

EDDD-7FFF

fidOO-fiFFF

Decimal

ttl-ttE

bt7

btfl

ttq

t7D

t71-b7E

7bfl-7tS

770-771

77E-773

774-775

77b-777

77fl-77R

7flO

7fll

7fiE

7fl3

7flfl-7flR

7RD-7qi

7C1E-7C13

7R4-7q5

7qt-7c17

7Rfl-7c1(:l

flDD-fiDl

flDE-flD3

fiO4-fiD5

flDb-flD7

flDfl-flDS

fllD-flll

fllE-fll3

ai^-ais

fllfc-fll7

fllfl-fllR

flEfl-lDIR

10E4-4Dq5

^DRt-fllRl

fllRE-3E7t7

3E7fcfl-3tfit3

Descr;pf;on

Bit timing

RS-232 status

Number of bits to send

RS-232 speed/code

RS-232 receive pointer

RS-232 input pointer

RS-232 transmit pointer

RS-232 output pointer

IRQ save during tape I/O

Error message link

BASIC warm start link

Crunch BASIC tokens link

Print tokens link

Start new BASIC code link

Get arithmetic element link

SYS a-reg save

SYS X-reg save

SYS Y-regsave

SYS status reg save

IRQ vector (E&BF)

Break interrupt vector (FEDE)

NMI interrupt vector (FEAD)

OPEN vector (F4 DR)

CLOSE vector (F3 Ah)

Set-input vector (FEC7)

Set-output vector (F3DC1)

Restore I/O vector (F3F3)

INPUT vector (FEDE)

Output vector (FE 7 a)

Test-STOP vector (F7 7 D)

GET vector (F1F5)

Abort I/O vector (F3EF)

USR vector (FEDE)

LOAD link

SAVE link

Cassette buffer

3K RAM expansion area

Normal BASIC memory

Memory expansion area

Character bit maps (ROM)



APPENDIX C — VIC 20 187

Hex Decimal Description

S^DO-RSFF

3715e-371b7

37flflfl-3fl3clH

ADDD-BFFF

CDDO-FFFF

Video interface chip (6560)

VIA (6522) interface-NMI

VIA (6522) interface-IRQ

Alternate color nybble area

Main color nybble area

Plug-in ROM area

ROM: BASIC and operating

system
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VIC 6560 Chip

$9000

$9001

$9002

$9003

$9004

$9005

$9006

$9007

$9008

$9009

$900A

$900B

$900C

$900D

$900E

$900F

Inter

lace Left Margin ( = 5)

Top Margin (= 25)

Scrn Ad

bit 9

bitO

# Columns ( = 22)

# Rows ( = 23)
Double

Char

Input Raster Value: bits 8-1

Screen Address

bits 13-10

Character Address

bits 13-10

_ Light Pen Input Horizontal
Vertical

Paddle Inputs x

ON i Voice 1

-0N I Voice 2 Freque.
ON }_ Voice 3

ON | Noise

Multi-Colour Mode ( = 0)

Screen Background Color

icy —

Sound Amplitude

Foregnd

/Backg
Frame Color

36864

36865

36866

36867

36868

36869

36870

36871

36872

36873

36874

36875

36876

36877

36878

36879

Figure C.5
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VIC 6522 Usage

$9110

$9111

$9112

$9113

$9114

$9115

$9116

$9117

$9118

$9119

$911A

$911B

$911C

$911D

$911E

$911F

DSR

in

CTS

in

I

or,

DCD*

in

3S-232

Paralle

Rl*

in

Interfa

j| User

DTR

out

ce

Port

RTS

out

Data

in

Unused — see $911F

DDRB(for$9110)

DDRA(for$911F)

JT1-L

T1-H

_T1 L

T1 L

atch L

atchH

T2-L

T2-H

RS-232 Send Speed;

Tape Write Timing

RS-232 Input tinning

—

—

—

Shift Register funused)

T1 Control

CB2: RS-232

NMI:

ATN

out

T1

Tape

sense

T2Cnt

Send

T2

Button

Shift Reg Control

CB1 C

CB1:

RS-232

in

—- Joyst

Left

PBLE

CA2: Tape motor Ctrl

cks —

Down Up

CA1:

Restore

button

Serial

Data in

PALE

CA1 Ctl

Serial

Clk in

37136

37137

37138

37139

37140

37141

37142

37143

37144

37145

37146

37147

37148

37149

37150

37151

Figure C.6



190 MACHINE LANGUAGE FOR COMMODORE MACHINES

VIC 6522 Usage

$9120

$9121

$9122

$9123

$9124

$9125

$9126

$9127

$9128

$9129

$912A

$912B

$912C

$912D

$912E

$912F

Joystk I
RightJ

I Tape I
LoutJ

Keyboard Row Select

Keyboard Column Input

DDRB (for $9120)

DDRA (for $9121)

T1-L

T1-H

_T1-L L

T1-H

.atch

Latch

_T2-L

T2-H

Cassette Tape Read;

Keyboard & Clock

Interrupt Timing

—

—

Serial Bus Timing

Tape R/W Timing

Shift Register (*Unused)

T1 Control T2 Ctrl

Serial Bus Data Out

IRQ: T1 T2

Shift Register Contrl

CB1

Contl

CB1:*

SRQin

PBLE

Serial Clock Line out

CA1:

Tape in

PALE

CA1

Contl

*Unused: see $9121

37152

37153

37154

37155

37156

37157

37158

37159

37160

37161

37162

37163

37164

37165

37166

37167

Figure C.7
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Commodore 64:

The Great Zero-Page Hunt:

Locations $FC to $FF are available. Locations $22 to $2 ft, $<E to

$53, and $57 to $LD are work areas available for temporary use.

Most zero-page locations may be copied to another part of memory so

that their original contents can be restored after use. The programmer

should take great care, however, in modifying the following locations, which

are critical within the operating system or BASIC: $13, $lbto$lfl,

$2Bto$3fl, $3fl, $53 to $54, $bfl, $73 to $flR, $qD to $=16, $RD

to $&E, $Bfi to $BA, $C5 to $F4.

Memory Map

Hex

DDDD

DDD1

DDD3-0DD4

DDD5-D00b

DDD7

DDOfl

Dooq

DDDfl

DDDB

DDDC

DDDD

DDDE

DDDF

DD1D

DD11

DD1E

DD13

DD14-D015

Decimal

D

1

3-4

5-b

7

fi

q

ID

11

IE

13

IA

15

1b

17

Ifl

iq

ED-El

Description

Chip directional register

Chip I/O; memory and tape

control

Float-fixed vector

Fixed-float vector

Search character

Scan-quotes flag

TAB column save

D = LORD, 1 = VERIFY

Input buffer pointer/number of

subscripts

Default DIM flag

Type:$FF= string;

DD= numeric

Type: $ fl D = integer;

D D = floating point

DATfi scan/LIST quote/memory

flag

Subscript/FNx flag

D = INPUT;$4D = GET;

$qfl=RE&D

RTN sign/Comparison

evaluation flag

Current I/O prompt flag

Integer value
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Hex Decimal Description

DDlb

DD17-DDia

ooiq-0021

DDEE-DDE5

DDEt-DDEfi

DDEB-DDEC

DDED-DDEE

DDEF-DD3D

DD31-DD3E

DD33-DD34

0035-003^

DD37-DD3fl

DD3q-DD3ft

DD3B-DD3C

DD3D-DD3E

0D3F-DD4D

D041-D04E

DD43-DD44

DD45-QD4b

0D47-0D4fi

Q04R-DD4A

QD4B-DQ4C

DD4D

0D4E-Q053

QD54-Q05b

DD57-DDbD

DDbl

DDbE-D0b5

DDbfc

DDfc7

OObfi

DDfcR-DDtE

DDfcF

DD7D

E3-E4

E5-33

34-37

3fl-4E

A3-AA

AS-Ak

Al-Ab

4q-5D

51-5E

53-54

55-5t

57-5fl

5H-tD

tl-t5

t3-fc4

t5-tt

tq-?D

71-75

73-74

75-7t

77

7fl-fl3

fi4-flb

fl7-qt

R7

qa-iDi

IDE

1D3

1D4

1D5-11D

111

HE

Pointer: temporary string stack

Last temporary string vector

Stack for temporary strings

Utility pointer area

Product area for multiplication

Pointer: start-of-BASIC

Pointer: start-of-variables

Pointer: start-of-arrays

Pointer: end-of-arrays

Pointer: string-storage (moving

down)

Utility string pointer

Pointer: limit-of-memory

Current BASIC line number

Previous BASIC line number

Pointer: BASIC statement for

CONT

Current DflTA line number

Current DATA address

Input vector

Current variable name

Current variable address

Variable pointer for FOR/NEXT

Y-save; op-save; BASIC

pointer save

Comparison symbol

accumulator

Miscellaneous work area,

pointers, and so on

Jump vector for functions

Miscellaneous numeric work

area

Accum#1: exponent

Accum#1: mantissa

Accum#1: sign

Series evaluation constant

pointer

Accum#1 hi-order (overflow)

Accum#2: exponent, and so on

Sign comparison, Acc#1 versus

#2

Accum#1 lo-order (rounding)
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Hex Decimal Description

0071-007E

D073-D0flA

DD7A-DD7B

DDflB-DDflF

0010

0015

0013

0014

0015

001b

0017

OOlfl

0011

001A

001B

001C

0D1D

001E

001F

00A0-00A2

00A3

00A4

0DA5

OOAb

00A7

OOAfi

D0A1

OOAA

OOAB

OOAC-ODAD

113-114

115-136

155-153

131-143

144

14b

147

14fi

141

150

151

1SE

153

154

155

15b

157

ISO

151

ibQ-lfcS

Ib3

Ib4

Ib5

Ibb

Ib7

Ibfl

Ibi

170

171

175-173

Cassette buffer length/series

pointer

CHRGET subroutine; get

BASIC character

BASIC pointer (within

subroutine)

RND seed value

Status word ST

Keyswitch PI A: STOP and

RVS flags

Timing constant for tape

Load = D; verify = l

Serial output: deferred character

flag

Serial deferred character

Tape EOT received

Register save

How many open files

Input device, normally D

Output CMD device, normally 3

Tape character parity

Byte-received flag

Direct =$flD/RUN = D output

control

Tape pass 1 error log/character

buffer

Tape pass E error log corrected

Jiffy Clock HML

Serial bitcount/EOI flag

Cycle count

Countdown, tape write/bit count

Tape buffer pointer

Tape write leader count/read

pass/inbit

Tape write new byte/read

error/inbit count

Write start bit/read bit error/stbit

Tape Scan;Cnt;Load;

End/byte assembly

Write lead length/read

checksum/parity

Pointer: tape buffer, scrolling
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iex

DQAE-QDAF

DDBD-DDB1

DQBE-0DB3

QQBA

ODBS

DDBfc

DDB7

DDBfl

DDBq

DDBA

DDBB-DDBC

ODBD

DDBE

DDBF

DDCD

DOC1-ODCE

DQC3-00C4

DDC5

DDCt

DDC7

DDCfl

DDCq-DDCA

DDCB

DDCC

DDCD

DDCE

DDCF

DDDD

0DD1-00D2

DDD3

00D4

DDD5

Decimal

174-175

17t-177

17fl-17q

iflD

Ifll

ifiE

163

l&A

Ifl5

i&y

Ifl7-lfifl

iaq

ird

iqi

iqa

1R3-1H4

iqs-iqt

1R7

iqa

iqq

EDD

EDl-EDE

5D3

2UA

EDS

EDt

ED7

EDfi

EDR-E1D

Ell

E1E

E13

Description

Tape end address/end of

program

Tape timing constants

Pointer: start of tape buffer

1 = tape timer enabled; bit

count

Tape EOT/RSE3E next bit to

send

Read character error/outbyte

buffer

Number of characters in file

name

Current logical file

Current secondary address

Current device

Pointer to file name

Write shift word/read input char

Number of blocks remaining to

write/read

Serial word buffer

Tape motor interlock

I/O start address

Kernel setup pointer

Last key pressed

Number of characters in

keyboard buffer

Screen reverse flag

End-of-line for input pointer

Input cursor log (row, column)

Which key: hA if no key

D= flash cursor

Cursor timing countdown

Character under cursor

Cursor in blink phase

Input from screen/from

keyboard

Pointer to screen line

Position of cursor on above line

0 = direct cursor; else

programmed

Current screen line length
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Hex Decimal Description

DDDt

DDD?

DDDfl

DDDq-DDF5

00F3-DDF4

DDF5-DDFb

DDF7-DDFfl

DDFq-DDFft

DQFF-01DA

D1DD-1D3E

D1DD-D1FF

D£DQ-D£5fl

0E5R-DELE

DEb3-QEkC

DEbD-DE7b

0E77-D£fiD

DEfil-DEfiE

DEfl3-DEfl4

DEflS

DEflfc

DEfl7

DEflfl

DSflq

DEflR

DEflB

DEflC

DEflD

DEflE

DEflF-DSqD

DERI

DERE

DER3

DE^E-DERb

DER7

DERfl

DERR-DSRa

DERB

DEqc

E14

E15

Elt

E17-E^E

E47-E4fl

E^R-EED

E5t-Etb

E5b-31fl

E5fc-511

51S-fcDD

tDl-tlD

fcll-tED

tEl-t3D

t31-t^D

b41-fc4E

^A3-\dAA

b^7

b4fl

t5D

t51

L5E

L53

b55-b5b

b57

b5fl

bbD

fcfcl-fctE

fcb3

bb4

Lb5

fcfc7

bbfl

Row where cursor lives

Last inkey/checksum/buffer

Number of INSERTS

outstanding

Screen line link table

Screen color pointer

Keyboard pointer

RS-232 Rev pntr

RS-232 Tx pntr

Floating to ASCII work area

Tape error log

Processor stack area

BASIC input buffer

Logical file table

Device number table

Secondary address table

Keyboard buffer

Start of BASIC memory

Top of BASIC memory

Serial bus timeout flag

Current color code

Color under cursor

Screen memory page

Maximum size of keyboard

buffer

Repeat all keys

Repeat speed counter

Repeat delay counter

Keyboard Shift/Control flag

Last shift pattern

Keyboard table setup pointer

Keyboard shift mode

D = scroll enable

RS-232 control reg

RS-232 command reg

Bit timing

RS-232 status

Number of bits to send

RS-232 speed/code

RS232 receive pointer

RS232 input pointer
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Hex

DEqD

DEqE

DEqF-DERD

DERI

DERE

DSR3

0ER4

DER5

DECD-DEFE

D3DD-D3D1

D3DE-D3D3

0304-Q3DS

D3Db-D3D7

D3Dfl-D3Dq

03DR-D3DB

D3DC

D3DD

03DE

D3DF

D31D-D31E

0314-0315

031b-D317

D31fl-03iq

031R-031B

D31C-D31D

D31E-D31F

D3ED-D3E1

D3EE-D3E3

D3E4-D3E5

D3Eb-D3E7

D3Efl-03Eq

D3ER-D3EB

D3EC-D3ED

D3EE-D3EF

D33D-D331

D33E-D333

D33C-D3FB

D34D-037E

D3fi0-03BE

D3CD-D3FE

D4DD-D7FF

DflDD-qFFF

Decimal

bbq

b7D

b71-b7E

b73

h?4

b75

b7b

b77

7D4-7bb

7bfl-7bq

77D-771

77E-773

774-775

77b-777

77fl-77q

7flD

7fll

7fiE

7B3

7fl4-7fl5

7flfl-7flq

?qD-7qi
™j n p "j n^]

■p n / "j n r

"j n r ~? r*i ~i

T Q D TQQ

fiDQ-flDl

flDE-flD3

fiD4-flD5

flDb-flD7

flDfl-flOq

fllD-flll

fllE-fll3

fll4-fll5

aib-ai7

flia-aiq

aEfl-iDiq

fl3S-flq4

aqb-qsa

qbD-lDEE

1DE4-ED47
in / d / n n r* n

C LJ ^ O ~~ n u n j n

Description

RS232 transmit pointer

RS232 output pointer

IRQ save during tape I/O

Clft E (NMI) interrupt control

CIA 1 timer A control log

CIR 1 interrupt Log

CIA 1 timer A enabled flag

Screen row marker

(Sprite 7)

Error message link

BASIC warm start link

Crunch BASIC tokens link

Print tokens link

Start new BASIC code link

Get arithmetic element link

SYS A-reg save

SYS X-reg save

SYS Y-reg save

SYS status reg save

USR function jump (BE4fi)

IRQ vector (EA31)

Break interrupt vector (FEbb)

NMI interrupt vector (FE47)

OPEN vector (F3 A A)

CLOSE vector (FERl)

Set-input vector (FEDE)

Set-output vector (FESD)

Restore I/O vector (F333)

Input vector (F157)

Output vector (F1CA)

Test-STOP vector (FfcED)

GET vector (F13E)

Abort I/O vector (F3EF)

OSR vector (FEfcfc)

LOAD link(F4A5)

SAVE link (FEED)

Cassette buffer

(Sprite 13)

(Sprite 14)

(Sprite 15)

Screen memory

BASIC RAM memory
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Hex Decimal Description

ADDO-BFFF

A000-BFFF

CDDO-CFFF

D00D-DD2E 53246-532=14

D4D0-D41C 54272-543DD

DflDD-DBFF 552qt-5E>3iq

DCDD-DCDF 5b32D-5b335

DDDD-DDDF 5t57t-5b5Sl

DDDD-DFFF

EDDD-FFFF S13A4-LSS3S

EDDD-FFFF

Alternative: BOM plug-in area

ROM: BASIC

Alternate: BAM

BAM memory, including

alternative

Video chip (t 5 bb)

Sound chip (t561 SID)

Color nybble memory

Interface chip 1, IRQ (t52b

CIA)

Interface chip 2, NMI (b55b

CIA)

Alternative: character set

ROM: operating system

Alternative: RAM
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$DC00

$DC01

$DC02

$DC03

$DC04

$DC05

$DC06

$DC07

CIA 1 (IRQ)

Paddle SEL

A . B

(6526) Commodore 64

Joystick 0

R . L . D . U

Keyboard Row Select (inverted)

Joystick 1

Keyboard Column Read

$FF — All Output

$00 — All Input

— Timer A —

— Timer B —

$DC0D

$DC0E

$DC0F

1 |

1 1 1

Tape

input

One

shot

One

shot

i

Out

pode

Out

/node

Timer

B

Time

PDL

out

Time

PBC

out

Interr.

, A
Timer

A

, start

Timer

B

, start

PRA 56320

PRB 56321

DDRA 56322

DDRB 56323

TAL 56324

TAH 56325

TBL 56326

TBH 56327

IER 56333

CRA 56334

CRB 56335

Figure C.8
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CIA 2 (NMI) (6526) Commodore 64

$DD00

$DD01

$DD02

$DD03

$DD04

$DD05

$DD06

$DD07

$DD0D

$DD0E

$DD0F

Figure C.9

Serial

In

DSR

In

In

—

—

Clock

In

CTS

In

In

$06 Fo

Serial Clock ATN

Out Out Out

F

DCD*

In

>arallel I

Rl*

In

Jser Po

Out Out Out

$3F

r RS-232

Timer A

Timer B

RS-232

Out

DTR

Out

rt

Out

Video Block

RTS

Out

RS-232

In

Out Out

—

—

RS-232

In

Timer Timer

B , A

Timer

, A Start

Timer

, B Start

PRA

PRB

56576

56577

DDRA 56578

DDRB

TAL

TAH

TBL

TBH

ICR

CRA

CRB

56579

56580

56581

56582

56583

56589

56590

56591
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D011

D012

D013

DOM

D016 |

D018

D019

D01A

C64 Memory Map

6566 Video — Sprite Registers

Sprite

0

Sprite

7

D000 DOOE

DOO1 DOOF

D027 D02E

DO1O

D015

D017

DO1B

D01C

D01D

DO1E

DO1F

Position X
Y

Color

Sprite Bit Positions

7 6 5 4 3 2 10

X-position high

Sprite Enable

Y-expand

Background Priority

Multicolor

X-expand

Interrupt: Sprite collisn

Interrupt: Sprite/Backgrd coll

Sprite Sprite

0 7

53248 53262

53249 53263

53287 53294

53264

53269

53271

53275

53276

53277

53278

53279

C64 Memory Map

6566 Video - Control and Misc. Registers

Extnd Color Bit Map Dsply Enabl Row Selct

Raster Register

Light Pen Input

Multicolor ColmSel

Y-Scroll 53265

53266

53267

53268

X-Scroll 53270

vm13

IRQ

Screen (Video Matrix)
vm12 vm11

IRQ sence

IRQ Enable

vm10

Character Base

cb13 . cb12 .

LP SSC

cb11

SBC

Light Collision
Pen, Sprt , Back

I x

, Rastr

D020

D021

D022

D023

D024

D025

D026

COLOUR REGISTERS

Exterior

Background #0

Background #1

Background #2

Background #3

Sprite Multicolor #0

Sprite Multicolor #1

53272

53273

53274

53280

53281

53282

53283

53284

53285

53286

Figure C.10
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V1 V2 V3

D400 D407 D40E

D401 D408 D40F

D402 D409 D410

D403 D40A D411

D404 D40B D412

D405 D40C D413

D406 D40D D414

D415

D416

D417

D418

D419

D41A

D41B

D41C

SID (6581) Commodore 64

V1 V2 V3

54272 54279 54286

54273 54280 54287

54274 54281 54288

0 0 H 54275 54282 54289

— Frequency
L_

H

Pulse Width L_

H

Voice Type

NSE . PUL , SAW, TRI ,
KEY

Attack

Time

2ms-8sec

Decay

Time

6ms-24sec

Sustain

level

Release time

I 6ms-24sec
l i i i

Voices

(write only)

0 0 0 0 0

Filter Frequency

L

H

Resonance Filter voices

Passband Master

OFF, H, , BO, 10 I y^™,

54276 54283 54290

54277 54284 54291

54278 54285 54292

54293

54294

54295

54296

Filter & Volume

(write only)

Paddle X

Paddle Y

Noise 3 (random)

Envelope 3

54297

54298

54299

54300

Sense

(read only)

Special voice features (TEST, RING MOD, SYNC) are

omitted from the above diagram.

Figure C.11
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Commodore PLUS/4 "TED" Chip-

Preliminary

At time of publication the Commodore 264 (alternatively called Plus/4) and

a related machine, the Commodore 16, are not commercially available.

Design details could change before commercial release.

On the prototype units, much of zero-page is the same as for VIC and

Commodore 64; in particular, the Basic pointers (SOB, SOV, etc.) are the

same.

Memory Map, Preliminary

Much of zero-page is the same as for the Commodore 64. Some differ

ences, and other information:

Hex

D073-DDflfl

DDR?

DORS

DDHR

DDfiC

DORD

DORE

00RF-D0BD

DDCfl-DDCR

DDCR

DDCD

DDEF

D314-D315

031b-D317

D31fl-D31R

Decimal

115-135

151

155

153

17E

173

174

175-17fc

EDD-E01

EDE

ED5

E3R

7fifl-7flq

7RD-7qi

7RE-7R3

(Most other vectors are similar to

D5DD-D50E

D50R-D51E

D513-D51C

D51D-D5Eb

05E7-0530

DflDD-DBE?

DCDD-DFE7

lEfiD-lEflE

lEflR-lESfl

lEqq-13Dfl

13Dq-131fl

13iq-133fl

ED4fl-3D47

3D7E-4D71

Description

(CHRRGET not present)

How many open files

Input device, normally D

Output CMD device, normally 3

Current logical file

Current secondary address

Current device

Pointer to file name

Pointer to screen line

Position of cursor on above line

Row where cursor lives

Number of characters in

keyboard buffer

IRQ vector (CEDE)

Break interrupt vector (FA A B)

OPEN vector (EF53)

the C64, but are two locations lower)

USR program jump

Logical file table

Device number table

Secondary address table

Keyboard buffer

Color memory

Screen memory
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IN: IN: IN: IN: OUT: OUT: OUT: OUT:

SERIAL CLOCK TAPE
TAPE

MOTOR ATN SERIAL
TAPE

CLOCK

FFOO

FFO1

FFO2

FFO3

FF04

FFO5

FFO6

FFO7

FF08

FFO9

FFOA

FFOB

FFOC

FFOD

FFOE

FFOF

FF1O

FF11

FF12

FF13

FF14

FF15

FF16

FF17

FF18

FF19

FF1A

FF1B

FF1C

FF1D

FF1E

FF1F

FF3E

FF3F

TIMERS

T1

T2

T3

TEST ECM BMM BLANK ROWS

RVS OFF t PAL , FREEZE , MCM |COLUMNSa

Y-ADJUST

X-ADJUST

KEYBOARD LATCH

T1 LP , RAST

IER T1 LP , RAST

RASTER CONTROL

CURSOR CONTROL

SOUND:
VOICE 1

VOICE 2

2 HI

SOUND SELECT VOLUME

BIT MAP BASE R BANK VOICE 1 HI

CHARACTER BASE SCLOCK STATUS

VIDEO MATRIX

CHARACTER POSITION RELOAD

VERTICAL LINE REGISTER

HORIZONTAL POSITION REGISTER

BLINK COUNT V SUBADDRESS

WRITE ONLY:
ROM SELECT

RAM SELECT

65280

65281

65282

65283

65284

65285

65286

65287

65288

65289

65290

65291

65292

65293

65294

65295

65296

65297

65298

65299

65300

65301

65302

65303

65304

65305

65306

65307

65308

65309

65310

65311

65342

65343

Figure C.12
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1DDD-FFFF 4Dqb-bS535 BASIC RAM memory

flDDO-FFFF 3E7bfl-b553S ROM: BASIC

FFDD-FF3F b5EfiQ-b5343 TED I/O control chip

B Series (B-128, CBM-256, etc.)

The Great Zero-Page Hunt

Zero page has a different meaning on the B series. There are several

zero pages. Usually, you'll want to use values from bank 15 (the ROM

bank, where system variables are kept); but if you are writing programs

that will reside in a different bank, you'll have all of zero page (except

locations D and 1) completely at your disposal.

If you need space in bank 15 zero page, you'll need to do some looking

around. Addresses $Eb to $FF are not used by the system. Locations

$ED to $EB and $t4 to $bE are work areas available for temporary

use.

Most zero-page locations may be copied to another part of memory so

that their original contents can be restored after use. The programmer

should take great care, however, in modifying the following locations, which

are critical within the operating system or BASIC: $1&, $1D to $E1,

$ED to $41, $43, $5B, $7fl, $fi5-fl7, $qE to $&B, $CD to $E5.

Memory Map

The following information applies to B systems released after April 1983,

which contain a revised machine language monitor. (If POKE t, D : S YS

t doesn't bring in a monitor display complete with a "period" prompt, you

have an incompatible version.)

Notable features as compared to previous Commodore products include:

—CHRGOT is no longer in RAM. Wedge-type coding must be inserted at links

SDEREandSDEAD, which is likely to make the job easier.

—BASIC vectors have "split." Now, for example, there are discrete "start of

variables" and "end of variables," distinct from end-of-BASIC and start-of-

arrays. Three-byte vectors (including bank number) are not uncommon.

—The "jump table" at top of memory is still accessible and reasonably consistent

with previous Commodore products.

—Simple machine language programs will fit into the spare 1 K of RAM at

$D4DDto$D7FF without trouble. Large programs must be implemented
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either by plug-in memory (RAM or BOM) in bank 15 or by being placed into

another bank (preferably bank 3). Supplementary code will be needed to

make all the coding components fit.

The following map contains BASIC addresses specific to the B256/80;

references to banks D to A are also specific to that machine. Most of the

map is of general usage, however.

ALL BANKS:

DDDD D

DDD1 1

BANK 0: Unused.

BANK 1:

DDDE-FDDD E

FA5E-FBDD

BANK 2:

B256:

DDDS-FFFF

BlEfi:

DDDE-FFFF E-b5535

BANK 3: (B256 only)

DDDE-7FFF E-3E7t7

flDDD-FFFF 3E7bfl-b553S

BftNK A: (BESb only)

DDDE-FBFF E-W511

FCDD-FCFF

FDDD-FFFF b47fcfl-bSS35

BANKS 5 to 14: Unused.

BANK 15:

DDDE-QDD4 S-A

DDD5-DDDfl 5-fl

0DDR-D00B

DDDC

DDDD

DDDE

DDDF

DD1D

DD11

IE

13

14

15

It

17

execution register

indirection register

BASIC program (text) RAM

Input buffer area

E-fc5535 BASIC arrays in RAM

BASIC variables, arrays and

strings

Key definitions

Unused RAM.

BASIC variables in RAM

BASIC strings (top down) in

RAM

Unused RAM (descriptors?)

Current KEY definitions

DSR jump

TI$ output elements:

H,M,S,T

Print Using format pointer

Search character

Scan-between-quotes Flag

Input point; number of

subscripts

Catalog line counter

Default DIM flag

Type: E55= string, 0 = integer
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ddie

DD13

DD14

DD15

DDlt-DQiq

ODlft

DD1B-DD1C

DD1D-DD1F

DDED-DDE1

DDES-DDEB

DOED-DDEE

DDEF-DD3D

DD31-DD3E

DD33-DD34

QD35-DQ3E.

DD37-DD3a

DD3q-DD3A

DD3B-DD3C

DD3D-DD3E

DD3F-DD41

DD4E-DD43

DD44-0D45

DD4b-DD47

DD4q-DD4A

DD4B-DD4C

DD4D-DD4E

DD4F-DD5D

DD51-DD53

DD54-DD5t

0D57-DD5a

DD5A

DD5B-DD5D

DD5E-DDE.0

DDtl-DDb3

DDfc4-D0tE

DDfcF

QD7D

DD71

DD7E-DD75

1H

ED

El

EE-E5

Eb

E7-E3

Eq-31

3E-33

34-43

45-4b

47-48

4q-5D

51-5E

53-54

55-5t

57-5B

5q-bD

fcl-tE

t»3-b5

fct-fc7

ta-tq

7D-71

73-74

75-7fc

77-7B
"5 O API
f " ~~ Q LJ

ai-a3

a4-at

a?-aa

qo

qi-qs

q4-qb

q?-qq

10D-11D

in

HE

113

114-117

Type: 12fi= integer,

D= floating point

Crunch flag

Subscript index

lnput=D; get=fc4; read =

Disk status work values

Current I/O device for prompt

suppress

Integer value

Descriptor stack pointers

Vector to string descriptors

Miscellaneous work pointers

Start-of-BASIC pointer

End-of-BASIC pointer

Start-of-Variables pointer

End-of-Variables pointer

Start-of-Arrays pointer

End-of-Arrays pointer

Variable work pointer

Bottom-of-Strings pointer

Utility string pointer

Top of string memory pointer

Current BASIC line number

Old BASIC line number

Old BASIC text pointer

Data line number

Data text pointer

Input pointer

Variable name

Variable address

For-loop pointer

Text pointer save

Comparison symbol

accumulator

Function location

Working string vector

Function jump code

Work pointers, values

Exponent sign

Acum string prefix

Acum#1: exponent

Accum#1: mantissa
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007b

0077

007fi

007q-007E

007F

OOflO

OOfll-OOfl^

00fl5-00fl7

ODflfl-ooaq

OOflB-OOflE

OOfiF

ooqo-ooqE

nSqb-00^5
ooqaa
nnnn nnnd

LJ LJ i i ~* LJ LJ i D

ooqc

ooqD

ooqE

ooqF

OQRO

00A1

OOAE

OOAt-OORfi

ooaq

ODRfi

OORB

OORC-DOftD

00AE-00B3

OOB^i

00B5

00B7-D0Bfl

DDBq-OOBA

OOBB-OOBC

DDBD

OOBE

DDBF

00CD-00C1

00CE-00C3

llfl

nq

1E0

lEl-lSfc

1E7

lEfl

lEq-13E

133-135

13t-137

Jj J M -^ Jj ^i c.

144-l^fc

150-15E

153-155

15b

157

15fl

isq

ibD

Ibl

ibE

Itt-ltfl

itq

170

171

17E-173

i7^-i7q

lao

lai

Ifl3-lfl4

Ifl5-lfit

Ifl7-lfifi

iaq

iqo

iqi

iqE-iq3

Accum#1: sign

Series evaluation constant

pointer

Acum#1 hi order (overflow)

Accum#2

Sign comparison, Acc#1 versus

#2

Acc#1 low-order (rounding)

Series, work pointers

BASIC text pointer

Input pointer

DOS parser work values

Error type number

Pointer to file name

Pointer: tape buffer, scrolling

Load end address/end of

program

I/O start address

Status word ST

File name length

Current logical file

Current device

Current secondary address

Input device, normally 0

Output CMD device, normally 3

INBUF

Keyswitch PI A: stop key, etc.

IEEE deferred flag

IEEE deferred character

Segment transfer routine vector

Monitor register save

Monitor stack pointer save

Monitor bank number save

Monitor IRQ save/pointer

Monitor memory pointer

Monitor secondary pointer

Monitor counter

Monitor miscellaneous byte

Monitor device number

Programmable key table

address

Programmable key address
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0DC4-DDC7

DDCfl-DDCR

DDCR

DDCB

DOCC

DDCD

DDCE

DDCF

DDDD

DDD1

DDDE

DDD3

0DD4

DDD5

DDDt

DDD7

DDDfl

DDDq-DDDfi

DDDB

DDDC

DDDD

DDDE

DDDF

DDED

ODE1

DDEE-DDE5

D1DD

D1DD-D1DR

D1DD-D1FE

D1FF

DEDD-DEDF

DElD-DEEb

DE55-DE5b

DE57

DESfl

DESH

1R t—1R *-!

5DD-ED1

SDE

ED3

2QA

ED5

EOt

SD7

SDfl

Eoq

E1D

Ell

E1E

E13

S14

E15

Elt

E17-E1S

E1H

EED

EE1

EE3

22A

EE5

EEt-EER

S5b

S5t-Ebt

E5t-51D

511

51E-5E7

5Efl-55D

5R7

5qq

fcDD

tDl

Pointers to change

programmable key table

Pointer to screen line

Screen line number

Position of cursor on line

D = text mode, else graphics

mode

Keypress variable

Old cursor column

Old cursor row

New character flag

Number of keys in keyboard

buffer

Quotes flag

Inert key counter

Cursor type flag

Screen line length

Number of keys in "key" buffer

Key repeat delay

Key repeat speed

Temporary variables

Current output character

Top line of current screen

Bottom line of screen

Left edge of current screen

Right edge of screen

Keys: E55 = none; lE7=key,

lll = shift

Key pressed: E 5 5 = no key

Line Wrap Bits

Hex to binary staging area

Numeric to ASCII work area

Stack area

Stack pointer save location

File name area

Disk command work area

Miscellaneous work values for

WRIT, etc

"Bank" value

Output logical file (CMD)

Sign of TRN
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QE5A-DESD

DE5E-0E7b

QEfiO-OEfll

0EflE-DEfl3

0Efl4-DEfl5

DEfifc-DSfl?

DEfifl-OEflR

DEfiA-DEflB

DEfiC-DEflD

DEflE-DEflF

QERD-DER1

DERE-QER3

0ER4-DER5

DERb-DER7

OERfl-DERR

OERa-DERB

DERC

DERD-DERF

DEAD-QEA5

DEAb-DEA7

0300-D301

03DE-D303

D304-Q3D5

D3Qb-D307

D3Dfl-D3DR

D3DA-D3DB

D3DC-030D

D3DE-D3DF

D31D-Q311

D31E-D313

0314-0315

031b-0317

031fl-031R

031A-D31B

D31C-031D

D31E-D31F

fcDE-LD5

bDt-t3D

fc^E-t.43

fcz;zi_b/i5

b^fl-fc^iR

b5D-fc51

fc5E-b53

b5^-fc55

fc5b-b5?

b5fl-fc5R

bbD-bbl

fcfcE-fcb3

bb^-bb5

bfcb-fcfc?

bbfl

bbR-fc71

b?E-fc??

b?fl-b7R

7fcfl-7fcR

77D-771

77E-773

77^-775

77fc-777

77B-77R

7flD-7fll

7flE-7fl3

7fl^-7fl5

7flb-7fl7

7flfi-7flR

7RD-7R1

7RE-7R3

7R4-7R5

7RL-7R7

7RB-7RR

Pickup subroutine;

miscellaneous work values

PRINT USING working

variables

Error routine link [fl555]

Warm start link [fl 5CD]

Crunch token link [flflCE]

List link [flRF4]

Command dispatch link [fl7 54]

Token evaluate link [RfcBl]

Expression eval link [R5C4]

CHRGOT link[BASC]

CHRGET vector [BA3E]

Float-fixed vector [BA1E]

Fixed-Float vector [RD3R]

Error trap vector

Error line number

Error exit pointer

Stack pointer save

Temporary TRAP, DISPOSE

bytes

Temporary IN S TR $ bytes

Bank offset

IRQ vector [FBER]

BRK vector [EEEl]

NMI vector [FCAA]

OPEN vector [FLBF]

CLOSE vector [F5ED]

Connect-input vector [F54R]

Connect-output vector [F5A3]

Restore default I/O vector

[FfcAb]

Input vector [F4RC]

Output vector [F4EE]

Stop key test vector [FRfcB]

GET vector [F43D]

Abort all files vector [Fb7F]

Load vector [F7 A fc]

Save vector [Ffl<C]

Monitor command vector

[EE77]
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03ED-Q3E1

D3EE-Q3E3

03E4-D3E5

D3Eb-D3E7

D3Efl-Q3Zq

Q3EA-03EB

03SC-03SD

03EE-D3EF

D33D-D331

Q33E-D333

0334-Q33D

033E-Q347

0343-0351

035E-0354

0355-0357

035fl-D35A

035B-035D

035E

D35F

03b0

03bl

03b3-03bb

03tq

03bfi-03bB

D3tF-D371

D375

D37t-D377

D37R

D37B

D37C

D37D

D3flD-D3flE

flDD-fiDl

BDE-SD3

flD<-flD5

BDt-fiD7

flDfl-flDq

fllD-fill

015-013

0K-01S

fllt-017

fllfl-fliq

flED-aeq

030-33^

fiSD-flSE

853-855

ast-asa

osq-oti

atE

at3

at<

ats

at7-a7D

373

874-375

a?q-aai

aas

aat-aa?

aqD

aqi

aqE

aq3

aqt-aqa

aqq-qia

Keyboard control vector [EDIF]

Print control vector [EDIF]

IEEE send LSA vector

[F574]

IEEE send TS& vector

[FEflD]

IEEE receive byte vector

[F3DA]

IEEE send character vector

IEEE send untalk vector

[F2flB]

IEEE send unlisten vector

[F5AF]

IEEE send listen vector

[F234]

IEEE send talk vector [F53D]

File logical addresses table

File device table

File secondary address table

Bottom of system memory

Top of system memory

Bottom of user memory

Top of user memory

IEEE timeout; D= enabled

D = load; IEfl= verify

Number of open files

Message mode byte

Miscellaneous register save

bytes

Timer toggle

Cassette vector (dead end)

Relocation start address

Cassette motor flag (unused)

RS-232 control, command

RS-232 status

RS-232 handshake input

RS-232 input pointer

RS-232 arrival pointer

Top of memory pointer

Programmed key lengths
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D3R7

D3qa

D3qq

D3RA

D3RB

D3RC

D3RD

D3CIE

D3RF

D3AD

D3A1-D3AA

D3AB-D3B4

D3B5-03Bb

D3Ffl-D3Fcl

D3FA-D3FB

D4DD-D7FF

DflDD-DFFF

1DDD-1FFF

5DDD-7FFF

flDDD-BFFF

CDDD-CFFF

DDDD-D7CF

DfiDD-DQDl

DADD-DA1C

DBDD-DBDF

DCDD-DCDF

DDDD-DDD3

DEDD-DED7

DFDD-DFD7

EDOD-FFFF

qiq

RED

RE1

q22

RE3

RE4

RE5

REt

qs?

REfl
qgq_q3Q

q3q-qz;fl

IDlt-lDl?

IDlfl-lDIR

1QE4-ED47

ED^ifl-^DRS

zjQqfc-fliqi

fllcIE-E37t.7

3E7tfl-^!c1151

4c11i5E-53E47

53E4fl-55S47

SSERb-SSER?

55flDfi-55fl3t

5tDt4-5tD7q

5t3ED-5t335

5t57fc-5fc57q

5tfl3S-5tfl3q

57Dflfl-57Dq5

573^4-b5535

RVS flag

Current line number

Temporary output character

save

D = normal, E 5 5 = auto insert

D = scrolling, 1S fl = no scroll

Miscellaneous work byte for

screen

Index to programmed key

Scroll mode work flag

Bell mode flag

Indirect bank save

Bit mapped tab stops

Keyboard input buffer

'Key'word link [EqIB]

Restart vector

Restart test mask

Free RAM (reserved for DOS )

Reserved for plug in RAM

Reserved for plug in DOS ROM

Reserved for cartridges

BASIC ROM

Unused

Screen RAM

Video controller fc.545

Sound interface device fc5fll

Complex interface adaptor

Complex interface adaptor

Asynchronous communications

IA b551

Tri Port Interface Adaptor

Tri Port Interface Adaptor

Kernal ROM

The above table shows contents for the link and vector addresses at $0280

to $0295; these are taken from a recent B-128.
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6545 CRT Controller

D800

55296

0

1

2

3

4

5

6

7

8

9

10

11

14

15

16

17

D801

55297

Horizontal Total

Horizontal Char Displayed

Horizontal Sync Position

v Sync Width H

Vertical Total

Vert Total Adjust

Vertical Displayed

Vert Sync Position

Mode

Scan Lines

Cursor Start

Cursor End

— Display Address —

H

L

LJ

Liaht Pe*n In

Typical Value

(Decimal)

108 or 126 or 127

80

83 or 98 or 96

15 or 10

25 or 31 or 38

3 or 6 or 1

25

25 or 28 or 30

0

13 or 7

96 (blink) or

0 or 6 (underline)

13 or 7

0

0

Varies

Varies

0

0

Most Registers are Write Only 14/15 are Read/Write

16/17 are Read Only

Registers 10, 14 and 15 change as the cursor moves

Figure C.13
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6525 Tri Port

DEOO

DE01

DE02

DE03

DE04

DE05

DE06

DE07

DFOO

DF01

DF02

DF03

DF04

DF05

DF06

NRFD

Sense

NDAC

Cassette

Motor

EOI

Out

IRQ

DAV | ATN RFN

Network

ARB Rx Tx

ACIA IP | CIA-2

SRQ

IEEE

IFC

PWR

Data Direction Register For DEOO

Data Direction Register For DE01

IRQ

CB

ACIA

CA

Graphics

IP | CIA-2 IEEE PWR

IRQ

Stack On

Active Interrupt Register

6525 Tri Port 2

CRT

Mode

Data

Data

Data

Direction

Direction

Keyboard

Select

Keyboard Read

Register for DFOO

Register for DF01

Direction Register for DF02

Unused

(out)

(out)

(in)

56832

56833

56834

56835

56836

56837

56838

56839

57088

57089

57090

57091

57092

57093

57094

Figure C.14
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COMMODORE 128:

Memory Maps

These maps apply to the machine when used in the 128K mode. When

used in the 64 mode, the machine's map is identical to that of the Com

modore 64. Since the RAM work area is 7K in size—as compared to the

Commodore 64 with 1K—the map can be huge; it is somewhat abridged

here.

Architecture: "Bank numbers" as used in BASIC BANK and the MLM

addressing scheme are misleading; in fact, they are more correctly "con

figuration numbers." Bank 0 shows RAM level 0, which contains work

areas and the user's BASIC program. Bank 1 also shows RAM, this time

(for addresses above hexadecimal D4DD) level 1 which contains vari

ables, arrays, and strings. Other "banks" are really configurations, with

various types of ROM or I/O overlaying RAM. Thus, Bank 15 (the most

popular) is ROM and I/O covering RAM bank 0. Bank 14, however, is

ROM and the character generator overlaying RAM Bank 0. Architecture

is set so that addresses below $ D A D D reference Bank 0 only. Other bank

switching (more complex than the simplified 16-bank concept) is accom

plished via storing a mask to address $FFDD, or calling up prestored

masks by writing to $FFD1-FFD4.

The Great Zero-Page Hunt:

Locations $FA to $FF are available. Locations $24 to $2C, $5D to

$55, and $5C) to $b2 are work areas available for temporary use.

Most zero-page locations may be copied to another part of memory so

that their original contents can be restored after use. The programmer

should take great care, however, in modifying the following locations, which

are critical within the operating system or BASIC: $15, $lfl to $1A,

$ED to $3E, $5t to $57, $qD to $RA, $AD to $62, $A7 to $Afl,

$BA to $Bt, $BD, $CD, $Cfl to $Dfl.
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Memory Map

ALL BANKS:

Hex

DDDD

DDD1

D00E-QD04

ODDS-ODD^

DODfl

ODDB

DDDC

DDDD

DDDE

OODF

DD1O

DD11

001E

DD13

QU1A

DD15

0Dlt-DD17

DDlfl

D01R-DDE3

00E4-D0E7

DOEfl-DOEC

DDED-DOEE

DDEF-D030

DD31-0D3E

0033-D034

0D35-DD3E.

Decimal

D

1

2-A

ID

11

IE

13

IA

15

It

17

Ifl

iq

ED

El

EE-E3

EA

E5-35

AD-AA

AS-Al,

A1-A&

<q-5D

51-5E

53-54

Description

I/O directional register

I/O port, similar to C64

SYS address, MLM registers

(SR, PC)

SYS, MLM register save (A, X,

Y, SR/SP)

Scan-quotes flag

TAB column save

D = LOAD, 1 = VERIFY

Input buffer pointer/number of

subscripts

Default DIM flag

Type: FF = string; DD=numeric

Type: fi D = integer;

DD=floating point

DATA scan/LIST quote/memory

flag

Subscript/FNx flag

D = INPUT;$4D = GET;

$qfl=RERD

ATN sign/Comparison

evaluation flag

Current I/O prompt flag

Integer value

Pointer: temporary string stack

Stack for temporary strings

Utility pointer area

Product area for multiplication

Pointer: start-of-BASIC (for

Bank 0)

Pointer: start-of-variables

(Banki)

Pointer: start-of-arrays

Pointer: end-of-arrays

Pointer: string-storage (moving

down)
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Hex Decimal Description

D037-QD3fl

0Q3q-D03fi

DD3B-DD3C

DD3D-DD3E

0D3F-DD40

QQA1-OUAE

QUA3-0UAA

UQAS-UDAy

QQA7-UQA&

QUAI-QUAA

UUAB-UUAC

UUAD-QUAE

UUAT

DD5D-DD55

DD5t-DD5fl

DDSq-ODtE

DDb3

00b4-DDb7

OOtfl

DDtq

DDtA-DDtF

DD7D

DD71

DD7E-0Q73

D074-DD75

DD7t

DD77

QD7fl-DQ7c1

DD7A-DD7C

DD7D-D07E

ODflS

55-Sb

57-5fl

sq-tD

ti-ta

ys-hA

t7-tfl

tq-7D

71-7E

73-74

75-7E,

77-7fl

?q

flD-flS

flt-flfl

aq-qa

qq

1DD-1D3

IQA

IDS

IDt-lll

HE

113

114-115

llt-117

llfl

iiq

1ED-1E1

1EE-1E4

1E5-I5t

13E

133

Utility string pointer

Pointer: limit-of-memory

(Banki)

Current BASIC line number

Textpointer: BASIC work point

Utility Pointer

Current DATA line number

Current DATA address

Input vector

Current variable name

Current variable address

Variable pointer for FOR/NEXT

Y-save; op-save; BASIC pointer

save

Comparison symbol

accumulator

Miscellaneous work area,

pointers, and so on

Jump vector for functions

Miscellaneous numeric work

area

Accum#1: exponent

Accum#1: mantissa

Accum#1: sign

Series evaluation constant

pointer

Accum#2: exponent, and so on

Sign comparison, Acc#1 versus

#2

Accum#1 lo-order (rounding)

Cassette buffer len/Series

pointer

Auto line number increment

Graphics flag

Color source number

Temporary counters

DS$ descriptor

BASIC pseudo-stack pointer

Multicolor 1 (1)

Multicolor 2 (2)
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Hex Decimal Description

DDflfc

DDRD

DDHl

ODHE

DDRS

DDR?

DDRfl

DDRR

DD^A
PI n QP nnno
LJ LJ 1 D ^~ l.f ' ' 1 \_r

DDSD

DDA3-DDAB

DOAC-DDAD

OOAE-DDAF

QDBD-00B1

DDB5-DDB3

DDB7

14S

14fl

14^

151

15E

153

154

155-15b

157

153-15°!

ltD-lfcE

Ifc3-171

17E-173

174-175

17t-177

17fl-17cl

Ifl3

Graphic foreground color (13)

Status word ST

Keyswitch IA: STOP and RVS

flags

Timing constant for tape

Serial output: deferred

character flag

Serial deferred character

Register save

How many open files

Input device, normally 0

Output CMD device, normally 3

Tape parity, output-received

flag

I/O messages: lc!E = all,

t4 = errors, D = nil

Tape error pointers

Jiffy Clock HML

I/O work bytes

Pointer: tape buffer, scrolling

Tape end adds/End of program

Tape timing constants

Pointer: start of tape buffer

Number of characters in file

DDBfl

DDBq

DDBA

DDBB-

DDBD-

DDCfc-

DDCfl-

■DDBC

■DDC5

•0DC7

•DDCB

164

Ifl5

18b

Ifl7-lflfl

iaq-iq7

iqa-iqq

2DD-203

DDCC-DOCD 2D4-ED5

DDCE-DDCF

DDDD

DDD1

5Dt-5D7

5Dfi

name

Current logical file

Current secondary address

Current device

Pointer to file name

I/O work pointers

Banks: I/O data, filename

RS-232 input/output buffer

addresses

Keyboard decode pointer (Bank

15)

Print string work pointer

Number of characters in

keyboard buffer

Number of programmed chars

waiting
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Hex Decimal Description

DDDB

00D3

00D4

DDD5

DDDb

DDD?

DDDfl

OODA-DQDF

DOED-DDEl

QDE5-00E3

0DE4

DDES

DDEb

DDE?

DDEfi-DDEq

DDEA

DDEB

DDEC

DDED-DDEE

DDEF

DDFD

DDF1

DDF3

0DF4

DQFS

OQFb

DDF7

DDFfl

DDFR

DDFA-DDFF

D1DD-O1FF

01DD-D13E

510

511

515

513

514

515

51b

517

516-553

554-555

S5b-557

55fl

53D

531

535-533

534

535

53b

537-53S

53=1

54D

541

543

544

545

54b

547

54fl

54q

55D-555

55fc-511

55t-31fl

Programmed key character

index

Key shift flag: D = no shift

Key code: 88 if no key

Key code: 88 if no key

Input from screen/from

keyboard

40/80 columns: D =40 columns

Graphics mode code

Character base: 0 = ROM,

4= RAM

Misc work area

Pointer to screen line/cursor

Color line pointer

Current screen bottom margin

Current screen top margin

Current screen left margin

Current screen right margin

Input cursor log (row, column)

End-of-line for input pointer

Position of cursor on screen

line

Row where cursor lives

Maximum screen lines, columns

Current I/O character

Previous character printed

Character color

Screen reverse flag

D= direct cursor; else

programmed

Number of INSERTS

outstanding

555 = Auto Insert enabled

Text mode lockout

D = Scrolling enabled

Bell disable

Not used

Processor stack area

Tape error log
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Hex

DEOO-OEAD

OEAE-OEAE

OEAF-OEBD

OEBE-OECC

OECD-OEEE

0EE3-0EFB

OEFC-OEFD

0300-0301

030E-03D3

0304-0305

030b-0307

O3oa-O3oq

D3DA-030B

030C-030D

030E-030F

0310-0311

031E-0313

0314-0315

031b-0317

D3ia-03iq

031A-031B

031C-031D

031E-031F

03E0-03E1

03SE-03E3

03E4-03E5

03Eb-0357

03Ea-03Eq

03EA-03EB

03EC-03ED

03EE-03EF

0330-0331

033E-0333

0334-0335

033b-0337

033a-033q

034A-0353

0354-035D

035E-03bl

Decimal

51E-b7E

t74-tat

bfl7-701

70E-71b

717-73B

73q-7b3

7b4-7fc5

7ta-7bq

770-771

77S-773

774-775

77fc-777

77B-77q

780-761

7BE-7B3

784-735

78^-787

7aa-7aq

?qo-7qi

7qE-?q3

7q4-7q5

7qt_7q7

7qa-?qq

aoo-aoi

aoE-ao3

604-305

aob-ao?

aoa-aoq

aio-an

flis-aia

ai4-ai5

ait-fli?

aia-aiq

aso-aEi

aEE-a3E

aE4-BE5

a4E-asi

asE-ati

afcE-ats

Description

BASIC input buffer

Bank peek subroutine

Bank poke subroutine

Bank compare subroutine

JSR to another bank

JMP to another bank

Function execute hook

Error message link

BASIC warm start link

Crunch BASIC tokens link

Print tokens link

Start new BASIC code link

Get arithmetic element link

Crunch FE hook

List FE hook

Execute FE hook

Unused

IRQ vector [F Ab 5]

Break interrupt vector [BOOB]

NMI interrupt vector [FA4 0]

OPEN Vector [EFBD]

CLOSE vector [Fl a a]

Set-input vector [FlOb]

Set-output vector [F14C]

Restore I/O vector [FESb]

Input vector [EFOb]

Output vector [EF?q]

Test-STOP Vector [FbbE]

GET vector [EEEB]

Abort I/O vector [FEEE]

Machine Lang Monitor link

LOAD link

SAVE link

Control code (low) link

High ASCII code link

ESC sequence link

Keyboard buffer

Tab stop bits

Line wrap bits
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Bank 0:

Hex

D3bE-D3bB

D3tC-D375

D37b-D37F

D3flD-D3cIE

D3flt

D3CIF-D3AA

D3AB-D3Bb

D3B7-03BF

D3CD-D3Cfl

D3Cq-D3Dl

D3DE-D3D4

D3D5

D3EE

D3E3

FFDD

FF01-FFD4

D4DD-D7E7

D7Ffl-D7FF

DflDD-DRFF

DfiDC

DfiDD

DADF-DA17

DAlfl

DAiq

DA1A

DA1B

DA1D-DA1F

DAED

DAE1

DAEE

DAE3

DAE4

DAE5

DAEt

DAE7-DAEA

DAEB

DAEC

Decimal

flbb-fl75

fl7fc-flfl5

flHt-HEt

RDE

C1E7-C13a

qtD-Rtfl

qtq~q77

q7fl-qflO

bSEflD

t5Efll-t5Efl-

1DE4-EDE3

ED4fl-E5tD

E57E

E573

E575-E5S3

E5fl^

E5fl5

E5flt

E5fl7

EBflfl-ESHD

E5RE

E5H3

EBq^i

E5R5

ESHt

ESR?

ESHfl

2sqq-EtDE

StD3

EbD4

Description

Logical file table

Device number table

Secondary address table

CHRGET subroutine

CHRGOT entry

Fetch from RAM Bank 0

Fetch from RAM Bank 1

Fetch from RAM Bank 1

Fetch from RAM Bank 0

Fetch from RAM Bank 0

Unused

Current BANK for SYS, PEEK

Graphic/Text backgrounds

Graphic/Multi color log

MMU configuration register

4 MMU load config registers

40-column screen memory

Sprite identity area (text)

BASIC pseudo-stack

CIA 1 interrupt log

CIA 1 timer enabled

RS-232 work values

RS-232 receive pointer

RS-232 input pointer

RS-232 transmit pointer

RS-232 send pointer

Sleep countdown;

FFFF = disable

Keyboard buffer size

Screen freeze flag

Key repeat: lEfl=all,

Key repeat timing

Key repeat pause

Graphics/text toggle latch

40-col cursor mode

40-col blink values

80-col cursor mode

40-col video $DDlfl image
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Hex Decimal Description

0A5E-0A5F

0A40-0A5A

OAbO-OAbD

D&CO

DAC1-0AC4

DBDD-DBBF

QCOD-DDFF

DEDD-DFFF

1000-1001

1DQA-1DFF

11DD-113D

1131-llbE

llbF

1170-1173

1174-1177

1170-1117

117A-117B

117C-117D

117E-11D5

HDt-llE5

HEb

HE7-llEfl

11E1-11EA

11EB

11EC

11ED

11EE-11FF

1504-1507

150B-15flC

1510-1511

1512-1513

1514-1217

iaifl-131A

1B1B-151P

1555

155F

5b0b-5b07

5b54-5b50

5bSb-5bb1

2755

2753-575b

5fllb-3007

3075-35fl3

35fi4-4015

401b-4105

41Db-4351

4355-4400

4401-44b5

44t3

4z;b4-44fc7

44tfl-4471

4474-447S

ziz;7t-4477

447fi-45t5

45tt-45fll

45fl5

45fl3-45fl4

45fl5-45flt

45fl7

45flfl

45flq

45R0-4t07

4tl5-4tl5

4tiq-4t50

4t54-4b55

4fc5t-4t57

4b5fl-4t31

4t35-4t34

4t35-4t3q

4t45

4t>55

80-col pages—screen, color

40/80 pointer swap $E0-FA

40/80 data swap $354-3bl

PAT counter

ROM Physical Address Table

Cassette buffer

RS-232 input, output buffers

System sprites (5b-b3)

Programmed key lengths

Programmed key definitions

DOS Command staging area

Graphics work area

Trace mode: FF = on

Renumbering pointers

Directory work pointers

Graphics index

Float-fixed vector [fl4cIF]

Fixed-float vector [7130]

Sprite motion tables (8x11

bytes)

Sprite X/Y positions

Sprite X-high positions

Sprite bump masks (sprite,

backgnd)

Light pen values, X and Y

CHRGEN ROM page, text [Dfl]

CHRGEN ROM page, graphics

[DO]

Secondary address for

RECORD

Unused

PU characters ( , .$)

TRAP address: FFFF if none

End of BASIC

Basic program limit [FF00]

DO work pointers

USR program jump [7D5fl]

RND seed value

Sound tempo

Music sequencer
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Hex

1234-1237

123q-123E

123F-127D

123F-124fl

124q-1252

1253-125C

135D-lStt

12b7-127D

1271-1574

1275

127b-127fl

1E7H-1E7E

127F

1260

12B1

13DD-17FF

iflDD-lBFF

1CDD-FBFF

1C0D-1FF7

IFFfl-lFFF

2DDD-3FFF

4D0D-FBFF

Bank 1:

D400-FBFF

Bank 14: Same as Bank 15,

DDDD-DFFF

Bank 15:

40Q0-CFFF

DDDD-D02E

D4QQ-D41C

D5DD-D5DA

DtDD-DtDl

DflDD-DflE7

DCDD-DCDF

DDDD-DDDF

DFDO-DFDfl

EDDD-FEFF

FFD5-FFFF

Decimal

4bbD-4bb3

4fcb5-4fc7D

4b71-<72D

4b71-4bflQ

4bRl-<7DD

47D1-471D

^711-472D

^721-472^

4725

^72t-472fl

472R-4734

<735

<73fc

<7fl5

<fit^-bl43

71tfl-t4511

71tfl-fllflt

fllfl?-fliqi

fiiq2-lfc3fl3

lD2<-b^511

below, except:

5324fl-573^3

lfc3fl4-53247

532<fl-532q^

54272-5^3DD

5452fl-5^53fl

547fl^-547fl5

552qfc-5b2q5

5t32D-5fc33t

5t57b-5t5qi

57Dflfl-57Dqfl

573^^-t527q

t52fl5-t5535

Description

Note image

Current env pattern

Envelope tables ..

AD(SR) pattern

(AD)SR pattern

Waveform pattern

Pulse width pattern

Pulse width hi pattern

Note: xx.xx.volume

Previous volume image

Collision IRQ task table

Collision IRQ address tables

Collision mask

Collision work value

PEN work value

Unused

Reserved for key functions

BASIC RAM memory (text)

Video (color) matrix (hi-res)

Sprite identities (hi-res)

Screen memory (hi-res)

BASIC RAM memory (hi-res)

Basic variables, arrays, strings

Character generator ROM

ROM: BASIC

40-col video, chip 8564

SID sound chip 6581

Memory Management Unit

8722

80-column CRT controller 8563

Color nibbles

CIA 1 (IRQ) 6526

CIA 2 (NMI) 6526

DMA slot

ROM: Kernal

ROM: Transfer, Jump Table
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0000

0001

8502 Processor I/O registers

xxxxx

xxxxx

0 = in

Caps
Key

1=out

Tape

Motor

0 = in

Tape

Sense

1=out

Tape

Outpt

1=out

HiRes

1=out

LoRes

1=out

Color

Acces

00000

00001

Figure C.15
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C128 Memory Map

8564 Video — Sprite Registers

Sprite Sprite

0 7

Sprite Sprite

0 7

DOOO DOOE

DOO1 DOOF

D027 D02E

DO1O

D015

D017

D01B

D01C

DO1D

DO1E

DO1F

Position

Color

Sprite Bit Positions

7 6 5 4 3 2 1

X-position high

Sprite Enable

Y-expand

Background Priority

Multicolor

X-expand

Interrupt: Sprite coilisn

Interrupt: Sprite/Backgrd coll

Y

53248 53262

53249 53263

53287 53294

0

53264

53269

53271

53275

53276

53277

53278

53279

Figure C.16
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C128 Memory Map

8564 Video — Control and Misc. Registers

D011

D012

D013

D014

Extnd Color Bit Map

—

| Dsply Enabl | Row Selct A

Raster Register

Light Pen Input

Y-Scroll

X

Y

D016

D018

D019

D01A

vm13

IRQ

X Reset

Screen (Video Matrix)

vm12 vm11

IRQ sence

IRQ Enable

Multicolor

vm10

Colm Sel

Character Base
cb13 . cb12 . cb11

LP .

Light
Pen,

SSC j SBC

Collision

Sprt , Back

X-Scroll

X

RST

Rastr

D020

D021

D022

D023

D024

D025

D026

D02F

D030

COLOR REGISTERS

xxxxx xxxxx xxxxx xxxxx xxxxx

Exterior

Background #0

Background #1

Background #2

Background #3

Sprite Multicolor #0

Sprite Multicolor #1

[Keyboard Rows]

xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx Test Fast
Clock

53265

53266

53267

53268

53272

53273

53274

53280

53281

53282

53283

53284

53285

53286

53295

53296

Figure C.16 continued
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SID (6581)

V1 V2 V3

D400 D407 D40E

D401 D408 D40F

D402 D409 D410

D403 D40A D411

D404 D40B D412

D405 D40C D413

D406 D40D D414

D415

D416

D417

D418

— Frequency

D419

D41A

D41B

D41C

Pulse Width

Commodore 128

, V1 V2 V3

54272 54279 54286

54273 54280 54287

54274 54281 54288

54275 54282 54289

L_

H

L_

H

Voice Type

NSE , PUL .SAW, TRI ,
KEY

Attack

Time

2ms-8sec

Decay

Time

6ms-24sec

Sustain

level

Release time

I 6ms-24sec
i i i i

Voices

(write only)

0 0 0 0 0

Filter Frequency

L

H

Resonance Filter voices

i i i 1EXT i v3 i V2 i V1

Passband Master

off, h. .bd.loI Volume,

Filter & Volume

(write only)

Paddle X

Paddle Y

Noise 3 (random)

Envelope 3

54276 54283 54290

54277 54284 54291

54278 54285 54292

54293

54294

54295

54296

54297

54298

54299

54300

Sense

(read only)

Special voice features (TEST, RING MOD, SYNC) are

omitted from the above diagram.

Figure C.17



APPENDIX C — COMMODORE 128 227

Memory Management Unit 8722

0500

D501

-D504

D505

D506

D507

D508

D509

D50A

RAM select

0-3

HIGH RAM
/ROM

MID RAM
/ROM

LO
RAM

CGEN

Preconfiguration registers;

Similar to D500, above

40/80

Key
C64
Mode

Video-Bank

L

H

L

H

Cartr-Sense
Color-Bank

xxxxxxxxxxx

Fast
Disk

xxxxxxxxxxx

Shared RAM
hi low

Zero page pointer

($0000)

Stack page pointer

($0100)

Z80

Shared RAM
0 = 1K

54528

54529

-54532

54533

54534

54535

54536

54537

54538

Figure C.18
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8563 CRT Controller

0600 read (status):

D600

D600

54784

0 $00

1 $01

2 $02

3 $03

4 $04

5 $05

6 $06

7 $07

8 $08

9 $09

10 $0A

11 SOB

12 $0C

13 $0D

14 $0E

15 $0F

16 $10

17 $11

18 $12

19 $13

20 $14

21 $15

22 $16

23 $17

24 $18

25 $19

26 $1A

27 $1B

28 $1C

29 $1D

30 $1E

31 $1F

32 $20

33 $21

34 $22

35 $23

36 $24

Status

xxxxx

xxxxx

xxxxx

xxxxx

Light

Pen

Vert

Blank

xxxxxxxxxxxxxxxxxxxxxxxxx

D601

54785

Horizontal Total

Horizontal Characters Displayed (80)

Vertical

xxxxx

Horizontal Sync position

Sync Width
Horizontal

Vertical Total

xxxxx Vertical Total Adjust

Vertical Displayed (25)

Vertical Sync Position

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxx

xxxxxxxxxxxxxxxxx

Cursor Mode

xxxxxxxxxxxxxxxxx

xxxxxxxxxxx

Block

Copy

Bit
Map

xxxxx

Total

xxxxxxxxxxxxxxxxx

Scrn

RVS

Color

Enable

Foreground

Char set address

xxxxx

Interlace

Scan Lines per Character

Cursor Start

Cursor End

Display

Address

Cursor Address

Light Pen

Input

Video RAM Address

(See register 31)

Color

Address

Character

Display Horizontal

Blink

Rate

Semi

Graphic

Display Vertical

V Scroll

Wide

Pixel

H Scroll

Color

Background

Scroll Control Horizontal

xxxxx

RAM

H

L

H

L

H

L

H

L

H

L

xxxxxxxxxxxxxxxx

Underline Scan Line Count

Character Count

Video RAM data (see registers 18,19)

Block Copy Start

Address

Display

Enable

xxxxxxxxxxxxxxxxxxxxxx | DRAM refresh rate

H

L

begin

end

54784

Typical

Value

126

80

102

1/3

32 or 39

0

25

29 or 32

0

7

32

7

0

0

0

0

varies

varies

varies

varies

8

0

120

8

32

64 or 71

240

0

32

7

varies

varies

varies

varies

125

100

5

Figured 9
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$DC00

$DC01

$DC02

$DC03

$DC04

$DC05

$DC06

$DC07

$DC0C

$DC0D

$DC0E

$DC0F

CIA 1 (IRQ)

Paddle SEL

A , B

—

(6526)

R I

Keyboard Row Select (inverted)

Keyboard Column Read

$FF — All Output

$00 — All Input

Timer A

Timer B

Commodore

Joystick 0

L , D ,

Joystick 1

128

U

Serial (shift) Register

IRQ xxxxxxxxxxx

SReg

I/O

Flag

Load

Load

| S.Reg
-< <

O/S

O/S

| xxxxx

Timer A

. Toggl

Timer B

Tim.B Tim.A

Start

Start

PRA 56320

PRB 56321

DDRA 56322

DDRB 56323

TAL 56324

TAH 56325

TBL 56326

TBH 56327

56332

56333

56334

56335

Figure C.20
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$DD00

$DD01

$DD02

$DD03

$DD04

$DD05

$DD06

$DD07

$DD0D

$DD0E

$DD0F

CIA 2 (NMI) (6526) Commodore 128

Serial Clock Serial Clock ATN RS-232

In

DSR

In

In

CTS

In

Out Out

DCD*

In

Out

Rl*

In

Out
Video Block

DTR

Out

RTS

Out

RS-232

Parallel User Port

In In Out Out Out Out Out Out

$3F

$06 For RS-232

Timer A

Timer B

RS-232

In

Timer Timer

B , A

Timer

A Start

Timer

B Start

PRA 56576

PRB 56577

DDRA 56578

DDRB

TAL

TAH

TBL

TBH

ICR

CRA

CRB

56579

56580

56581

56582

56583

56589

56590

56591

Figure C.21

DMA Controller

DF00

DF01

DF02

DF03

DF04

DF05

DF06

DF07

DF08

DF09

DFOA

Busy

Exec

Fault

Sum

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxx IRQ | Inc Mode

Host L

Address H

Expansion L

Address H

xxxxxxxxxxxxxxxxxxxxxxxxxxxxx | Expansion Bank

Transfer L

Length H

Checksum

Version, Maximum-Memory

57088

57089

57090

57091

57092

57093

57094

57095

57096

57097

57098

xxxx = unused

(blank) = not of interest

Figure C.22
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Commodore 64: ROM Detail
This type of ROM memory map is intended primarily for users who want

to "browse" through the inner logic of the computer. It allows a user to

disassemble an area of interest, to see why the computer behaves in a

certain way. With the use of this map, the user will be able to identify

subroutines that are called by the coding under study.

I recommend against using the ROM subroutines as part of your own

programs. They often don't do precisely what you want. They change

locations when you move to a different machine. With rare exceptions,

you can probably write better coding to do the job yourself. Stick with the

kernal jump table: especially $FFDE to output; $FFE4 to get input;

$FFE1 to check the RUN/STOP key; $FFCt and $FFCq to switch

input and output respectively; and $FFCC to restore normal input/output.

They are the same on all Commodore computers.

ADQO:

ADDC:

AD5E:

ftDflD:

ADSE:

A1RE:

A32fi:

A3b5:

A3SA:

A3Bfi:

A3FB:

A4Dfi:

AA3S:

A437:

A4bq:

A4flQ:

A4RC:

A533:

A5bD:

A5?q:

Abl3:

Ab42:

AbSE:

AbflE:

AtRC:

ROM control vectors

Keyword action vectors

Function vectors

Operator vectors

Keywords

Error messages

Error message vectors

Miscellaneous messages

Scan stack for FOR/GOSUB

Move memory

Check stack depth

Check memory space

Print "out of memory"

Error routine

BREAK entry

Print "ready."

Ready for BASIC

Handle new line

Re-chain lines

Receive input line

Crunch tokens

Find BASIC line

Perform [NEW]

Perform [CLR]

Back up text pointer

Perform [LIST]
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A74E:

&7ED:

fifilD:

R55C:

RflEF:

Afl31:

Rfl57:

Rfl71:

Rflfi3:

RfifiD:

AflDE:

ftflFfl:

RRDb:

ftqEfl:

Rq3B:

aq^B:

RRbB:

aq&5:

aaflD:

ARflb:

aaaD:

aBlE:

aB3B:

aB^D:

aB7B:

aBa5:

aBBF:

aBFq:

aCDt:

aCFC:

aDIE:

aD7fl:

aDqE:

aEaa:

aEFl:

aEF7:

aEFF:

aFDfl:

AF14:

BFEfl:

apa?:

aFEb:

Perform [FOR]

Execute statement

Perform [RESTORE]

Break

Perform [STOP]

Perform [END]

Perform [CONT]

Perform [RUN]

Perform [GOSUB]

Perform [GOTO]

Perform [RETURN]

Perform [baTa]
Scan for next statement

Perform [IF]

Perform [REM]

Perform [ON]

(Set fixed point number

Perform [LET]

Perform [PRINT#]

Perform [CMD]

Perform [PRINT]

Print string from (Y.A)

Print format character

Bad input routine

Perform [GET]

Perform [INPUT#]

Perform [INPUT]

Prompt and input

Perform [REaD]

Input error messages

Perform [NEXT]

Type match check

Evaluate expression

Constant-pi

Evaluate within brackets

Check for » ) »

Check for comma

Syntax error

Check range

Search for variable

Set up FN reference

Evaluate [OR]



APPENDIX C — COMMODORE 128 233

AFER: Evaluate [AND]

BDlt: Compare

BDfll: Perform [DIM]

BDflB: Locate variable

B113: Check alphabetic

BUD: Create variable

B1 q A : Array pointer subroutine

BIAS: Value 3E7bfl

B1BE: Float-fixed

B1D1: Set up array

BE4 5: Print "bad subscript"

B E A fl : Print "illegal quantity"

B 3 A C: Compute array size

B37D: Evaluate [FRE]

B3R1: Fixed-float

B3HE: Evaluate [POS]

B3At: Check direct

B3B3: Perform [DEF]

B3E1: Check fn syntax

B3F4: Evaluate [FN]

B4b5: Evaluate [STR$]

BA 7 5 : Calculate string vector

BA&7: Set up string

B4F4 : Make room for string

B 5 51: Garbage collection

B 5 BD : Check salvageability

BbOL: Collect string

Bt3D: Concatenate

B fc 7 A: Build string to memory

BfcA3 : Discard unwanted string

BtDB: Clean descriptor stack

BLEC: Evaluate [CHR$]

B7DD: Evaluate [LEFTS]

B7 5C: Evaluate [RIGHTS]

B7 37: Evaluate [MID$]

B7 tl: Pull string parameters

B77C: Evaluate [LEN]

B 7 fl E : Exit string-mode

B7fiB: Evaluate [ASC]

B 7 R B : Input byte parameter

B7AD: Evaluate [VAL]

B7EB : Parameters for POKE/WAIT
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B7F7:

BflDD:

BflE<:

BflED:

Bfi^R:

BQ50:

BflS3:

BflbR:

BRTE:

Bqfl3:

B^ER:

BRSB:

BRSR:

BRflC:

BRB7:

BAD4:

BAES:

BRFR:

BRFE:

BB1S:

BBR5:

BBC7:

BBFC:

BCDC:

BC1B:

BCEB:

BC3q:

BC5fi:

BC5B:

BCRB:

BCCC:

BCF3:

BD7E:

BDCE:

BDCD:

BDDD:

BFlt:

BF3R:

BF71:

BF7B:

BFB4:

Float-fixed

Evaluate [PEEK]

Perform [POKE]

Perform [WRIT]

Add 0.5

Subtract-from

Evaluate [subtract]

Evaluate [add]

Complement FRC (floating accumulator)#1

Print "overflow"

Multiply by zero byte

Evaluate [LOG]

Evaluate [multiply]

Multiply-a-bit

Memory to FRC#E

Adjust FRC#1 and FRC#E

Underflow/overflow

Multiply by ID

+1D in floating point

Divide by ID

Evaluate [divide]

Memory to FRC#1

FRC#1 to memory

FRC#E to FRC#1

FRC#1 to FRC#S

Round FRC#1

Get sign

Evaluate [SGN]

Evaluate [ABS]

Compare FRC#1 to memory

Float-fixed

Evaluate [INT]

String to FRC

Get ASCII digit

Print "IN. ."

Print line number

Float to ASCII

Decimal constants

TI constants

Evaluate [SQB]

Evaluate [power]

Evaluate [negative]
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BFED:

ED43:

EDSq:

EOR?:

EDFR:

E15A:

E15t:

ElfcS:

Elbfl:

E1BE:

E1C7:

E1D4:

EEDt:

E2DE:

E21S:

E2b4 :

ESfcB:

EEbA:

E3DE:

E37B:

E3CI<:

E3A5:

E3BF:

E447:

E453:

EAST:

E5DD:

E5D5:

E5DA:

E51fl:

E5<<:

E5tt:

ESfcC:

E5AD:

E5B4:

Efc32:

Etfl^:

EtHl:

EbBb:

EfcED:

E7D1:

- COMMODORE 128

Evaluate [EXP]

Series evaluation 1

Series evaluation 2

Evaluate [RND]

Kernal calls with error checking

Perform [SYS]

Perform [SAVE]

Perform [VERIFY]

Perform [LOAD]

Perform [OPEN]

Perform [CLOSE]

Parameters for LOAD/SAVE

Check default parameters

Check for comma

Parameters for open/close

Evaluate [COS]

Evaluate [SIN]

Evaluate [TAN]

Evaluate [ATN]

Warm restart

Initialize

CHRGET for zero page

Initialize BASIC

Vectors for $3DD

Initialize vectors

Power-up message

Get I/O address

Get screen size

Put/get row/column

Initialize I/O

Clear screen

Home cursor

Set screen pointers

Set I/O defaults

Input from keyboard

Input from screen

Quote test

Set up screen print

Advance cursor

Retreat cursor

Back into previous line

235
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E71b:

Efl7C:

Eflqi:

EflAl:

EflBB:

EflCB:

EflDA:

EflEA:

EHtB:

ERCfl:

ESED:

ERFO:

ESFF:

EA13:

EAE4 :

EA31:

EAfl7:

EB?^:

EBfll:

EBCE:

ECD3:

EC44:

EC4F:

EC7fl:

ECBH:

ECE7:

ECFD:

EDDR:

EDDC:

ED4D:

EDB2:

EDBR:

EDBE:

EDC7:

EDCC:

EDDD:

EDEF:

EDFE:

EE13:

EEflS:

EEflE:

EER7:

EEAD:

Output to screen

Go to next line

Perform (return)

Check line decrement

Check line increment

Set color code

Color code table

Scroll screen

Open space on screen

Move a screen line

Synchronize color transfer

Set start-of-line

Clear screen line

Print to screen

Synchronize color pointer

Interrupt-clock, etc.

Read keyboard

Keyboard select vectors

Keyboard 1-unshifted

Keyboard 2-shifted

Keyboard 3-"Commodore" shift

Graphics/text contrl

Set graphics/text mode

Keyboard 4

Video chip setup

Shift/run equivalent

Screen In address low

Send "talk" to serial bus

Send "listen" to serial bus

Send to serial bus

Serial timeout

Send listen S A

Clear ATN

Send talk S A

Wait for clock

Send serial deferred

Send "untalk" to serial bus

Send "unlisten" to serial bus

Receive from serial bus

Serial clock on

Serial clock off

Serial output "1"

Serial output "0"
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EEAq: Get serial in and clock signals

EEB3: Delay 1 millisecond

EEBB: RS-232 send

E F D b : Send new RS-232 byte

EFEE: No-DSR error

EF31: No-CTS error

EF3B: Disable timer

EF4 A : Compute bit count

EF5R: RS-232 receive

EF7E : Set up to receive

EFC5: Receive parity error

E F C A : Recieve overflow

EFCD: Receive break

EFDD: Framing error

EFE1: Submit to RS-232

FDDD: No-DSR error

F D17 : Send to RS-232 buffer

F04D: Input from RS-232

FDfib: Get from RS-232

FDA4 : Check serial bus idle

FDBD: Messages

F15B: Print if direct

F13E: Get...

F14E: ...from RS-232

F157: Input

F1 q q : Get: tape/serial/RS-232

F1CA: Output...

F1DD: ...to tape

F5DE: Set input device

F 5 5 D : Set output device

P5qi: Close file

F3DF: Find file

F31F: Set file values

F3EF: Abort all files

F333: Restore default I/O

F34A: Do file open

F3D5: Send SA

Open RS-232

Load program

F5 AF: Print "searching"

F5C1: Print filename

F 5 D 2 : Print "loading/verifying"

F5DD: Save program
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FbflF:

FbRB:

FbBC:

FfcDD:

FbE4:

FbED:

FfcFB:

F7ED:

F7bA:

F7DD:

F7D7:

F7EA:

FflDD:

Ffll7:

FflEE:

Ffl3fl:

T&A1:

Ffib<:

Ffl75:

FflDD:

FflEE:

FRSC:

FAbD:

FBflE:

FBS7:

FBAb:

FBCfl:

FBCD:

FC57:

FCS3:

FCBfl:

FCCA:

FCD1:

FCDB:

FCEE:

FDDE:

FD1D:

FD15:

FDIR:

FD3D:

FD5D:

FDRB:

FDA3:

Print "saving"

Bump clock

Log PI A key reading

Get time

Set time

Check stop key

Output error messages

Find any tape header

Write tape header

Get buffer address

Set buffer start/end pointers

Find specific header

Bump tape pointer

Print "press play ..."

Check tape status

Print "press record ..."

Initiate tape read

Initiate tape write

Common tape code

Check tape stop

Set read timing

Read tape bits

Store tape characters

Reset pointer

New character setup

Send transition to tape

Write data to tape

IRQ entry point

Write tape leader

Restore normal IRQ

Set IRQ vector

Kill tape motor

Check R/ff pointer

Bump R/ff pointer

Power reset entry

Check fl-ROM

fi-ROM mask

Kernal reset

Kernal move

Vectors

Initialize system constants

IRQ vectors

Initialize I/O
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FDDD: Enable timer

FDFR: Save filename data

FEOD: Save file details

FED?: Get status

FElfi: Flag status

FE1C: Set status

FE51: Set timeout

FE 2 5 : Read/set top of memory

FEE? : Read top of memory

FEED: Set top of memory

FE34 : Read/set bottom of memory

FE4 3: NMI entry

FEbt: Warm start

FEBt: Reset IRQ and exit

FEBC: Interrupt exit

FE C 5 : RS-232 timing table

FEDt: NMI RS-232 in

FFD?: NMI RS-232 out

FF43: Fake IRQ

FF4fi: IRQ entry

FFfll: Jumbo jump table

FF F A: Hardware vectors
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Superchart

The "superchart" shows the PET character sets. A byte may have any of

several meanings, depending on how it is used. The chart is constructed

to reflect this. "ASCII" is PET ASCII; these are the characters as they

would be input or printed. "Screen" is the Commodore screen codes, as

they would be used in screen memory—POKEing to or PEEKing from

the screen would yield these codes. Notice that the numeric character set

is the same for both screen and PET ASCII.

Within a program, the code changes again. "BASIC" shows these codes;

they are similar to ASCII in the range $ED to $5F.

Machine language op codes are included for the sake of convenience and

completeness.

DECIMAL

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

HEX

00

01

02

03

04

05

06

07

08

09

OA

OB

OC

OD

OE

OF

10

11

12

13

14

15

16

17

18

19

1A

1B

1C

1D

ASCII

white

bell

lock

unlock

car ret

text

top

cur down

reverse

cur home

delete

del. line

ers.begin

scr. up

red

cur right

SCREEN BASIC

@ end-line

A

B

C

D

E

F

G

H

I

J

K

L

M

N

0

P

Q

R

S

T

U

V

w

X

Y

z

[
\

]

6502

BRK

ORA(I,X)

ORAZ

ASLZ

PHP

ORA#

ASLA

ORA

ASL

BPL

ORA(I),Y

ORA Z,X

ASL Z,X

CLC

ORAY

ORAX

DECIMAL

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29
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DECIMAL

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

HEX

1E

1F

20

21

22

23

24

25

26

27

28

29

2A

2B

2C

2D

2E

2F

30

31

32

33

34

35

36

37

38

39

3A

3B

3C

30

3E

3F

40

41

42

43

44

45

46

47

48

49

4A

4B

4C

4D

4E

ASCII

green

blue

space

I

#

$
%

&

<
>
*

+

•

-

/

0

1

2

3

4

5

6

7

8

9

:

j

<

=

>

9

@
A

B

C

D

E

F

G

H

I

J

K

L

M

N

SCREEN

T

space

!

#

$
%

&

f

(
)
*

+

•

—

m

1

0

1

2

3

4

5

6

7

8

9

j

<

>

?

H

i,a

(B, b

B.c

B,d

H.e

H,f

(Eg

a, n

ffl, i

H.J
H.k

D,l
S,m

IZ, n

BASIC

space

!

#

$
%

&

i

(

)
*

+

1

—

/

0

1

2

3

4

5

6

7

8

9

i

<

=

>

?

@
A

B

C

D

E

F

G

H

1

J

K

L

M

N

6502

ASLX

JSR

AND(I.X)

BITZ

ANDZ

ROLZ

PL

AND#

ROLA

BIT

AND

ROL

BMI

AND(I),Y

AND Z,X

ROL Z,X

SEC

ANDY

CLI

ANDX

ROLX

RTI

EOR(I,X)

EORZ

LSRZ

PHA

EOR#

LSRA

JMP

EOR

LSR

DECIMAL

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78
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DECIMAL

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

HEX

4F

50

51

52

53

54

55

56

57

58

59

5A

5B

5C

5D

5E

5F

60

61

62

63

64

65

66

67

68

69

6A

6B

6C

6D

6E

6F

70

71

72

73

74

75

76

77

78

79

7A

7B

7C

7D

7E

7F

ASCII

0

P

Q

R

S

T

U

V

w

X

Y

z

[
\

]

T

SCREEN

Ho

n,p

1, q
a, r

ffl, s

E,t

a, u

H, v

g, w

SI, x

ri.y
IS, 2

m

E

n

b, a
a, s

D

E

y

n

□

D

□

q

□

a

s
a
a

a

a

a

m

D

c

a

□

H

U

a, 0

a

E

E

s

BASIC

0

P

Q

R

S

T

U

V

w

X

Y

z

[
\

]

t

6502

BVC

EOR(I),Y

EOR, Z,X

LSR Z,X

CLI

EORY

EORX

LSRX

RTS

ADC(I,X)

ADCZ

RORZ

PLA

ADC#

RORA

JMP(I)

ADC

ROR

BVS

ADC(I),Y

ADC Z,X

ROR Z,X

SEI

ADCY

ADCX

RORX

DECIMAL

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125 .

126

127
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DECIMAL

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

HEX

80

81

82

83

84

85

86

87

88

89

8A

8B

8C

8D

8E

8F

90

91

92

93

94

95

96

97

98

99

9A

9B

9C

9D

9E

9F

A0

A1

A2

A3

A4

A5

A6

A7

A8

A9

AA

AB

AC

AD

AE

AF

BO

ASCII

orange

car ret

graphic

bottom

black

cur up

rvs off

clear

insert

ins. line/br

ers. end/p

Gray 1

Gray 2

scr. down

L Blue

Gray 3

magenta

cur left

yellow

cyan

r

H

□

□

D

□

H

V VA

□

OB

□

s

a

a

SCREEN

r-@
r-A

r-B

r-C

r-D

r-E

r-F

r-G

r-H

r-l

r-J

r-K

r-L

r-M

r-N

r-0

r-P

r-Q

r-R

r-S

r-T

r-U

r-V

r-W

r-X

r-Y

r-Z

r-[
r-\

M

r-t
r-«- ,

■

r-!

r-"

r-#

r-$

r-%

r-&

r-'

r-(

r-)
r-*

r- +

r-,

r-

r-.

r-/

r-0

BASIC

END

FOR

NEXT

DATA

INPUT#

INPUT

DIM

READ

LET

GOTO

RUN

IF

RESTORE

GOSUB

RETURN

REM

STOP

ON

WAIT

LOAD

SAVE

VERIFY

DEF

POKE

PRINT#

PRINT

CONT

LIST

CLR

CMD

SYS

OPEN

CLOSE

GET

NEW

TAB(

TO

FN

SPC(

THEN

NOT

STEP

+

-

*

/

t
AND

OR

6502

STA(I.X)

STYZ

STAZ

STXZ

DEY

TXA

STY

STA

STX

BCC

STA(I), Y

STYZ.X

STA Z,X

STX Z,Y

TYA

STAY

TXS

STAX

LDY#

LDA(I,X)

LDX#

LDYZ

LDAZ

LDXZ

TAY

LDA#

TAX

LDY

LDA

LDX

BCS

DECIMAL

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176
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DECIMAL

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

HEX

B1

B2

B3

B4

B5

B6

B7

B8

B9

BA

BB

BC

BD

BE

BF

CO

C1

C2

C3

C4

C5

C6

C7

C8

C9

CA

CB

CC

CD

CE

CF

DO

D1

D2

D3

D4

D5

D6

D7

D8

D9

DA

DB

DC

DD

DE

DF

EO

E1

ASCII

ffl

e

hd
D

c

a
□

H

U

LI, 0

E

a

B
B

H

i,a

DO, b

B,c

B,d

H,e

B.f
DD,g
DD, h

D,l

O.j
H, k

CJ

US, m

0, n

Co

a.P
!,q

Q,r

1, s

D,t

Q,u

18, v

1, w

19, x

a.y
11,2

BB

B

m

BJ

SCREEN

r-1

r-2

r-3

r-4

r-5

r-6

r-7

r-8

r-9

r-:

r-<

r- =

r->

r-?

i
■

LJI

BASIC
>

=

<

SGN

INT

ABS

USR

FRE

POS

SQR

RND

LOG

EXP

COS

SIN

TAN

ATN

PEEK

LEN

STR$

VAL

ASC

CHR$

LEFT$

RIGHTS

MID$

GO

CONCAT

DOPEN

DCLOSE

RECORD

HEADER

COLLECT

BACKUP

COPY

APPEND

DSAVE

DLOAD

CATALOG

RENAME

SCRATCH

DIRECTORY

6502

LDA(I),Y

LDY Z,X

LDA Z,X

LDX Z,Y

CLV

LDAY

TSX

LDYX

LDAX

LDXY

CPY#

CMP(I),X

CPYZ

CMPZ

DECZ

INY

CMP#

DEX

CPY

CMP

DEC

BNE

CMP(I),Y

CMP Z,X

DEC Z,X

CLD

CMPY

CMPX

DECX

CPX#

SBC(I),X

DECIMAL

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

20G

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225
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DECIMAL

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

HEX ASCII

E2

E3

E4

E5

E6

E7

E8

E9

EA

EB

EC

ED

EE

EF

FO

F1

F2

F3

F4

F5

F6

F7

F8

F9

FA

FB

FC

FD

FE

FF

SCREEN BASIC

H
■

■

■
SB

■

n

a, B

■

0

n

D

0
1

c

Q

Q

a

■

1

V
i

B

H

i,D
9

B
a

a

h

6502

CPXZ

SBCZ

INCZ

INX

SBC#

NOP

CPX

SBC

INC

BEQ

SBC(I), Y

SBC Z,X

INC Z,X

SED

SBCY

SBCX

INCX

DECIMAL

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255
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Control Character Representations

NUL Null

SOH Start of Heading (CC)

STX Start of Text (CC)

ETX End of Text (CC)

EOT End of Transmission (CC)

ENQ Enquiry (CC)

ACK Acknowledge (CC)

BEL Bell

BS Backspace (FE)

HT Horizontal Tabulation

(FE)

LF Line Feed (FE)

VT Vertical Tabulation (FE)

FF Form Feed (FE)

-* CR Carriage Return (FE)

SO Shift Out

SI Shift In

(CC) Communication Control

(FE) Format Effector

(IS) Information Separator

Figure D.1

Special Graphic Characters

-> SP Space

->! Exclamation Point

-»" Quotation Marks

-> # Number Sign

-»$ Dollar Sign

-> % Percent

-» & Ampersand

->' Apostrophe

-> ( Opening Parenthesis

—>) Closing Parenthesis

-»* Asterisk

-► + Plus

->, Comma

-> - Hyphen (Minus)

—>. Period (Decimal Point)

-> / Slant

->: Colon

->; Semicolon

DLE

DC1

DC2

DC3

DC4

NAK

SYN

ETB

CAN

EM

SUB

ESC

FS

GS

RS

US

DEL

-*<

-* =

-» >

-> ?

-> @

->[
\

-^]

{

I

}

Data Link Escape (CC)

Device Control 1

Device Control 2

Device Control 3

Device Control 4

Negative Acknowledge (CC)

Synchronous Idle (CC)

End of Transmission Block

(CC)

Cancel

End of Medium

Substitute

Escape

File Separator (IS)

Group Separator (IS)

Record Separator (IS)

Unit Separator (IS)

Delete

Less Than

Equals

Greater Than

Question Mark

Commercial At

Opening Bracket

Reverse Slant

Closing Bracket

Circumflex

Underline

Grave Accent

Opening Brace

Vertical Line (This graphic

is sometimes stylized to

distinguish it from the un

broken Logical OR which

is not an ASCII character)

Closing Brace

Tilde

Characters marked

Figure D.2

correspond to the PET ASCII character set.
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ASCII

ASCII is the American Standard Code for Information Interchange. It is

the standard for communications, and is often used with non-Commodore

printers.

When a Commodore machine is in its graphic mode, its character set

corresponds closely to ASCII. Numeric, upper case alphabetic, and punc

tuation characters are the same. A few control characters, such as

RETURN, also match. Commodore graphics have no counterpart in ASCII.

When the Commodore machine is switched to text mode, the character

set diverges noticeably from ASCII. Numeric characters and much of the

punctuation corresponds, but ASCII upper case alphabetic codes match

the Commodore computer's lower case codes. Commodore's upper case

alphabetics are now completely out of the ASCII range, since ASCII is a

seven-bit code.

As a result, Commodore's PET ASCII codes require conversion before

transmission to a true ASCII device or communications line. This may be

done with either hardware interfacing or with a program. Briefly, the pro

cedure is:

1. If the Commodore character is below $3F, it may be transmitted directly to

the ASCII facility.

2. If the Commodore character is between $4 D and $ 5F, it should be logically

ORed with $2D (or add decimal 32) before transmission to ASCII.

3. If the Commodore character is between $CD and $DF, it should be logically

ANDed with $?F (or subtract decimal 15fl)before transmission to ASCII.

Equivalent rules can be derived to allow a Commodore computer to receive

from ASCII. For either direction of transmission, some control characters

may require special treatment.
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First Hexadecimal Digit

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0

NUL

SOH

STX

ETX

EOT

ENQ

ACK

BEL

BS

HT

LF

VT

FF

CR

SO

SI

1

DLE

DCI

DC2

DC3

DC4

NAK

SYN

ETB

CAN

EM

SUB

ESC

FS

GS

RS

US

2

SP

!

>>

#

$

%

&

i

(

)
*

4-

»

-

/

3

0

1

2

3

4

5

6

7

8

9

*

>

<

=

>

?

4

@

A

B

C

D

E

F

G

H

I

J

K

L

M

N

0

5

P

Q

R

S

T

U

V

w

X

Y

z

[

\

]

6

»

a

b

c

d

e

f

g

h

i

j

k

I

m

n

0

7

P

q

r

s

t

u

V

w

X

y

z

{

!

}
-

DEL

ASCII code values.
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Commodore 128 users should turn to page 257.

From Chapter 6:

VIC-20 (Unexpanded) Version

We write the BASIC program as follows:

1DD V£=D

110 FORJ = 1TO5

1ED INPUT "VALUE";V£

13D SYS + + + +

14D PRINT "TIMES TEN = " ; V&

15D NEXT J

Plan to start the machine language program at around 40^7 + 127, or

4E24 (hexadecimal IDflD). On that basis, we may change line 130 to

SYS A224. Do not try to run the program yet.

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

IDfiD

loaa

10fi4

1D67

IDflA

IDflC

IDflE

ioqi

1U^4

inq?

1DRA

1DRD

1DAD

1DA1

1QA4

1DA7

1DAA

1DAD

1DBD

1DB3

IDBb

IDBR

1DBB

1DBE

1DCD

1DCE

1DC5

1DC7

LDY

LDA

STA

STA

LDY

LDA

STA

STA

ASL

ROL

ASL

ROL

CLC

LDA

ADC

STA

LDA

ADC

STA

ASL

ROL

LDY

LDA

STA

LDY

LDA

STA

RTS

#$D5

($SD),

$D33C

$D33E

#$D3

($5D),

$D33D

$D33F

$D33D

$D33C

$D33D

$033C

$D33D

$D33F

$D33D

$D33C

$D33E

$D33C

$D33D

$D33C

#$DE

$D33C

($5D),

#$D3

$D33D

($5D),

Y

Y

Y

Y
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To change the start-of-variables pointer to a location above the machine

language program, display the SOV pointer with .M DD5D 002E and

change the pointer to

002D Cfl ID

PET/CBM Version

We write the BASIC program as follows:

1DD V£=D

110 F0RJ = lT0 5

120 INPUT "VALUE"; V£

130 SYS + + + +

UD PRINT "TIMES TEN =»;V%

150 NEXTJ

Plan to start the machine language program at around 1025 + 127, or

1152 (hexadecimal <flO). On that basis, we may change line 130 to

SYS 1152. Do not try to run the program yet.

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

04fl0

04fl2

UA&A

UA&l

0<flA

UA&C

04flE

o^qi

o^q^

o<q?

04RA

o^qD

04A0

0AM

OAAA

04A7

0<AA

O^AD

Q^BD

04B3

D^Bb

o^Bq

O^BB

04BE

LDY

LDA

STA

STA

LDY

LDA

STA

STA

ASL

ROL

ASL

ROL

CLC

LDA

ADC

STA

LDA

ADC

STA

ASL

ROL

LDY

LDA

STA

#$02

($2A),Y

$033C

$033E

#$03

($2A),Y

$033D

$033F

$033D

$033C

$033D

$033C

$033D

$033F

$033D

$033C

$033E

$033C

$033D

$033C

#$02

$033C

($2A),Y
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ft 04C0 LDY #$03

ft DACE LDft $D33D

ftOSGB STft ($EA),Y

ft 04C? RTS

To change the start-of-variables pointer to a location above the machine

language program, display the SOV pointer with MOOSAOOSBand
change the pointer to

:002A Cfl 04

From Chapter 7:

An Interrupt Project

VIC-20 (Unexpanded) Version

The only difference with the VIC-20 is that the screen is located at $ IE 0 D:

ft D33C LDfi $qi

ft D33E STft $1EDD

A0341 JMP ($D3RD)

To place the link address into $03A0/l:

ft 0344 LDft $0314

ft 0347 STft $D3ftD

ft 034A LDft $0315

ft 034t) STfi $03ftl

To fire up the program:

ft 0350 SEI

ft 0351 LDft #$3C

ft 0353 STfi $0314

ft 035b LDft #$D3

ft 035fl STft $0315

ft 035B CLI

ft 035C RTS

To restore the original interrupt:

ft 035D SEI

ft 035E LDft $03ft0

ft 03fcl STA $0314

ft 03t4 LDft $D3fil

ft 03t7 STA $D315
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R D3bfi CLI

a D3tB RTS

SYS fl3b will invoke the new interrupt code; SYS fifcl will turn it off. As

with the Commodore 64, there is a possibility of the character printing

white-on-white, so that it cannot be seen.

PET/CBM Version

This version is not for original ROM machines, which have the IRQ vector

located at address $051cl/fl:

fi 033C LDR

fi 033E STfi $fiDDD

R 0341 JMP ($D3flO)

To place the link address into $03fi0/l:

R U3AA LDR $00R0

R 034? STR $D3RD

R 034A LDR $00=11

R 034D STA $O3R1

To fire up the program:

R 0350 SEI

R 0351 LDR #$3C

R 0353 STR $00c10

fi 035k LDfl #$03

R 0356 STR $0091

R 035B CLI

fi 035C RTS

To restore the original interrupt:

R 035D SEI

R 035E LDR $03R0

R 03tl STR $00R0

R 03k4 LDR $D3R1

R 03b? STR $00Rl

R 03tfl CLI

fi 03bB RTS

SYS fl3t will invoke the new interrupt code; SYS flbl will turn it off.
Since the PET/CBM does not have colors, the characters will always show.
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Project: Adding a Command

PET/CBM Version

It's not possible to write a comparable program to add a command to the

PET/CBM. This machine doesn't have a "link" neatly waiting for us at

address SDBDfi/S. Equivalent code would need to be somewhat longer

and less elegant.

The equivalent program for PET/CBM won't be given here. It would involve

writing over part of the CHRGET program (at$DD7Dto$D0fl7), sup

plying replacement code for the part we have destroyed, and then adding

the new features.
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Exercises for the Commodore C128

From Chapter 1:

Locations $D3flD and $D3fll are important in the C128. They are sen

sitive BASIC locations, and if we changed them, BASIC would stop work

ing. So we'll change the task to this: swap the contents of locations $ D B fl D

and $DBfll.

Our plan will look like this:

LDA $DBflD (bring in first value)

LDX $DBfll (bring in second value)

STA $DBfll (store in opposite place)

STX $DBflD (and again)

BRK

We may write the machine language code as:

AD flD DB LDA $DBflD

AE fll DB LDX $DBfll

flD fll DB STA $DBfll

flE flD DB STX $DBflD

DD BRK

The code within the computer will consist of 13 bytes: AD flD DB AE fll

DB flD fll DB flE flD DB DD. Now we decide where to put it.

On the Commodore 128, we can't use the addresses starting at $ D 3 3 C—

we'd quickly run into sensitive areas. We'll place our program into the

C128's cassette buffer that starts at address $DBDD (decimal 2 flit). .

That's a good place to put short test programs on this machine, and most

of our following examples will go there.

On the Commodore 128, the BASIC command MONITOR will bring the

machine language monitor into action. You'll immediately get the register

display:

MONITOR

PC SR AC XR YR SP

; FBDDD DD DD DD DD FR

The cursor will be flashing at the start of the next line.

The information is as explained in chapter 1, except that the address under

PC contains an extra digit. The first digit (in this case, the "F") is called

theTban/c number. The letter F is hexadecimal notation for the value 15

decimal, and we say that the program stopped in bank 15 at address hex

Jjj 380 isl
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For the moment, we can consider that "bank 15" means "situated in

ROM—Read Only Memory." We know that the Machine Language Monitor

is built into the Commodore 128; so of course it's in ROM.

When we write programs, we will put them in RAM. The Commodore 128

has a great deal of RAM fitted to it. We could choose RAM from bankO,

where BASIC programs are stored, or from bank 7, where BASIC vari

ables, arrays and strings are kept. There's plenty of memory in either

bank. We will choose bank 0, mostly because it's easier—if the first digit

is zero (for bank 0) we don't have to type it.

To display memory from $lDDDto$lDlDwe would command:

M 1DDD 1D1D

The resulting memory display might look something like this:

>1DDD D7 Db DA D7 Dt UA 05 Dfl:

>lDDfl Dq 05 A? SE Al 50 A& A^: . .GRAPHI

>1D1D A3 AA AC AY Al AA 25 <4:CDLOAD»D

The four-digit number at the start of each line represents the address in

memory being displayed. The two-digit numbers to the right represent the

contents of memory. The characters to the right of the colon are ASCII

equivalents of the same memory contents (or a period if no equivalent

exists). If you are working on an 80-column monitor, you will get more

memory locations per line than are shown above.

To change memory, we move the cursor until it is positioned over the

memory contents in question, type over the value displayed, and then

press RETURN. You can't change the ASCII part of the display; only the

two-digit hexadecimal values.

If you have displayed the contents of memory, as in the example above,

you might wish to change a number of locations. Be careful: on the Com

modore 128, this particular part of memory holds the definitions for the

function keys, F1 to F10. The first ten bytes are definition lengths; the

following locations, as you might have guessed, are the definitions them

selves. If you play with these locations, expect to end up with muddled

function keys.

Here comes our final rewrite of this program example:

DBDD AD flD DB LDA $DBfiD

DBD3 AE fll DB LDX $0Bfll

OBOb flD fll DB STA $DBfll

DBDq flE flD DB STX $DBflO

DBDC DD

Now to put it in:
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We go to the MLM, and display memory with

MBDDBDC

Note that we may drop leading zeros. The first address in full is DDBDD

(bank D, address DBD D). But we may shorten it if we wish; in either case,

we'll get something like:

>DDBDD xx xx xx xx xx xx xx xx:

>DDBDfl xx xx xx xx xx xx xx xx:

Move the cursor back and change this display so that it looks like this:

>DDBDD AD flD DB AE fil DB flD fll:

>DDBDfl DB flE flD DB DD xx xx xx:

Don't type in the "xx" or the trailing colon or periods—just leave whatever

was there before. And be sure to press RETURN. If you have an 80-

column display, you will get the whole memory display on one line.

Now we must put something into locations $DBflO and $ OB fil so that

we'll know that the swap has taken place correctly.

Display memory with M BflD Bfll and set the resulting display so that

the values are

>DDBfiD 11 RR xx xx xx xx xx xx

Remember to press RETURN. Now we may run our program; we start it

with

GBDD

Display the data values to confirm that they have been exchanged with

M 03fl0 D3fll.

From Chapter 2:

Print projects:

The first exercise uses the same code, but is placed in address BOD:

A DBOD LDA #4fl

Note that the use of the dollar sign for hexadecimal is optional in this

monitor. It's probably better to use it, but if you don't the computer will

assume hex numbers are intended. Using the plus sign to signal a decimal

number, you could type . . .LDA # + 7E and the decimal value of

7 E—the same value as hex A fi—will be accepted. You could even type

. . .LDA#£DlD01D0Dto enter the same number in binary. Either

way, it's still the ASCII letter H, and you'll find that hexadecimal is more

convenient and compact.

If you have correctly typed the line, it will be assembled. The object code

will be placed into memory starting at the address specified and you'll also
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see it on the screen as part of the line that you originally typed. You'll also

get a prompt for the next instruction. The screen will now show:

A DDBDD Rq 4& LDA #$4fl

A DDBDE

The cursor will be flashing to the right of the "£." Continue by typing in

JSR $FFDE and pressing RETURN. Again, the computer will rework

what you have typed and anticipate your next line by printing A DDBD5,

which allows you to type in the final command, BRK. The screen now

looks like this:

A DDBDD AR A& LDA #$4fl

A DDBOE ED DE FF JSR $FFDE

A 0DBD5 DD BRK

A OOBDb

Press RETURN to signal that you're finished. If you wish, you may display

memory with M BDD BDb. You'll see your program in memory:

>DDBDD AR A& ED DE FF DD xx xx

There's less need to check your work with a disassembler since you can

see the code as it is being written. But it never hurts to be safe; so we

may inspect our program again with:

D BDD BD5

Note that we give two addresses, the starting and the ending address. If

you give the starting address only, you'll get about 20 bytes of code, which

is more than we need.

If you wish to disassemble more code than the screen will hold, you may

"continue" a disassembly by typing the letter D by itself. You'll get about

20 more bytes from wherever your previous disassembly left off. Inciden

tally, you can use the same technique for memory display: an M command

without an address will continue a memory display.

Minor errors that you spot in either an assembly or a disassembly may

be corrected directly on the right-hand side of the assembly or disassembly

listing. In other words, suppose that you had incorrectly coded LD A #$ 5 fl

during the assembly phase; when you perform the disassembly, this line

will show as

DDBDD AR 5fl LDA #$5fl

You recognize that the $58 should be $48; you may move the cursor up—

use cursor home if you wish—and type over the value on the right-hand

side. In this case, you place the cursor over the 5, type A to change the

display to $4fl, and press RETURN. You will see from the display that

the problem has been fixed.

To run the program type the command G FDBDD. What? Our program

is in bank 0; how can we call it by naming bank 15? And why would we

do so?
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We can successfully call the program by naming bank 15 for this reason:

in bank 15, all addresses below hexadecimal 4DDD (decimal It3fl4)

are taken from RAM, bank 0. It would be more accurate to call bank 15,

"configuration 15." You can read more on this, when you're ready, in

Appendix B-1. That explains how we get there; but why bother?

We need to call bank 15 because our program calls CHROUT at address

$FFDE—a ROM routine. And we see ROM in bank 15, not in bank 0. If

we were in bank 0 and made a subroutine call to address $FFDE, we'd

jump to RAM at that address. There's no code at that location in RAM,

and we'd be in trouble.

When you get into advanced programming in the Commodore 128, you

will be able to call subroutines across banks. At that time, you'll be able

to have a program running in bank zero that will call a subroutine in ROM,

bank 15, with provision for a successful return to bank zero. When you're

ready for it, you'll find that a subroutine called JSF AR, located at address

$D2CD in all banks, will do the job of getting you across and back. You'll

need to learn how to carefully set up the contents of addresses 5 to fl

before calling JSFAR.

For the moment, we can skip the advanced techniques and get our pro

gram running with G FDBDD. The H will be printed on the same line, to

the right of the last zero.

To switch this program to a BASIC-callable subroutine, we must change

the BRK command at the end to an RTS. Disassemble, if you wish, and

type over the BRK with the characters RTS.

Just before returning to BASIC, let's ask for the decimal equivalent to

hexadecimal DBDD. Type $BDD and press return. You'll see the equiv

alent representations in hexadecimal (the same number), in decimal

( + Efllb) and also in octal and binary. The decimal value Eflit is what

we need.

Return to BASIC (using the X command). The computer will say READY;

you may now call your program with a SYS command.

The computer has told us that address $DBDD is Efllb in decimal. If

we had forgotten to ask before leaving the MLM, we could now ask BASIC

with PRINT DEC ("DBDD"); we'd get the same value of Efllb printed.

Now we type BANK 15: SYS Efllt. When we press RETURN, the letter

H will be printed.

Don't forget the reason that we are using BANK 15—it's to make sure

that we reach both our program in RAM (below hex A 0 D D) and the Kernal

ROM (hex 4DDD and above) at the same time to avoid extra "switching"

work. Now we may type NEW and enter a BASIC program:
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1DD BANK 15

11D FOR J = l TO ID

150 SYS 5S1E,

130 NEXT J

If you prefer, you're allowed to say SYS DEC( "BDD") in line 150.

BASIC commands know only decimal numbers, so we must translate from

hex one way or another.

Loops project:

A DBDD LDX#D

A DBD5 LDA $BDE,X

A DB05 JSR $FFD5

A DBOfl INX

A OBOR CPX #t

A DBDB BNE $B05

A DBDD RTS

After entry, the program looks like this:

A DBDD A5 DD LDX #$DD

A 0B05 BD OE OB LDA$DB0E,X

A DBD5 5D D5 FF JSR $FFD5

ADBDaEa INX

ADBDREDDt CPX #$0b

A DBDB DD F5 BNE $0B05

A DBDD bO RTS

We guessed (or planned) that the address $DBDE would be available for

our message HELLO. Now we must store these characters in memory.

Command M BDE B13, and type over the display to show

>DDBDE A& AS AC AC AT DD XX XX

Return to BASIC (with X) and try BANK IS: SYS 5aib. The computer

should say HELLO.

Once again, you may set up a BASIC loop program:

1DD BANK 15

110 FOR J = l TO 3

150 SYS Sfllt

13DNEXTJ

To preserve the program within DATA statements, type:

FOR J=5fllt TO E535:PRINT PEEK(J) ; :NEXT J

Study the above line. You will see that it asks BASIC to go through the

part of memory containing your machine language program, and display

the contents (in decimal notation, of course). You'll see a result that looks

something like this:

Ib5 D Iflq IA 11 3E 510 555 532 EEA t

5Dfi 545 m, 72 feq 7t 7fc 7q 13
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You may arrange these within data statements:

5D DATA ibS,0,Iflq,14,11,32,210,555,232,254,b

bO DATA 20fi,245,qt,72,bq,7b,?k,?q,13

flD FOE J=2fllb TO 2fl35:READ X:POKE J,X:NEXT J

... and our program continues as before with:

1DD BANK 15

110 FOR J = l TO 3

15D SYS Bfllt

130 NEXT J

From Chapter 3:

Input exercise:

A 0DB00 JSR $FFE1

A 00B03 BEQ $B15

A OOB05 JSR $FFE<

A DOBOfl CMP #30

A DOBOA BCC $0B00

A 00B0C CMP #3A

A 00B0E BCS $B00

A O0B1O JSR $FFD2

A 00B13 AND#$0F

A 00B15 RTS

The forward branch to $ 0 B15 was a guess, but it turns out to be correct.

The final assembly looks like this:

A

A

A

A

A

A

A

A

A

A

00B00

00B03

00B05

□ DBOfl

00B0A

00B0C

00B0E

00B10

00B13

00B15

ED

FO

20

CR

SO

cq

BO

20

sq

to

El

ID

E4

30

TA

3A

FO

D2

OF

FF

FF

FF

JSR

BEQ

JSR

CMP

BCC

CMP

BCS

JSR

AND

RTS

$FFE1

$0B15

$FFE4

#$30

$0B00

#$3A

$0B00

$FFD2

#$0F

Call the subroutine for testing with BANK 15:SYS 2816.

From Chapter 4:

Addition program:

Be sure that the above code from the previous chapter has been entered

before continuing with the main program:

A DOBlt JSR $BDD
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A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

As a

hex

with

DDB1R

DDB1C

DDB1E

D0BE1

D0BE4

DDBE5

0DBE7

OOBEA

OOBEB

DOBEC

DOBEF

DDB31

00B34

0DB3t

0DB3q

matter of

($DBDD

STA

LDA

JSR

JSR

TAX

LDA

JSR

TXA

CLC

ADC

ORA

JSR

LDA

JSR

RTS

style,

rather

$BbD

#$EB

$FFDE

$BDD

#$3D

$FFDE

$BtD

#$3D

$FFDE

#$PD

$FFDE

you might prefer to type addresses as four digits of

than $BDD) to remind yourself that you're dealing

sixteen bits. The dollar sign isn't needed, but 1 suggest you keep it.

When you graduate 1

the dollar sign

o a full symbolic assembler, you'll be required to use

; you might as well keep in practice.

The assembled screen code looks like this:

A DDBlb ED DD DB JSR $DBDD

A ODBiq flD tD DB STA $DBtD

A DDB1C Aq 5B LDA #$EB

A DDB1E ED DE FF JSR $FFD2

A DDBE1 ED DD DB JSR $DBDD

A UUBEA AA TAX

A DDB55 AR 3D LDA #$3D

A DDB2? ED DE FF JSR $FFDE

A DDBSA flA TXA

A DDBEB Ifl CLC

A DDBEC tD bO DB ADC $DBtD

A DDBEF Oq 3D ORA #$3D

A DDB31 ED DE FF JSR $FFDE

A DDB34 Aq DD LDA #$DD

A DDB3t ED DE FF JSR $FFDE

A DDB3q tD RTS

Remember we don't want to SYS to address $BDD (Eflit)—that's the

subroutine. Instead, command BANK 15:SYS 2838 which takes us to the

main routine at $ OB It.
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From Chapter 5:

Project: Screen Manipulation

It's not possible to do a simple POKE to the screen when you are in the

Commodore 128's 80-column mode, so this example must be for the 40-

column configuration only. The first instruction uses a decimal value of 40

rather than hex 28.

A

A

The

A

A

A

A

A

ODBDD

00B02

LDA

STA

# + 40

$BfiO

40-column screen is usually at $04 00.

00B05

00BD7

OOBOq

DOBOB

00B0D

Here's where

A

And

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

The

ODBOF

LDX

STX

LDA

STA

LDX

#$04

$BC

#$00

$BB

#0

we start on a new line

LDY

this is where we

00B11

00B13

0DB15

00B1?

ODBIR

0DB1B

D0B1C

00B1E

00B20

0DB21

00B23

OOBSb

00B5B

OOBSA

00B2C

00B2E

D0B2F

00B31

00B33

LDA

CMP

BEQ

EOR

STA

INY

CPY

BCC

CLC

LDA

ADC

STA

LDA

ADC

STA

INX

CPX

BNE

RTS

assembled code

on the screen

A

A

A

OOBOD

00B05

OOBOS

to see

#$04

handle the next column.

($BB),Y

#$E0

$Biq

#$ao

($BB),Y

# + lfl

$B11

$BB

$BflD

$BB

$BC

#$00

$BC

# + 14

$B0F

will look like the following. There's not enough room

it all at once.

AS 5fl LDA #$5fl

flD flO OB STA $OBflO

AE 04 LDX #$04
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a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

Now

ODBO?

OOBOq

ODBOB

OOBOD

00B0F

00B11

00B13

00B15

00B17

OOBiq

00B1B

00B1C

00B1E

00B50

00B51

00B53

OOBSt

OOBSa

ooBsa

00B5C

00B5E

00B5F

00B31

00B33

at,

aq

as

as

ao

Bl

cq

FO

4q

qi

ca

CO

qo

la

as

tD

as

as

tq

as

Efl

EO

DO

bO

for the BASIC

100 BANK

110 FOR J

15

= 1

150 sys salt

130 FOR K

140 NEXT K,J

BC

00

BB

00

04

BB

SO

OS

ao

BB

IS

Fl

BB

ao ob

BB

BC

00

BC

OE

DC

program

to 10

i

to 500

STX

LDa

STa

LDX

LDY

LDa

CMP

BEQ

EOR

STa

INY

CPY

BCC

CLC

LDa

aDC

STa

LDa

aDC

STa

INX

CPX

BNE

RTS

$BC

#$00

$BB

#$00

#$04

($BB),Y

#$S0

$OBiq

#$ao

($BB),Y

#$15

$OB11

$BB

$DB6D

$BB

$BC

#$00

$BC

#$0E

$0B0F

to demonstrate how it all works:

From Chapter 6:

We can do the exercise, but there are new rules that we must learn.

The Commodore 128 has more than one bank of memory, and different

things are found in different banks. The role of pointers in keeping various

types of data separate is not the same as before. An earlier Commodore

machine (the B-128 or 700 series) had this same kind of multi-bank ar

chitecture, and some of the following comments will also apply to that

machine.
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Siting Behind BASIC

About the pointers: Our BASIC program is in bank 0, but the variables,

arrays and strings are in bank 1. This means that the start-of-BASIC pointer

works with a different memory bank than the others. When we place a

machine language program directly behind a BASIC program we are in

no danger of bumping into variables. There is a pointer, saying where the

empty space starts in bank 0—the pointer is at hex 121D, decimal A124—

but it mustn't be confused with start-of-variables.

On the Commodore 128, a BASIC program usually is stored at address

$1CD1. The address may change if graphics functions are used. That's

quite a high address compared to most other Commodore machines. You

may establish where a program ends by checking addresses $ 121D and

$1211. If you wish to write a program that will be located in bank 0 but

above your BASIC program, the pointer will tell you the area that's safe.

After you have placed your program in the appropriate part of memory,

you may move the pointer up. From that point on, BASIC and machine

language will load and save together as a unit.

We're going to use this parked-behind-BASIC location in the exercise.

There's one more caution, however. If you want the ease of bank 15

operation, with simple access to your program in RAM and the Kernal in

ROM, you must make sure that your programs—BASIC and machine

language together—don't go above address $4ODD. Beyond that point,

you'll have to carefully call banking subroutines—principally the one at

$ D 2 CD—to make sure that everything works together. For our tiny sample

program, that's no problem.

Crossing The Banks

Here's a new problem. Our program—located in bank 0— is going to look

at and change BASIC variables as they lie in memory. How can a program

in bank 0 look at and change data in bank 1 ? We must learn about the

subroutines that allow us to do this.

To LOAD from any memory bank, we must call subroutine INDFET (indirect

fetch), located at address $FF74. Set things up as if you are about to

do a LDA (..),Y command. That calls for first setting up an indirect address

somewhere in page zero. Tell the subroutine where the indirect address

is located by loading its address into the A register. Then load the bank

number into register X, load Y with an appropriate value for indirect use,

and call JSR $FF?4. The data from the appropriate bank will be re

turned in the A register.
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To STORE in any memory bank, we must call subroutine INDSTA (indirect

stash), located at address $FF77. Set things up as if you are about to

do a STA (..),Y command. That calls for first setting up an indirect address

somewhere in page zero. Tell the subroutine where the indirect address

is located by storing it into address $O2BCI. Then load the bank number

into register X, load A with the data to be stored, load Y with an appropriate

value for indirect use, and call JSR $FF77. The data will be stored in

the appropriate bank.

Project

Type NEW and enter the BASIC program as follows:

1D0 V£=0:BANK15

110 FOR J = l TO 5

120 INPUT "VALUE";V£

13D SYS + + + +

140 PRINT "TIMES TEN = » ; V%

150 NEXT J

Assuming that our BASIC program will occupy less than 127 bytes and

that BASIC starts at $1CO1 (decimal 7169) we can start our machine

language program at around 7169 + 127, or 7296 (hexadecimal ICflO).

On that basis, we may change line 13D to SYS 75Rb. Do not try to

run the program yet. It would be a good idea to call the monitor briefly

and display the contents of memory address 1210-1511 to confirm

that we are in the right range.

Switch into the machine language monitor. Assemble the following code,

but don't type the comments in parentheses:

A OlCflO LDY #$05

A 01Cfl5 SEI

A 01Cfl3 LDA #$5F

A OlCflS LDX #$01

A 01Cfl7 JSR $FF74

A OlCflA STA $0B00

A OlCfiD STA $0B02

A OlCqO LDY #$03

A 01Cq5 LDA #$5F

A Q1CT4 LDX #$01

A DlCRt JSR $FF7<

A OICRR CLI

A OICRA STA $0B01

A OICRD STA $0B03

A 01CA0 ASL $0B01

A 01CA3 R0L $0B00

(the indirect address)

(bank 1)
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A DICAb ASL $OBD1

ft DICAq ROL $DBOP

ft DICftC CLC

ft DICftD LDR $DBD1

ft D1CBD ADC $DBD3

ft D1CB3 STA $DBD1

ft OlCBb LDA $DBDD

A DICBR ADC $0BDE

A D1CBC STA $DBDD

A D1CBF ASL $DBD1

A 01CCE ROL $DBDD

A D1CC5 SEI

A OlCCfc LDY #$DE

A DlCCfl LDft #$EF

A D1CCA STft $0£Bq

ft D1CCD LDX #$D1

A D1CCF LDA $DBDD

A D1CDE JSR $FF7?

A D1CDS LDY #$D3

A D1CD7 LDA $DBD1

A D1CDA LDX #$D1

ft D1CDC JSR $FF77

ft D1CDF CLI

ft DICED RTS

The assembled code will look like this:

ft OlCflO fiD OE LDY #$DE

(the indirect address)

(bank 1)

ft DICflS 7fl

A DlCfl3 Aq EF

A DICflS AS Dl

SEI

LDA #$EF

LDX #$D1

A DlCfl7 ED 74 FF JSR $FF7<

A DICflA flD DD DB STA $DBDD

A DICflD flD DE DB STA $DBDE

A DIC^D AD D3

A DIC^E AR SF

DICK AE DlA

A

A

LDY #$D3

LDA #$SF

LDX #$D1

DlCRt ED 74 FF JSR $FF74

Sfl CLI

A DICRA flD Dl DB STA $DBD1

A DICRD flD D3 DB STA $DBD3

A D1CAD DE Dl DB ASL $DBD1

A D1CA3 EE DD DB ROL $DBDD

A DICAt DE Dl DB ASL $DBD1

A DICAq EE DD DB ROL $DBDD
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A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

D1CAC

D1CAD

D1CBD

D1CB3

OlCBb

OICBR

D1CBC

D1CBF

D1CCE

D1CC5

DICCb

OlCCfl

01CCA

D1CCD

D1CCF

D1CDE

01CD5

D1CD7

01CDA

01CDC

D1CDF

DICED

ia

AD

bD

flD

AD

bD

flD

DE

EE

7fi

AD

k<=\

flD

AE

AD

ED

AD

AD

AE

ED

5fl

bD

Dl

D3

Dl

DD

DS

DD

Dl

DD

DE

SF

B^

Dl

DD

77

D3

Dl

Dl

77

DB

DB

DB

DB

DB

DB

DB

DB

DE

DB

FF

OB

FF

CLC

LDA

ADC

STA

LDA

ADC

STA

ASL

ROL

SEI

LDY

LDA

STA

LDX

LDA

JSR

LDY

LDA

LDX

JSR

CLI

RTS

$OBD1

$0BD3

$OBD1

$DB00

$DB0E

$DBDD

$DBD1

$0BDD

#$0E

#$SF

$DEBq

#$01

$0BDD

$FF77

#$03

$DB01

#$D1

$FF77

We must change the End-of-BASIC pointer to a location above the ma

chine

EOB

) language program

pointer with M

>1E1O El

i. That would be $1CE1, and so we display the

1S1D

Check ... disassemble

your

1E11 and change the pointer to

... and then back to BASIC. List, and you'll see

BASIC program again.

program, of course,

now RUN.

but*

There's no sign of the machine language

SAVE will now save everything together. You may

From Chapter 7:

Interrupt Exercise

The interrupt:

A OOBDD LDA

A DOBOE STA

A ODBDS JMP ($0B50)

The enable:

A ODBDfl LDA $0314

A DOBOB STA $DBSD

A DOBOE LDA $0315

A D0B11 STA $DBS1
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A 00B14 SEI

A 00B15 LDA #$DD

A DDB1? STA $0314

A DDB1A LDA #$DB

A DDB1C STA $0315

A 0DB1F CLI

A DDBED RTS

The disable:

A 00B51 SEI

A DDBEE LDA $0B50

A 00B55 STA $0314

A DDBEfl LDA $DB51

A 00B5B STA $0315

A 00B2E CLI

A DDB5F RTS

The completed program should look like this:

A DOBDD A5 Rl LDA IRl

A 00B02 flD DD 04 STA $040D

A 00B05 tC 50 QB JMP ($DB5D)

A DDBDfl AD 14 D3 LDA $031^5

A DDBDB flD 5D DB STA $DB5D

A DDBDE AD 15 D3 LDA $0315

A 00B11 flD 51 OB STA $DB51

A 00B14 7fl SEI

A 00B15 AR 00 LDA #$00

A 00B17 flD 14 03 STA $0314

A 00B1A AH OB LDA #$0B

A 00B1C flD 15 03 STA $0315

A 00B1F 5fl CLI

A 00B50 tO RTS

A 00BE1 7fi SEI

A 00BE5 AD 50 OB LDA $0B50

A 00B55 flD 1A 03 STA $0314

A OOBSfl AD 51 OB LDA $0B51

A 0DB5B flD 15 03 STA $D315

A OOBEE 5fl CLI

A 00B5F tO RTS

Enable the new interrupt procedure by a SYS to $0B0fl, above (SYS

2824). Return to the "standard" interrupt with a call to $ 0 B 21 (SYS 2849).

Project: Adding a Command

CHRGET is now at address $03fl0. TXTPTR is still in zero page, how

ever, at $ 3D. We use coding quite similar to that for the Commodore 64.
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Here's the "intercept":

A DDBDD LDY #1

A OOBOE LDa ($3D),Y

a 00B04 CMP #$Et

a OOBOb BEQ $BDB

a DDBDfl JMP ($0B5D)

a DDBDB JSR $03flD

a DDBDE LDY #D

a ddbid LDa #$Ea

a D0B1E JSR $FFDE

a 00B1S INY

a OOBlb CPY #+lD

a DDBlfl BCC $B1£

a DDBia LDa #$dd

a DDB1C JSR $FFDE

a DDB1F JMP $B0fl

Here's the link to turn it on:

a OOBEE LDa $030fl

a OOBES STa $B5D

a DOBEfi LDa $D3Dq

a DDBEB STa $B51

a DDBEE LDa #$DD

a DDB3D STa $D3Dfl

a DDB33 LDa #$DB

a DDB35 STa $D3DR

a DDB3B RTS

The assembled code will look like this:

a ddboo ao 01 ldy #$di

a DDBDE Bl 3D LDa ($3D),Y

a ooBD< cq Et cmp #$et

a DDBDb FD D3 BEQ $DBDB

a DDBDfl tC 5D DB JMP ($DB5D)

a DDBDB ED 50 D3 JSR $0360

a DDBOE aO DO LDY #$00

a oobio aq aa LDa #$aa

a DDB1E ED DE FF JSR $FFDE

a 0DB15 Cfl INY

a DOBib cd aa cpy #$oa

a DDBlfl qO Ffl BCC $DB1E

a ODBia aq od LDa #$dd

a D0B1C ED DE FF JSR $FFDE

a DDB1F AC Dfl DB JMP $OBOfl

a ODBEE aD Dfl D3 LDa $030fi
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A

A

A

A

A

A

A

A

00BE5

ODBEfl

DDBEB

OOBEE

DDB3D

D0B33

DDB35

DDB3fl

flD

AD

fiD

AS

flD

AS

flD

to

5D

51

DD

Dfl

OB

OS

OB

03

OB

03

03

STA

LDA

STA

LDA

STA

LDA

STA

RTS

$0B50

$030^

$0B51

#$00

$D30fi

#$DB

$030=1

When you have completed and checked the code return to BASIC. Type

NEW and write the following program:

100 PRINT 3+4:&:PRINT 5+t

110 &

120 PRINT "THAT'S ALL"

Type RUN and you'll get a SYNTAX ERROR in line 100. Now implement

the "ampersand" feature with BANK 15:SYS 2850. Type RUN again. The

ampersand command obediently prints ten asterisks each time it is in

voked. A point of interest: in the two examples in this chapter, bank 0 will

work. Can you see why?

From Chapter 8:

Output Example

To put the message HI on the printer:

100 OPEN 1,A

110 BANK 15:SYS Efllb

120 CLOSE 1

The machine language:

A 00B00 LDX #$01

A 00B02 JSR $FFCCI

A 00B05 LDA #$4fl

A 00B0? JSR $FFDE

A 00B0A LDA #$A<=\

A 00B0C JSR $FFD5

A 00B0F LDA #$0D

A 00B11 JSR $FFD2

A 00B14 JSR $FFCC

A 00B1? RTS

The assembled code:

A 00B00 A2 01 LDX #$01

A 00B05 20 C=\ FF JSR $FFCCI

A 00B05 Aq A& LDA #$<fl

A 00B07 50 D2 FF JSR $FFD5



274 MACHINE LANGUAGE FOR COMMODORE MACHINES

A ODBDA LDA

A DDBDC ED DE FF JSR $FFDE

A DDBDF DD LDA #$DD

A DDB11 50 DE FF JSR $FFDE

A 0DB14 ED CC FF JSR $FFCC

A DDB17 tO RTS

Input Example

Create the file

similar except

1DD OPEN

110 BANK

as described in Chapter 8. The BASIC program is also

for the SYS command:

l,fl,3,»DEMO»

15:SYS Efllt

1E0 CLOSE 1

The

A

A

A

A

A

A

A

A

The

A

A

A

A

A

A

A

A

machine language program:

DDBDD

DOBDE

ODBDS

QDBDfl

DDBOB

DDBOD

ODBOF

00B1E

LDX #$01

JSR $FFCt

JSR $FFE4

JSR $FFDE

lda $qo

BEQ $DB05

JSR $FFCC

RTS

assembled code:

DDBDD

ODBDE

0DB05

ODBDfl

ODBDB

DDBDD

DDBDF

0DB1E

AE 01 LDX

SO Ct FF JSR

EO E4 FF JSR

ED DS FF JSR

A5 qo LDA

FO Ft BEQ

EO CC FF JSR

tO RTS

#$01

$FFCt

$FFE4

$FFD5

$qo

$DB05

$FFCC

A File Transfer Program

Here comes BASIC:

1DD PRINT "FILE TRANSFER"

110 INPUT "INPUT FROM (DISK,TAPE)" ; A$

1E0 IF LEFT$(A$,1) = "T" THEN OPEN 1:GOTO

130 IF LEFT$(A$,1)<> "D" GOTO 110

UQ INPUT "DISK FILE NAME" ; N$

150 OPEN l,fl,3/N$

itO INPUT "TO (DISK, TAPE, SCREEN)";B$

170 IF LEFT$(B$,1) = "S» THEN OPEN E,3:GOTO

iflO IF LEFT$(B$,1) = "D" GOTO E10

IRQ IF LEFT$(B$,1)O"T" GOTO ltD
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200 IF LEFT$(A$,1)=»T» GOTO

210 INPUT "OUTPUT FILE NAME" ; F$

55D IF LEFT$(B$,1) = "D» THEN OPEN

230 IF LEFT$(B$,1)=»T» THEN OPEN 2,1,1,F$

240 BANK 15:SYS TbflO

250 CLOSE 2: CLOSE 1

The above BASIC program should not take up more than 511 bytes; on

a standard Commodore 128, that means that we'll have clear space for

our machine language program starting at $ IE DO (decimal 7680). We'll

move the end-of-BASIC pointer along, of course (NOT the start-of-vari-

ables), so that our machine language program will save together with

BASIC.

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

The

A

A

A

A

A

A

A

A

A

A

A

A

A

A

D1EDD

DIED?

01E05

DIEOfi

D1E0A

D1E0B

D1EDC

D1EDF

D1E11

01EK

01E15

DIElfi

D1E1B

D1E1C

01E1E

LDX

JSR

JSR

LDX

PHP

PHA

JSR

LDX

JSR

PLA

JSR

JSR

PLP

BEQ

RTS

#$01

$FFCb

$FFE<

$qo

$FFCC

#$02

$FFCq

$FFD2

$FFCC

$1EOO

assembled code is:

D1EDD

01E02

01ED5

OlEOfl

D1EDA

D1EDB

D1EDC

01EDF

Q1E11

01EK

01E15

QlElfl

D1E1B

01E1C

A2

20

20

At

oa

A&

20

A2

20

bo

20

20

2fl

FO

01

Ct FF

Ez; FF

qo

CC FF

02

cq ff

D2 FF

CC FF

E2

LDX

JSR

JSR

LDX

PHP

PHA

JSR

LDX

JSR

PLA

JSR

JSR

PLP

BEQ

#$01

$FFCt

$FFE4

$qo

$FFCC

#$02

$FFCq

$FFD2

$FFCC

$1EOO
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a D1E1E £>D RTS

Be sure to move the Start-of-Variables pointer ($DS1D/$DE11) so that

it points at address $1E1F.



F
Floating

Point

Representation
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Packed: 5 bytes (as found in variable or array)

Zero

Flag/

Exponent

Mantissa (value)

4 bytes

High bit represents sign of mantissa

Unpacked: 6 bytes (as found in floating accumulator)

ZF/

Exponent

1

Mantissa—4 Bytes

Sign

(High Or

der

Bit only)

• If exponent = 0, the whole number is zero

• If exponent > $80, the decimal point is to be set as many places to the

right as the exponent exceeds $80.

• Example: Exponent: $83 mantissa: 11000000 ... binary set the point

three positions over: 110.000 ... to give a value of 6.

• If exponent < = $80, the number is a fraction less than 1.

Exercise: Represent +27 in Floating Point

27 decimal = 11011 binary; mantissa = 11011000 ... the point is to be

positioned 5 places in (11011.000 ...) so we get:

Exponent: $85 mantissa: 11011000... binary or D8 Q0 00 00 hexadecimal

To pack, we replace the first bit of the mantissa with a sign bit (0 for

positive) and arrive at:

fl5 5fl DD DD DD
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Uncrashing

It's best to write a program that doesn't fail (or "crash"). Not all of us

succeed in doing this.

If a program gives trouble, it should be tested using breakpoint techniques.

The BRK (break) instruction is inserted at several strategic points within

the program. The program stops (or "breaks") at these points, and the

programmer has an opportunity to confirm correct behavior of the program

at selected points. Using this technique, a fault can be pinned down quite

closely.

Occasionally, usually because of bad planning, a program crashes and

the cause of the crash cannot be identified. Worse still, a lengthy program

crashes and the user has forgotten to save a copy of it; the user is then

faced with the task of putting it in all over again.

In such cases, uncrashing techniques are sometimes available to bring

the computer back from limbo. They are never entirely satisfactory, and

should be thought of as a last resort.

The technique differs from computer to computer.

279
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PET/CBM

Original ROM PETs cannot be uncrashed.

Subsequent models can be uncrashed, though hardware additions are

necessary. The reader should find someone with computer hardware

knowledge to assist in fitting the switches to the computer.

A toggle switch is needed, to be connected to the "diagnostic sense" line

of the parallel user port; that's pin 5 of the PUP. The other side of the

toggle switch should connect to ground (pin IE).

Additionally, a momentary pushbutton is required. This must connect the

reset line of the computer to ground. Technically speaking, it's better to

trigger the input of the computer's power-on reset chip (a 555 one-shot),

using a resistor to guard against accidentally grounding a live circuit.

To uncrash, set the toggle switch to "on" and press the pushbutton; the

machine will come back to life in the machine language monitor. Set the

toggle switch off. There's more work to do.

The computer is still in an unstable state. To correct this, either of two

actions may be taken. You may return to BASIC with . X and immediately

give the command CLR; Alternatively, you may type . ; followed by the

RETURN key.

Whatever investigation or other action is needed should be performed

quickly and the computer reset to its normal state.

VICICommodore 64

You might try holding down the RON/STOP key and tapping the

RESTORE key to see if that will bring the machine to its senses. Oth

erwise, you must do a more serious reset.

You must depend on the fact that the computer does a nondestructive

memory test during reset. There are various commercially available in

terfaces for the cartridge port—usually "mother boards" that are fitted with

reset switches.

When the reset switch is pressed, the computer starts from the beginning;

but memory is not disturbed. If you have logged the entry location of the

machine language monitor, you can bring it back with the appropriate S YS

command.
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Commodore PLUS/4

There's a reset button next to the power switch. Before you press it, hold

down the RON/STOP and CTRL keys. Now press the reset button and

you'll find yourself in the machine language monitor.



■J
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Supermon

Instructions
Commodore 128 users should turn to page 290, which also includes a

summary of instructions to SUPERMON+ for C64 users who also want a

better monitor.

Program Supermon is not a monitor; it is a monitor generator that will

make a machine language monitor for you. There's a reason for this.

Supermon finds a likely spot in memory and then plunks the MLM there

so as to fit it into the most suitable place.

Load Supermon and say RUN. It will write an MLM for you, and call it up.

Now, exit back to BASIC and command NEW. You do not want the MLM

builder any more (it's done the job) and you do not want the danger of

building two—or more—MLM's. Get rid of the generator program. Any

time you need to use the MLM, give SYS4orSYSfl,as appropriate.

Supermon contains the following "essential" commands:

R—to display (and change) registers

M—to display (and change) memory

S—to save memory to disk or tape

L—to load from disk or tape

G—to go to an ML program

X—to exit to BASIC

Supermon also contains the following extra commands:

a—to assemble

D—to disassemble
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Most versions of Supermon (not the "do-it-yourself" below) contain the

following commands. Though not used by this book, they are useful:

F—fills memory with fixed contents:

F iflOO ifiFF DD

H—hunts for a memory pattern:

H DflDD IflDD ED DE FF

T—transfers a block of memory to a new location:

T DflDD DBFF flDDD

A few versions of Supermon contain the command .1 which causes ma

chine language single stepping.

A Do-lt-Yourself Supermon
If you do not have access to Supermon from friends, dealers, clubs, or

disk, you may find the following program useful for the Commodore 64

only.

Enter this program (it will take you hours). Be sure that lines 3 00 and

above are correct; the lower numbered DATA lines will be checked for

accuracy by the program.

When you say RUN, the program will run in two phases. Part 1 takes over

two minutes to run: it will check all DATA statements for missing lines

and errors and report any problems to you. Part 2 will run only if part 1

shows no errors: it will cause the program to "collapse" into itself, resulting

in Supermon. The moment the program has completed running, save

Supermon to disk or tape.

The Supermon generated by this program is a "junior" version (to save

your fingers) but it contains all commands needed for this book.

I DATA Eb,fl,100,0,153,34,147,lfl,Eq,Eq,-30

E DATA Eq,Eq,fl3,fl5,flO,tq,flE,3E,54,5E ,-1b

3 DATA 45,77,7q,7fl,0,4q,fl,110,0,153,-3q

4 DATA 34,17,3E,3E,3E,3E,3E,3E,3E,3E,-50

5 DATA 3E,3E/3E,3E,3E,3E,3E,D,75,fl,-3

t DATA lE0,0,153,34,17,3E,4b,4b,74,73,-4fl

7 DATA 77,3E,bb,fl5,fl4,fl4,tq,flE,7 0,73,-5b

fl DATA bq,7b,bfl,0,10E,fl,13a,0,15fl,4a,-4

q DATA iq4,4 0,5E,51,41,17D,50,53,54,17E,-53

ID DATA iq4,40,5E,5E,41,17D,4q,50,55,41,-E5

II DATA 0,0,0,17 0,17 0,17 0,17 0,17 0,17 0,17 0,-fc4

IE DATA 17 0,17 D, 17 D, 17 0,17 0,17 0,17 0,17 0,17 0,17 0,-Eq
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13 DaTR 17D,170,170,17 0,170,170,170,lb5,45,133,-bl

14 DaTa 34,lb5,4b,133,35,lb5,55,133,3b,lb5,-lE

15 DaTa 5k,133,37,lb0,D,lb5,34,£0a,E,iqa,-55

It DBTa 35,lclfl,34,177,34,Z0fi,ba,lbS,34,2Dfl,-34

17 DaTa E,iqa,35,iqa,34,177,34,E40,33,133,-5E

Ifl DaTa 3fl,lfc5,34,EDfl,5,iqfl,35,iqfi,34,177,-bD

iq DaTa 34,E<,101,3b,17D,lb5,3a,101,37,7E, -5b

ED DaTa lb5,55,E0a,E,iqa,5b,iqa,55,104,14 5,-l

El DBTa 55,13fl,7E,lfc5,55,EDfi,E,iqfl,5fc,li:1fl,-l

E3 DRTa E37,lb5,55,133,51,lb5,5t,,133,5E,10B,-17

24 DaTa 55,D,7cl,7c!,7q,7cl,173,E3D,E55,D,-EE

E5 DaTa 141,EE,3,173,E31,E55,D,Kl,E3,3,-fc4

Eb DBTa lfcq,lEa,3E,144,E55,D,D,Elfc,lD^,l<l,-3D

E7 DRTa bE,E,lD4,:Ul,bl,E,lD4,141,bD,E,-41

iD4,i4i,5q,E,iD^,i7 0,iD<,ita,5b,i3a, -17

E33,E,141,5a,E,152,E33,0,Q,141,-lE

3D DaTa 57,E,iat,14E,t3,E,3E,147,E53,D,-57

31 DaTa lfcE,bfc,ltq,4E,3E,ED5,E51,D,lbq,aE,-bE

3E DaTa EDa,4E,E3D,iq3,E0a,fc,E3D,iq4,E0a,E,-5E

33 DBTa E3D,3a,qt,3E,ED7,S55,EDl,13,EDa,E4a,-24

34 DaTa 104,lD4,lfcq,D,D,133,3a,lfcE,13,lbq,-ll

35 DaTa 4b,3E,E05,E51,D,3E,EE0,E4q,D,EDl,-3E

37 DaTaiq5

3B DaTa E55

sq Daia it

41 DaTa Eq,ltD,D,D,3E,l^i3,S53,D,177,iq3,-31

4? DaTa 3E,iqo,E5i,o,3E,EDq,E<q,D,iqa,Eq,-bi

43 DaTa EDa,E^l,qfc,3E,E54,E51,D,144,ll,lfcE,-53

D,o,iEq,iq3,iq3,iq3,E4o,3,7b,aD,-5a

E5E,D,3E,EDq,E^q,D,iqa,Eq,qb,ibq,-5b

5q,i33,iq3,ibq,E,i33,iq/;,it,q,5,qt,-ED

47 DaTa 15E,7E,3E,147,E53,D,lD4,lbE,<fc,7b,-^

4& DaTa ED5,E51,D,lfcE,D,D,iaq,E34,E55,D,-31

<q DaTa 3E,SlD,S55,E3E,SE4,EE,EDa,E4 5,ltD,5q,-

5D DaTa 3E,afc,E5D,0,173,57,E,3£,iq0,E51,-4

51 DaTa D,173,5a,E,3E,iqD,E51,D,3E,7 5,-31

5E DaTa E5D,D,3E,33,E5D,D,E4D,a7,3S,EED,-13

53 Daia E4q,D,3E,E3q,E51,D,144,4t,3E,EE3,-4D

54 DaTa E51,0,3E,£E0,E4q,0,3E,E3q,E51, 0,-51

55 DaTa 144,35,3£,EE3,E51,0,3E,EE5,E55,E40,-33
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5b DATA t0,ltt,3Q,200,5t,lt5,iq5,iq7,iq3,lt5,-22

5? DATA iqt, EEq,iq4,144,4b,lLD,5fi,3E,ab,£50,-El

5fl DATA 0,32,103,251,0,32,31,550,0,540,-tO

5R DATA 224,71,00,252,0,32,23q,251,0,144,-42

bD DATA 3,3E,ED,E50,D,3E,75,E5D,D,EDa,-43

tl DATA 7,32,23R,251,0,144,235,Itq,0,133,-20

fcE DATA 2q,32,220,24R,0,32,53,250,0,200,-10

b3 DATA 240,7t,25R,54^,0,35,507,555,501,13,-55

b4 DATA 540,15,201,35,500,50q,35,53R,551,0,-57

b5 DATA 144,3,3E,E0,E5D,D,174,b3,E,154,-4b

bb DATA lE0,173,57,E,7E,17 3,5a,E,7E,173,-35

b7 DATA 5q,5,75,173,10,5,174,11,5,175, -55

bfl DATA tS,5,t4,174,t3,2,154,10Q,S,lt0,-5t

tq DATA 110,1,135,Iflt,135,105,131,135,103,135,-57

7D DATA144,135,147,ltq,t4,133,107,ltq,B,133,-iq

71 DATA lflfl,3E,ED7,E55,E01/3E,E4D,E4q/E0:L,13,-4E

7E DATA 240,5t,2Dl,34,200,20,32, 207,255,201,-35

73 DATA 34,240,It,201,13,240,41,145,107,230,-3q

74 DATA lfl3,EDD,iqE,lt.,EDfl,E3b/7t,aD/E5E,0,-lfl

75 DATA 32,207,255,201,13,240,22,201,44,200,-51

7 b DATA 220,32,254,251,0,41,15,540,533, 501,-41

77 DATA 3,540,22q,133,Iflt,32,207,255,501,13,-45

7fl DATA qfc,lDfl,4fl,3,lDfl,5D,3,3E,EE,E51/-bD

7q DATA 0,500,212,Itq,0,0,32,111,551, 0,-37

00 DATAlt5,144,41,lt,20fl,201,7t,22q,24q,0,-22

■01 DATA 32, 22, 551, 0,201, 44, 200, iqi, 32, 23q,-40

flE DATA E51,D/3E,EE3/S51/D,3E,ED7,E55,ED1/-E5

S3 DATA 44,200,170,32,53q,551,0,It5,iq3,133,-7

&A DATA 174,It5,iq4,133,175,32,223,251, 0,32,-34

fi5 DATA 207,255,201,13,200,157,32,114, 251, 0,-3t

fib DATA 7t,22q,24q,0,lt5,iq4,32,iq0,251,0,-3q

fl7 DATA It5,iq3,75,74,74,74,74,35,514, 551,-13

fifi DATA 0,170,104,41,15,35,514,551,0,75,-It

flq DATA 13a,3E,E10,E55,lD4,7b,ElD,E55,q,4a,-q

qO DATA 501,50,144,5,105,t,qt,It5,5,101, -3D

qi data iqa,7S,iQi,iq4,i4q,iqs,iO4,i4q,iq4,so2,-25

qE DATA EDa,E4 3,qb,3E,E54,E51,D,144,E/133, -30

q3 DATA iq4,32,254,251,0,144,2,133,iq3,qt,-43

q4 DATA ltq,0,0,133,4 2,32,220,24q,0,201,-3q

q5 DATA 32,200,q,32,220,24q,0,201, 32, 200,-25

qb DATA 14,E4,qb,3E,37,E5E,D,lD,lD/10, -t2

q7 DATA lD,133,4E,3E,SED/E4q,D,3E,37,E5E,-3q

qa DATA 0,5,42,5t,qt,201,50,144,2,105, -2t
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qq DfiTfi 6,41,15,qt,qt,35,S30,54q,0,S01,-tS

1D0 DfiTfi 3S,S4 0,34q,qt,ltq,D,0,141,0,0,-5S

1D1 DfiTfi 1,35,47,555,0,35,5,353,0,35,-Sq

IDE DfiTfi 545,551,0,144,q,qt,35,550,S4q,0,-56

1D3 DfiTfi 33,33q,351,0,l?t,33S,174,t3,S,154,-35

104 DfiTfi lbq,b3,3E,£10,ES5,7b,EEq,£4q,0,3E,-4a

105 DfiTfi 143,553,0,SOS,SOQ,550,Rk,lb5,iq5,lk4,-IE

10b DfiTfi iqt,5t,S33,5,17t,l,13t,5t,S5q,iq3,-tl

107 DfiTfi 133,3 0,15E,EEq,iq4,lba,5,30,qb,3E, -41

lOfl DfiTfi 55,E5E,0,133,3S,lt5,1^4,133, 33 ,ltS,-33

10q DfiTfi 0,0,134,4 0,lbq,147,3E,E10,E55,lbq,-3E

110 DfiTfi EE,133,Eq,3E,lb5,E5E,0,3E,5,E53,-E

111 DfiTfi 0,133,iq3,13E,iq4,ISfl,E^,EOfl,E4E,Ib^,-It

HE DfiTfi 14 5,3E,E10,E55,7fc,EEcl,E4q,0,lt0,44, -41

113 DfiTfi 3E,fib,E50,0,3E,143,E53,0,3E,lfl3,-S3

114 DfiTfi 551,D,33,143,553,0,Its,0,0,ltl, -35

115 DfiTfi iq3,3E,E0,E53,0,7E,3E,q0,E53,0,-E5

lib DftTfi 104,3E,llE,E53,0,lbE,b,EE4,3,E0fl,-43

117 DfiTfi Ifl,lt4,31,340,14,It5,45,501,333,177,-10

llfi DfiTfi iq3,17b,Sfi,3E,E53,E5E,0,13b,EDfl,E4E,-15

liq DfiTfi b,4E,144,14,lflcl,54,S55,0,3E,lfl7,-3

1E0 DfiTfi E53,0,lfiq,b0,E55,0,E4 0,3,3E,lfl7,-E4

1E1 DfiTft E53,0,E0E,E0fl,E13,qb,3E,fl,E53,0,-4 5

1ES DfiTfi 17 0,333,300,1,300,155,35,353, 353, 0,-3q

1E3 DfiTfi 13fl,134,3fl,3S,iq0,351,0,ltt,3fl,qt,-47

1E4 DfiTft lt5,31,5t,lt4,iq4,17 0,lt,l,13t,101,-53

1E5 DftTfi iq3,144,1,300,qt,Itfl,74,144,11,74,-51

131 DfiTfi 171,S3,301,34,340,iq,41,7, q, 155,-t3

1E7 DfiTfi 74,170,lflq,EEq,E54,0,17b,4,74,74,-5E

156 DfiTfi 74,74,41,15,506,4,1tO,136,Itq,0,-30

13q DflTfi 0,170,16q,41,355,0,133,45,41,3,-t5

130 DATfi 133,31,155,41,143,170,155,It0,3, 334,-3t

131 DfiTfi 136,340,11,74,144,6,74,74,q,33,-b

13E DfiTfi 13b,E0a,E50,EDO,13b,E0B,E4E,qb, 177, iq3,-Eq

133 DfiTfi 35,553,555,0,It5,1,35,q3,355,0,-It

134 DfiTfi iqt,31,500,144,541,It3,3,iq3,4,144,-16

135 DfiTfi E4E,qb,lbfi,ia5,b7,E55,0,133,40,165,-13

13 b DfiTfi 131,555,0,133,41,Itq,0,0,It0,5,-3

137 DfiTfi t,41,36,40,45,131,306,346,105,t3,-57

-136 DfiTfi 33, 510, 555, 503, 306, 531, Itq, 35, 506,11,-It

13q DfiTfi lbq,13,3b,iq,lb,5,3E,E10,E55,lbq,-30

140 DfiTfi 10,7b,E10,E55,3E,55,E5E,0,lbq,3,-El

141 DfiTfi 133,Eq,3E,EE0,E4q,0,3E,53,E50,0,-4E
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14E DATA EDB, E4a,lt5,3E, 133, iq3,19=5,33,133,194,-43

DATA 7b,134,E5E,D,iq7,4Q,E4D,3,3E,ElD, -fcD

DATA 255,Rb,32,55,E52,D,32,523,551,0, -57

14 5 DATA 14E,17,E,lbE,3,3£,47,E5£,D,7E,-43

141 DATA E0E,E0a,E4q,lb£,3,104,5EJ,£33,b3,lb0,-37

147 DATA 5,74,110,17,E,llD,lt,E,13t,EDfl, -It

14fl DATA E4fc,EDE,E0fl,E37,lbE,E,3E,ED7,E55,EDl,-31

14 q DATA 13,E4D,3D,EDl,3E,E4D,E4 5,3E,EED,E54,-q

15D DATA G,17t.,15,3E,ia,E5E,D,lb4,iq3,13£,-q

151 DATA 1^4,133,1R3,itR,4fl,157,1b,E,E3E , 157, -47

15E DATA lfc,E,E3E,EDfi,Elcl,134,4D,lfcE,D,D,-lD

153 DATA 134,3fl,E4D,4,E3D,3a,E4D,117,ltE,D,-q

154 DATA D,134,Eq,lfc5,3fl,3E,EQ,E53,0,lbb,-4fi

155 DATA 4E,134,41,17D,lflfi,t7,E55,D,lflc1,131,-47

151 DATA E5S,D,3E,iq7,£54,D,E0fl,E£7,lbE,b, -54

157 DATA EE4,3,EDfl,E5,lb4,31,E4D,El,lt5,4E,-fc3

15fl DATA EDl,E3E,lfccl,4fl,17fc,33,3E,ED3,E54,D,-3S

15R DATA EDfl,ED4,3E,ED5,E54,D,EDfl,lclcl,13b,EQfl,-Efl

ltD DATA E35,fc,4E,144,ll,lflfi,fcD,E55,D,lflcl, -15

Itl DATA 54,E55,D,3E,lcl7,E54,Q,EDfl,iai,EDE,-l

itE DATA EDfl,EDcl,E4D,lD,3E,li:1tJ,E54,D,SDfl,171,-51

It3 DATA 3E,iqt,S54,D,EDfl,lbt.,lfc5,4D,lc17,Eq,-15

Ib4 DATA EDfl,lfcD,3E,EE3,E51,D,lfc4,31,E40,4D,-b

Ib5 DATA lfc5,41,E01,157,EDfl,Ek,3E,qcl,E5E,0,-35

Itt DATA 144,lD,15E,EDfl,4,lb5,3D,lfc,lD,7t,-4D

It7 DATA fiD,E5E,D,EDD,EDfl,E5D,lt5,3D,lfc,E4fc, -R

Itfl DATA 114,31,EDfi,3,lfl5,iq4,D,D,14 5,193,-bE

Ifcq DATA 13t,EDfl,E4fl,lt5,3fl,145,iq3,3S,5,E53,-41
17D DATA D,133,iq3,13E,iq4,ltD,t5,3E,flt,E5D,-34
171 DATA D,3E,143,E53,D,3E,lfl3,E51,D,3E,-5t
17E DATA 143,E53,D,7t,iqfl,E53,D,ltfl,3E,ED3,-Eq
173 DATA E54,D,EDa,17,15E,E4D,14,134,Efi,ltt,-t3
174 DATA Eq,EEl,lt,E,a,E3E,134,Eq,ltb,Ea,-tD
175 DATA 4D,qt,EDl,4a,144,3,EDl,71,qb,5t, -3D
17b DATA qt,fc4,E,tq,3,EDa,a,fc4,q,4a,-14
177 DATA 34,tq,51,EDa,a,t4,q,fc4,E,tq,-5D
178 DATA 51,EDfl,a,fc4,q,b4,E,fcq,17q,EDa,-47
17q DATA a,b4,q,D,D,34,ta,51,EDa,14D,-ia
iaD DATA ta,D,D,17,34,fca,51,SDfl,14D,fca,-5
lai DATA 154,lfc,34,ba,51,EDa,a,t4,q,lt,-ED
iaE data 34,ba,5i,Eoa,a,b4,q,qa,iq,iED,-bE
183 DATA ltq,D,D,33,lEq,130,D,D,D,D,-41
184 DATA aq,77,145,14t,134,74,133,157,44,41,-3q
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IBS DATA AA,35,40,3b,flq,0,0,flfl,3b,3b,-EE

Iflt DATA 0,D,£fi,13fl,Efl,35,q3,13q,E7,lbl,-10

Ifl? DATA 157,13fi,2q,35,157,13q,Eq,lbl,0,0,-q

Ififl DATA41,E5,174,105,lbfl,E5,35,3b,fl3,27,-b4

DATA 35,3E,,fl3,25,lbl,0,0,Eb,qi,qi,-E4

DATA lb5,105,3b,3L,174,174,lbfl,173,41,0,-3

1R1 DATA 0,lE4,a,0,El,15b,iaq,15b,lb5,105,-E0

IRS DATA 41,fi3,13E,iq,5£,17,lb5,105,35,lb0,--Eb

1R3 DATA Elb,qfl,q0,7E,3fl,qfl,14fl,13b,fl4,bfl,-20

DATA E00,fl4,104,bfl,E3E,14fl,0,0,lfl0,fi,-31

DATA 13E,llb,lfl0,40,110,llb,E^,E04,74,114,-3E

DATA E4E,lb4,13fi,0,0,17D,lbE,lbE,llb,llk,-ll

1R7 DATA llb,114,bfl,lD</17fl/5D,l?fl/Q,D,34f-30

DATA D,D,Et,Et,3fl,3fl,114,ll<,13fc,EDD,-E7

DATA lRt,EDE,3fl,7E,tfl,tfl,ifcE,E00,53,5^,-35

EDD DATA flE,77,71,flfl,7fc,fl3,tfi,^A,fc5,ED4,-5R

E01 DATA a5D,Dfiqi,a5D/D,qt,a5D,D,13<,a5D,-a5

EOE DATA D,EE^,E5D,D,l^,E51,D,llt,E51,D,-E3

ED3 DATA 135,E51,D,1E0,E5E,D,ltD,E53,D,1HA,-1R

ED< DATA E53,D,EEfl,E^q,D,157,E4q,D,13q,E4q,-t3

ED5 DATA D,13,3E,3E,3E,flD,t7,3E,3E,fl3,-3

EDfc DATA flE,3E,fc5,t7,3E,flfl,flE,3E,fiq,flE,-lt

ED7 DATA 3S,fl3,flD,-5q

E55 DATA EDfi

3D0 M=fc3

31D READ X:L = PEEK(M) :H = L = E55:IFH THEN L = X

3ED V = R<)L:S=(T<)fc3 AND R)D AND V)

33D IF V THEN T = L:IF NOT S THEN R = R + 1:S = R<>L

3AU T=(T*3+X)ANDt3

350 IF S THEN PRINT "ERROR LINE";R:E = -1

3tD R = L:IF NOT H GOTO 31D

37D IF E THEN STOP

3fiD PRINT"HERE WE GO" : X= -1: RESTORE : B = EQ<q : FOR A =

to qqqq

3qD IFX) = DTHEN POKEB,X:B = B + 1

ADO READ X:L = PEEK(M) : IF L(E55 THEN NEXT A

410 POKE 45,lfc:POKE 4fc,lt
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The Commodore 128 Monitor and

SUPERMON +
The built-in machine language monitor of the Commodore 128 is quite

close to SUPERMON. With the release of the C128, a new version of

SUPERMON (called SUPERMON+ ) has been produced so as to match

the commands and syntax of the 128's monitor. Versions are available

for Commodore 64 (including the 128 in 64 mode) and for VIC-20.

The principal features of the new monitor, as compared to SUPERMON,

are as follows:

—Syntax is somewhat easier. Leading zeros need not be typed on any number.

Spacing between addresses is non-critical.

—Conversion between number systems is built-in. The user may employ the

following prefixes: $ for hexadecimal; + for decimal; & for octal (rarely used

with present day microcomputers); and % for binary. Any value or address

may be entered in any number system. If a number is typed in alone, with

its prefix, it will be shown converted to all other number systems.

—When the A(assemble) command is given, the object code immediately ap

pears on the line just typed.

—The disk may be controlled, interrogated or cataloged by means of the disk

"@" command.

—Memory displays contain information on the ASCII equivalents of the bytes

displayed.

—Commands such as M (memory display) and D allow: two addresses, to

display a specified range; one address, to display a fixed range; or no ad

dresses, to continue the display from that shown previously.

Program SUPERMON +, for VIC-20 and Commodore 64, is not a monitor;

it is a monitor generator that will make a machine language monitor for

you. SUPERMON + finds a likely spot in memory and then plunks the

MLM there so as to fit into the most suitable place.

If you are using a VIC-20 or Commodore 64 configuration, load SUPER

MON 4- and type RUN. It will write an MLM for you, and call it up. Now,

exit back to BASIC and command NEW. You do not want the MLM builder

any more (it's done the job) and you do not want the danger of building

two—or more—MLM's. Get rid of the generator program. Any time you

need to use the MLM, give SYSfl.

If you are using the Commodore 128 in its C128 mode, there's no need

to load a monitor. Just command MONITOR and you are there.
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The C128 monitor and SUPERMON + use the following commands:

R—to display (and change) registers

M—to display (and change) memory

S—to save memory to disk or tape

L—to load from disk or tape

G—to go to an ML program

X—to exit to BASIC

A—to assemble

D—to disassemble

The above commands are the only ones used within the text of the book.

Other commands which are available are:

F—fills memory with fixed contents:

F iflOO iflFF DD

H—hunts for a memory pattern:

H DflDD IflDD ED D5 FF

T—transfers a block of memory to a new location:

T DflDD DBFF flODD

C—compares a block of memory to another.

C DflDD DCDD flDDD

J—calls a subroutine directly from the monitor.

J D33C

@—alone, gets the disk status report.

@, $D—gets the disk directory.

@, SD : S AMPLE—sends a command to the disk (in the example, scratch file

SAMPLE).

The @ symbol may be followed by a number to reference a drive other

than unit 8.
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IA Chip

Information

The following material has been adapted from manufacturer's specifica

tions. The information is not essential to machine language programming,

but can be a great help for further study. Some of these specifications are

not widely published and contain "hard to get" information.

6520 PI A, peripheral interface adaptor

6522 VIA, versatile interface adaptor

6525 TPA, tri port adaptor

6526 CIA, complex interface adaptor

6545 CRTC, CRT controller

6560 VIC video interface chip

6566 VIC-5 video interface chip

6581 SID sound interface chip

[Essentially manufacturer's specs, less hardware details]

293
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6520 Peripheral Interface Adaptor (PIA)
The 6520 is an I/O device which acts as an interface between the micro

processor and peripherals such as printers, displays, keyboards, etc. The

prime function of the 6520 is to respond to stimulus from each of the two

worlds it is serving. On the one side, the 6520 is interfacing with peripherals

via two eight-bit bi-directional peripheral data ports. On the other side, the

device interfaces with the microprocessor through an eight-bit data bus.

In addition to the lines described above, the 6520 provides four interrupt

input/peripheral control lines and the logic necessary for simple, effective

control of peripheral interrupts.

MICRO

PROCESSORS

650 x

8 BIT \
DATA )
BUS /

(control)

6520

CONTROL

8 BIT

DATA

PORT

8 BIT

. DATA

\ PORT

CONTROL)

PERIPHERAL

DEVICES-

PRINTERS,

DISPLAYS,

ETC.

Figure 1.1

The functional configuration of the 6520 is programmed by the micro

processor during systems initialization. Each of the peripheral data lines

is programmed to act as an input or output and each of the four control/

interrupt lines may be programmed for one of four possible control modes.

This allows a high degree of flexibility in the overall operation of the in

terface.

Data Input Register

When the microprocessor writes data into the 6520, the data which ap

pears on the data bus is latched into the Data Input Register. It is then

transferred into one of six internal registers of the 6520. This assures that

the data on the peripheral output lines will not "glitch," i.e., the output lines

will make smooth transitions from high to low or from low to high and the

voltage will remain stable except when it is going to the opposite polarity.
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Control Registers fCR A and CRB)

Figure 1.2 illustrates the bit designation and functions in the Control Reg

isters. The Control Registers allow the microprocessor to control the op

eration of the interrupt lines (CR1, CRE, CB1, CBE), and peripheral

control lines (CRE, CBE). A single bit in each register controls the ad

dressing of the Data Direction Registers (DDRR, DDRB) and the Output

Registers, (ORR, ORB) discussed below. In addition, two bits (bit fc and

7) are provided in each control register to indicate the status of the interrupt

input lines (CR1, CRE, CB1, CBE). These interrupt status bits (IRQR,

IRQB) are normally interrogated by the microprocessor during the inter

rupt service program to determine the source of an active interrupt. These

are the interrupt lines which drive the interrupt input (IRQ, NMI) of the

microprocessor. The other bits in CRR and GRB are described in the

discussion of the interface to the peripheral device.

The various bits in the control registers will be accessed many times during

a program to allow the processor to enable or disable interrupts, change

operating modes, etc. as required by the peripheral device being con

trolled.

Data Direction Registers (DDRA, DDRB)

The Data Direction Registers allow the processor to program each line in

the 8-bit Peripheral I/O port to act as either an input or an output. Each

bit in DDRR controls the corresponding lines in the Peripheral A port and

each bit in DDRB controls the corresponding line in the Peripheral B port.

Placing a fl D » in the Data Direction Register causes the corresponding

Peripheral I/O line to act as an input. A •• 1" causes it to act as an output.

The Data Direction Registers are normally programmed only during the

system initialization routine which is performed in response to a Reset

signal. However, the contents of these registers can be altered during

system operation. This allows very convenient control of some peripheral

devices such as keyboards.

Peripheral Output Registers (OR A, ORBJ

The Peripheral Output Registers store the output data which appears on

the Peripheral I/O port. Writing an MD'f into a bit in ORR causes the

corresponding line on the Peripheral A port to go low (< D . A V) if that

line is programmed to act as an output. A11!11 causes the corresponding

output to go high. The lines of the Peripheral B port are controlled by ORB

in the same manner.
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Interrupt Status Control

The four interrupt/peripheral control lines (CA1, CAE, CB1, CBE) are

controlled by the Interrupt Status Control (A, B). This logic interprets the

contents of the corresponding Control Register, detects active transitions

on the interrupt inputs and performs those operations necessary to assure

proper operation of these four peripheral interface lines.

Reset (RES)

The active low Reset line resets the contents of all 6520 registers to a

logic zero. This line can be used as a power-on reset or as a master reset

during system operation.

Interrupt Request Line (I R Q A, IRQ B)

The active low Interrupt Request lines (IRQA and IRQB) act to interrupt

the microprocessor either directly or through external interrupt priority cir

cuitry.

Each Interrupt Request line has two interrupt flag bits which can cause

the Interrupt Request line to go low. These flags are bits fc and 7 in the

two Control Registers. These flags act as the link between the peripheral

interrupt signals and the microprocessor interrupt inputs. Each flag has a

corresponding interrupt disable bit which allows the processor to enable

or disable the interrupt from each of the four interrupt inputs (CA1, CAE,

CB1, CBE).

The four interrupt flags are set by active transitions of the signal on the

interrupt input (CA1, CAE, CB1, CBE). Controlling this active transition

is discussed in the next section.

Control of IRQA

Control Register A bit 7 is always set by an active transition of the CA1

interrupt input signal. Interrupting from this flag can be disabled by setting

bit D in the Control Register A (CRA) to a logic D. Likewise, Control

Register A bit fc can be set by an active transition of the CAE interrupt

input signal. Interrupting from this flag can be disabled by setting bit 3 in

the Control Register to a logic D.

Both bit b and bit 7 in CRA are reset by a "Read Peripheral Output

Register A" operation. This is defined as an operation in which the pro

cessor reads the Peripheral A I/O port.
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Control of IRQB

Control of IRQB is performed in exactly the same manner as that de

scribed above for IRQ A. Bit 7 in CRB is set by an active transition on

CB1; interrupting from this flag is controlled by CRB bit 0. Likewise, bit

b in CRB is set by an active transition on CB2; interrupting from this flag

is controlled by CRB bit 3.

Also, both bit t and bit 7 are reset by a "Read Peripheral B Output

Register" operation.

Summary
IRQA goes low when CRA-7 = lanc/CRA-D = 1 or when CRA-b

= 1 and CRA-3 = 1.

IRQB goes low when CRB-7 = 1 and CRB -D = 1 or when CRB- fc

= 1 and CRB-3 = 1.

It should be stressed at this point that the flags act as the link between

the peripheral interrupt signal and the processor interrupt inputs. The in

terrupt disable bits allow the processor to control the interrupt function.

Peripheral I/O Ports
Each of the Peripheral I/O lines can be programmed to act as an input or

an output. This is accomplished by setting a " 1" in the corresponding

bit in the Data Direction Register for those lines which are to act as outputs.

A " 0 " in a bit of the Data Direction Register causes the corresponding

Peripheral I/O lines to act as an input.

Interrupt Input/Peripheral Control Lines (C Al,

CAE, CB1, CBE

The four interrupt input/peripheral control lines provide a number of special

peripheral control functions. These lines greatly enhance the power of the

two general purpose interface ports (PAD-PA7, PBD-PB7).

Peripheral A Interrupt Input/Peripheral Control

Lines (CM, CAEj

CAl is an interrupt input only. An active transition of the signal on this

input will set bit 7 of the Control Register A to a logic 1. The active transition

can be programmed by the microprocessor by setting a " D " in bit 1 of
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the CRA if the interrupt flag (bit 7 of CRA) is to be set on a negative

transition of the CA1 signal or a "1" if it is to be set on a positive transition.

Setting the interrupt flag will interrupt the processor through IRQA if bit

D of CR A is a 1 as described previously.

CAE can act as a totally independent interrupt input or as a peripheral

control output. As an input (CRA / bit 5 = D) it acts to set the interrupt

flag, bit b of CRA, to a logic 1 on the active transition selected by bit 4

of CRA.

These control register bits and interrupt inputs serve the same basic func

tion as that described above for CA1. The input signal sets the interrupt

flag which serves as the link between the peripheral device and the pro

cessor interrupt structure. The interrupt disable bit allows the processor

to exercise control over the system interrupts.

In the Output mode (CRA, bit 5 = 1), CAE can operate independently

to generate a simple pulse each time the microprocessor reads the data

on the Peripheral A I/O port. This mode is selected by setting CRA, bit 4

to a "D11 and CRA, bit 3 to a "1". This pulse output can be used to

control the counters, shift registers, etc. which make sequential data avail

able on the Peripheral input lines.

A second output mode allows CAE to be used in conjunction with CA1

to "handshake" between the processor and the peripheral device. On the

A side, this technique allows positive control of data transfers from the

peripheral device into the microprocessor. The CA1 input signals the

processor that data is available by interrupting the processor. The pro

cessor reads the data and sets CAE low. This signals the peripheral device

that it can make new data available.

The final output mode can be selected by setting bit A of CRA to a 1. In

this mode, CAS is a simple peripheral control output which can be set

high or low by setting bit 3 of CRA to a 1 or a D respectively.

Peripheral B Interrupt Input!Peripheral Control

Lines (CB1, CB2J

CBl operates as an interrupt input only in the same manner as C A1. Bit

7 of CRB is set by the active transition selected by bit D of CRB. Likewise,

the CBE input mode operates exactly the same as the CAE input modes.

The CBE output modes, CRB, bit S = 1, differ somewhat from those

of CAE. The pulse output occurs when the processor writes data into the

Peripheral B Output Register. Also, the "handshaking" operates on data

transfers from the processor into the peripheral device.
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CRA

7

IRQA1

6

IRQA2

5

CA2
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4 3

CONTROL

2

DDRA

ACCESS

1

CA1

r

0

CONTROL

CRB

7

IRQB1

6

IRQB2

5 4 3

CB2 CONTROL

A
f ^

2

DDRB

ACCESS

1 0

CB2 CONTROL

Figure I.2

6545-1 CRT Controller (CRTC)

Concept

The 6545-1 is a CRT Controller intended to provide capability for inter

facing the 6500 microprocessor family to CRT or TV-type raster scan

displays.

Horizontal Total (R0)

This 8-bit register contains the total of displayed and non-displayed char

acters, minus one, per horizontal line. The frequency of HSYNC is thus

determined by this register.

Horizontal Displayed (R1)

This 8-bit register contains the number of displayed characters per hori

zontal line.

Horizontal Sync Position (R2)

This 8-bit register contains the position of the HSYNC on the horizontal

line, in terms of the character location number on the line. The position

of the HSYNC determines the left-to-right location of the displayed text on

the video screen. In this way, the side margins are adjusted.
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Horizontal and Vertical SYNC Widths (R3)

This 8-bit register contains the widths of both HSYNC and VSYNC, as

follows:

7 6 5 4 3 2 1 0

8 4 2 1

VSYNC WIDTH* HSYNC WIDTH

(NUMBER OF SCAN LINES) (NUMBER OF CHARACTER

CLOCK TIMES)

*IF BITS 4-7 ARE ALL "0"; THEN VSYNC WILL BE 16 SCAN LINES WIDE.

Control of these parameters allows the 6545-1 to be interfaced to a variety

of CRT monitors, since the HSYNC and VSYNC timing signals may be

accommodated without the use of external one-shot timing.

Vertical Total (R4)

The Vertical Total Register is a 7-bit register containing the total number

of character rows in a frame, minus one. This register, along with R5,

determines the overall frame rate, which should be close to the line fre

quency to ensure flicker-free appearance. If the frame time is adjusted to

be longer than the period of the line frequency, then RES may be used

to provide absolute synchronism.

Vertical Total Adjust (R5)

The Vertical Total Adjust Register is a 5-bit write only register containing

the number of additional scan lines needed to complete an entire frame

scan and is intended as a fine adjustment for the video frame time.

Vertical Displayed (R6)

This 7-bit register contains the number of displayed character rows in each

frame. In this way, the vertical size of the displayed text is determined.
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Vertical Sync Position (R7)

This 7-bit register is used to select the character row time at which the

VSYNC pulse is desired to occur and, thus, is used to position the dis

played text in the vertical direction.

Mode Control (R8)

This register is used to select the operating modes of the 6545-1 and is

outlined as follows:

0

-INTERFACE MODE CONTROL

BIT

1

X

X

0

0

1

OPERATION

NON INTERLACE

INVALID (DO NOT USE)

"VIDEO DISPLAY RAM ADDRESSING

"0" FOR STRAIGHT BINARY

"1" FOR ROW/COLUMN

-MUST PROGRAM TO "0"

-DISPLAY ENABLE SKEW

"0" FOR NO DELAY

"1" TO DELAY DISPLAY ENABLE

ONE CHARACTER TIME

-CURSOR SKEW

"0" FOR NEW DELAY

"1" TO DELAY CURSOR ONE

CHARACTER TIME

NOT USED

Figure 1.3

Scan Line (R9)

This 5-bit register contains the number of scan lines per character row,

including spacing.
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Cursor Start (R10) and Cursor End (R11)

These 5-bit registers select the starting and ending scan lines for the

cursor. In addition, bits 5 and 6 of R10 are used to select the cursor mode,

as follows:

6

0

0

1

1

BIT

5

0

1

0

1

CURSOR MODE

No Blinking

No Cursor

Blink at 1/16 field rate

Blink at 1/32 field rate

Note that the ability to program both the start and end scan line for the

cursor enables either block cursor or underline to be accommodated.

Registers R14 and R15 are used to control the character position of the

cursor over the entire 16K address field.

Display Start Address High (R12) and Low

(R13)

These registers together comprise a 14-bit register whose contents is the

memory address of the first character of the displayed scan (the character

on the top left of the video display, as in Figure 1). Subsequent memory

addresses are generated by the 6545-1 as a result of CCLK input pulses.

Scrolling of the display is accomplished by changing R12 and R13 to the

memory address associated with the first character of the desired line of

text to be displayed first. Entire pages of text may be scrolled or changed

as well via R12 and R13.

Cursor Position High (R14) and Low (R15)

These registers together comprise a 14-bit register whose contents is the

memory address of the current cursor position. When the video display

scan counter (MA lines) matches the contents of this register, and when

the scan line counter (RA lines) falls within the bounds set by R10 and

R11, then the CURSOR output becomes active. Bit 5 of the Mode Control

Register (R8) may be used to delay the CURSOR output by a full CCLK

time to accommodate slow access memories.

LPEN High (R16) and Low (R17)

These registers together comprise a 14-bit register whose contents is the

light pen strobe position, in terms of the video display address at which
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the strobe occurred. When the LPEN input changes from low to high, then,

on the next negative-going edge of CCLK, the contents of the internal

scan counter is stored in registers R16 and R17.

6560 (VIC) Video Interface Chip
The 6560 Video Interface Chip (VIC) is designed for color video graphics

applications such as low cost CRT terminals, biomedical monitors, control

system displays and arcade or home video games. It provides all of the

circuitry necessary for generating color programmable character graphics

with high screen resolution. VIC also incorporates sound effects and A/D

converters for use in a video game environment.

Features
• Fully expandable system with a 16K byte address space

• System uses industry standard 8 bit wide ROMS and 4 bit wide RAMS

• Mask programmable sync generation, NTSC-6560, PAL-6561

• On-chip color generation (16 colors)

• Up to 600 independently programmable and movable background locations

on a standard TV

• Screen centering capability

• Screen grid size up to 192 Horizontal by 200 Vertical dots

• Two selectable graphic character sizes

• On-chip sound system including:

a) Three independent, programmable tone generators

b) White noise generator

c) Amplitude modulator

• Two on-chip 8 bit A/D converters

• ON-chip DMA and address generation

• No CPU wait states or screen hash during screen refresh

• Interlaced/Non-interlaced switch

• 16 addressable control registers

• Light gun/pen for target tjames

• 2 modes of color operation

A: Interlace mode: A normal video frame is sent to the TV 60 times each

second. Interlace mode cuts the number of repetitions in half. When used

with multiplexing equipment, this allows the VIC picture to be blended with

a picture from another source.
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To turn off: POKE 36864, PEEK(36864) AND 127

To turn on: POKE 36864, PEEK(36864) OR 128

B: Screen origin—horizontal: This determines the positioning of the

image on the TV screen. The normal value is 5. Lowering the value moves

the screen to the left, and increasing it moves the image to the right.

To change value: POKE 36864, PEEK(36864) AND 128 OR X

LOC

Hex

9000

9001

9002

9003

9004

9005

9006

9007

9008

9009

900A

900B

900C

900D

900E

900F

START VALUE-5K VIC

Binary

00000101

00011001

10010110

V0101110

vwvvwv

11110000

00000000

00000000

11111111

11111111

00000000

00000000

00000000

00000000

00000000

00011011

Decimal

5

25

150

46 or 174

V

240

0

0

255

255

0

0

0

0

0

27

Bit

Function

ABBBBBBB

CCCCCCCC

HDDDDDDD

GEEEEEEF

GGGGGGGG

HHHHIIII

JJJJJJJJ

KKKKKKKK

LLLLLLLL

MMMMMMMM

NRRRRRER

OSSSSSSS

PTTTTTTT

QUUUUUUU

wwwwvvw

XXXXYZZZ

A: Interlace mode: 0 = off, N: Bass sound switch

1 = on O: Alto sound switch

B: Screen origin—horizontal P: Soprano sound switch

C: Screen origin—vertical Q: Noise switch

D: Number of video columns R: Bass Frequency

E: Number of video rows S: Alto Frequency

F: Character size: T: Soprano Frequency

0 = 8x8, 1=8x16 U: Noise Frequency

G: Raster value ..V: Loudness of sounds

H: Screen memory location W: Auxiliary color

I: Character memory location X: Screen color

J: Light pen—horizontal Y: Reverse mode 0 = on,

K: Light pen—vertical 1 = off

L: Paddle 1 Z: Border color

M: Paddle 2
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C: Screen origin—vertical: This determines the up-down placement of

the screen image. The normal value is 25. Lowering this causes the screen

to move up by 2 rows of dots for each number lowered, and raising it

moves the screen down.

To change value: POKE 36865, X

D: Number of video columns: Normally, this is set to 22. Changing this

will change the display accordingly. Numbers over 27 will give a 27 column

screen. The cursor controls are based on a fixed number of 22 columns,

and changing this number makes the cursor controls misbehave.

To change: POKE 36866, PEEK(36866) AND 128 OR X.

E: Number of video rows: The number of rows may range from 0 to 23.

A larger number of rows causes garbage to appear on the bottom of the

screen.

To change: POKE 36867, PEEK(36867) AND 129 OR (X*2)

F: Character size: This bit determined the size of the matrix used for

each character. A 0 here sets normal mode, in which characters are 8 by

8 dots. A 1 sets 8 by 16 mode, where each character is now twice as tall.

8 by 16 mode is normally used for high resolution graphics, where it is

likely to have many unique characters on the screen.

To set 8 by 8 mode: POKE 36867, PEEK(36867) AND 254

To set 8 by 16 mode: POKE 36867, PEEK(36867) OR 1

G: Raster value: This number is used to synchronize the light pen with

the TV picture.

H: Screen memory location: This determines where in memory the VIC

keeps the image of the screen. The highest bit in location 36869 must be

a 1. Bits 4-6 of location 36869 are bits 10-12 of the screen's address,

and bit 7 of location 36866 is bit 9 of the address of the screen. To

determine the location of the screen, use the formula:

S = 4* (PEEK(36866) AND 128) 4- 64* (PEEK(36869) AND 112)

Note that bit 7 of location 36866 also determines the location of color

memory. If this bit is a 0, color memory starts at location 37888. If this bit

is a 1, color memory begins at 38400. Here is a formula for this:

C = 37888 + 4* (PEEK(36866) AND 128)

I: Character memory location: This determines where information on

the shapes of characters are stored. Normally this pointer is to the char

acter generator ROM, which contains both the upper case/graphics or the
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upper/lower case set. However, a simple POKE command can change

this pointer to a RAM location, allowing custom character sets and high

resolution graphics.

To change: POKE 36869, PEEK(36869) AND 240 OR X

(See chart on next page.)

J: Light pen horizontal: This contains the latched number of the dot

under the light pen, from the left of the screen.

K: Light pen vertical: The latched number of the dot under the pen,

counted from the top of the screen.

X

Value

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Location

HEX

8000

8400

8800

8C00

9000

9400

9800

9C00

0000

1000

1400

1800

1C00

Decimal

32768

33792

34816

35840

36864

37888

38912

39936

0

4096

5120

6144

7168

uoniems

Upper case normal characters

Upper case reversed characters

Lower case normal characters

Lower case reversed characters

unavailable

unavailable

VIC chip-unavailable

ROM-unavailable

unavailable

unavailable

unavailable

unavailable

RAM

RAM

RAM

RAM

L: Paddle X: This contains the digitized value of a variable resistance

(game paddle). The number reads from 0 to 255.

M: Paddle Y: Same as Paddle X, for a second analog input.

N: Bass switch: If this bit is a 0, no sound is played from Voice 1. A 1

in this bit results in a tone determined by Frequency 1.

To turn on: POKE 36874, PEEK(36874) OR 128

To turn off: POKE 36874, PEEK(36874) AND 127

O: Alto switch: See Bass switch.
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P: Soprano switch: See Bass switch.

Q: Noise switch: See Bass switch.

R: Bass Frequency: This is a value corresponding to the frequency of

the tone being played. The larger the number, the higher the pitch of the

tone.

The actual frequency of the sound in cycles per second (hertz) is deter

mined by the following formula:

Frequency =
Clock

(127-X)

X is the number from 0 to 127 that is put into the frequency register. If X

is 127, then use -1 for X in the formula. The value of Clock comes from

the following table:

Register

36874

36875

36876

36877

NTSC (US TV's)

3995

7990

15980

31960

PAL (European)

4329

8659

17320

34640

To set: POKE 36874, PEEK(36874) AND 128 OR X

S: Alto Frequency: This is a value corresponding to the frequency of the

tone being played. The larger the number, the higher the pitch of the tone.

T: Soprano Frequency: This is a value corresponding to the frequency

of the tone being played. The larger the number, the higher the pitch of

the tone.

To set: POKE 36876, PEEK(36876) AND 128 OR X

U: Noise Frequency: This is a value corresponding to the frequency of

the noise being played. The larger the number, the higher the pitch of the

noise.

To set: POKE 36877, PEEK(36877) AND 128 OR X

V: Loudness of sounds: This is the volume control for all the sounds

playing. 0 is off and 15 is the loudest sound.

To set: POKE 36878, PEEK(36878) AND 240 OR X

W: Auxiliary color: This register holds the color number of the auxiliary

color. The value can be from 0 to 15.
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To set: POKE 36878, PEEK(36878) AND 15 OR (16*X)

X: Screen color: A number from 0 to 15 sets the color of the screen.

To set: POKE 36879, PEEK(36879) AND 15 OR (X*16)

Y: Reverse mode: A 1 in this bit indicates normal characters, and a 0

here causes all characters to be displayed as if reversed.

To turn on reverse mode: POKE 36879, PEEK(36879) AND 247

To turn off reverse mode: POKE 36879, PEEK(36879) OR 8

Z: Border color: A number from 0 to 7 sets the color of the screen.

To set: POKE 36879, PEEK(36879) AND 248 OR X

6522 Versatile Interface Adapter (VIA)
The 6522 Versatile Interface Adapter (VIA) provides two peripheral ports

with input latching, two powerful interval timers, and a serial-to-parallel/

parallel-to-serial shift register.

6522 Versatile Interface Adapter Description

ADDRESS

9110

9111

9112

9113

9114

9115

9116

9117

9118

9119

911A

911B

911C

911D

911E

911F

DESCRIPTION

PortB

Port A (with handshaking)

Data Direction B

Data Direction A

Timer #1, low byte

Timer #1, high byte

Timer #1, low byte to load

Timer #1, high byte to load

Timer #2, low byte

Timer #2, high byte

Shift Register

Auxiliary Control

Peripheral Control

Interrupt Flags

Interrupt Enable

Port A (no handshaking)

REGISTER

AAAAAAAA

BBBBBBBB

CCCCCCCC

DDDDDDDD

EEEEEEEE

FFFFFFFF

GGGGGGGG

HHHHHHHH

IIIIIIII

JJJJJJJJ

KKKKKKKK

LLMNNNOP

QQQRSSST

UVWXYZab

cedfghij

kkkkkkkk
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PORT A I/O REGISTER

These eight bits are connected to the eight pins which make up port A.

Each pin can be set for either input or output.

Input latching is available on this port. When latch mode is enabled the

data in the register freezes when the CB1 interrupt flag is set. The register

stays latched until the interrupt flag is cleared.

Handshaking is available for output from this port. CB2 will act as a DATA

READY SIGNAL. This must be controlled by the user program. CB1 acts

as the DATA ACCEPTED signal, and must be controlled by the device

connected to the port. When DATA ACCEPTED is sent to the 6522, the

DATA READY line is cleared, and the interrupt flag is set.

PORT B I/O REGISTER

These eight bits are connected to the eight pins which make up port B.

Each pin can be set for either input or output. Handshaking is available

for both read and write operations. Write handshaking is similar to that on

PORT B. Read handshaking is automatic. The CA1 input pin acts as a

DATA READY signal. The CA2 pin (used for output) is used for a DATA

ACCEPTED signal. When a DATA READY signal is received a flag is set.

The chip can be set to generate an interrupt or the flag can be polled

under program control. The DATA ACCEPTED signal can either be a

pulse or a DC level. It is set low by the CPU and cleared by the DATA

READY signal.

DATA DIRECTION FOR PORT B

This register is used to control whether a particular bit in PORT B is used

for input or output. Each bit of the data direction register (DDR) is asso

ciated with a bit of port B. If a bit in the DDR is set to 1, the corresponding

bit of the port will be an OUTPUT. If a bit in the DDR is 0, the corresponding

bit of the port will be an INPUT.

For example, if the DDR is set to 7, port B will be set up as follows:

BITS NUMBER

0

1

2

3

4

5

6

7

DDR

1

1

1

0

0

0

0

0

PORT B FUNCTION

OUTPUT

OUTPUT

OUTPUT

INPUT

INPUT

INPUT

INPUT

INPUT
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DATA DIRECTION REGISTER FOR PORT A

This is similar to the DDR for port B, except that it works on PORT A.

E,F,G,H: TIMER CONTROLS

There are two timers on the 6522 chip. The timers can be set to count

down automatically or count pulses received by the VIA. The mode of

operation is selected by the Auxiliary Control register.

TIMER T1 on the 6522 consists of two 8-bit latches and a 16-bit counter.

The various modes of the TIMER are selected by setting the AUXILIARY

CONTROL REGISTER (ACR). The latches are used to store a 16-bit data

word to load into the counter. Loading a number into the latches does not

affect the count in progress.

After it is set, the counter will begin decrementing at 1 MHz. When the

counter reaches zero, an interrupt flag will be set, and the IRQ will go low.
Depending on how the TIMER is set, either further interrupts will be dis

abled, or it will automatically load the two latches into the counter and

continue counting. The TIMER can also be set to invert the output signal

on a peripheral pin each time it reaches zero and resets.

The TIMER locations work differently on reading and writing.

WRITING TO THE TIMER:

E: Write into the low order latch. This latch can be loaded into the low

byte of the 16-bit counter.

F: Write into the high order latch, write into the high order counter, trans

fer low order latch into the low order counter, and reset the TIMER T1

interrupt flag. In other words, when this location is set the counter is loaded.

G: Same as E.

H: Write into the high order latch and reset the TIMER T1 interrupt flag.

READ TIMER T1

E: Read the TIMER T1 low order counter and reset the TIMER T1 in

terrupt flag.

F: Read the TIMER T1 high order counter.

G: Read the TIMER T1 low order latch.

H: Read the TIMER T1 high order latch.
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TIMER T2

This TIMER operates as an interval timer (in one-shot mode), or as a

counter for counting negative pulses on PORT B pin 6. A bit in the ACR

selects which mode TIMER T2 is in.

WRITING TO TIMER T2

I: Write TIMER T2 low order byte of latch.

J: Write TIMER T2 high order counter byte, transfer low order latch to

low order counter, clear TIMER T2 interrupt flag.

READING TIMER T2

I: Read TIMER T2 low order counter byte, and clear TIMER T2 interrupt

flag.

K: SHIFT REGISTER

A shift register is a register which will rotate itself through the CB2 pin.

The shift register can be loaded with any 8-bit pattern which can be shifted

out through the CB1 pin, or input to the CB1 pin can be shifted into the

shift register and then read. This makes it highly useful for serial to parallel

and parallel to serial conversions.

The shift register is controlled by bits 2-4 of the Auxiliary Control register.

L,M,N,O,P: AUXILIARY CONTROL REGISTER

L: TIMER 1 CONTROL

BIT#

One-shot mode (output to PB7 disabled)

Free running mode (output to PB7 disabled)

One-shot mode (output to PB7 enabled)

Free running mode (output to PB7 enabled)

M: TIMER 2 CONTROL

TIMER 2 has 2 modes. If this bit is 0, TIMER 2 acts as an interval timer

in one-shot mode. If this bit is 1, TIMER 2 will count a predetermined

number of pulses on pin PB6.

7

0

0

1

1

6

0

1

0

1
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N: SHIFT REGISTER CONTROL

BIT# 4 3 2

0 0 0 SHIFT REGISTER DISABLED

0 0 1 SHIFT IN (FROM CB1) UNDER CONTROL OF

TIMER 2

0 1 0 SHIFT IN UNDER CONTROL OF SYSTEM CLOCK

PULSES

0 1 1 SHIFT IN UNDER CONTROL OF EXTERNAL

CLOCK PULSES

1 0 0 FREE RUN MODE AT RATE SET BY TIMER 2

1 0 1 SHIFT OUT UNDER CONTROL OF TIMER 2

1 1 0 SHIFT OUT UNDER CONTROL OF SYSTEM

CLOCK PULSES

1 1 1 SHIFT OUT UNDER CONTROL OF EXTERNAL

CLOCK PULSES

O: PORT B LATCH ENABLE

As long as this bit is 0, the PORT B register will directly reflect the data

on the pins.

If this bit is set to one, the data present on the input pins of PORT A will

be latched within the chip when the CB1 INTERRUPT FLAG is set. As

long as the CB1 INTERRUPT FLAG is set, the data on the pins can change

without affecting the contents of the PORT B register. Note that the CPU

always reads the register (the latches) rather than the pins.

Input latching can be used with any of the input or output modes available

for CB2.

P: PORT A LATCH ENABLE

As long as this bit is 0, the PORT A register will directly reflect the data

on the pins.

If this bit is set to one, the data present on the input pins of PORT A will

be latched within the chip when the CA1 INTERRUPT FLAG is set. As

long as the CA1 INTERRUPT FLAG is set, the data on the pins can change

without affecting the contents of the PORT A register. Note that the CPU

always reads the register (the latches) rather than the pins.

Input latching can be used with any of the input or output modes available

for CA2.



Q

7

0

0

0

0

1

1

1

1

Q

6

0

0

1

1

0

0

1

1

Q

5

0

1

0

1

0

1

0

1
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Q,R,S,T THE PERIPHERAL CONTROL REGISTER

Q: CB2 CONTROL

BIT# 7 6 5 DESCRIPTION

Interrupt Input Mode

Independent Interrupt Input Mode

Input Mode

Independent Input Mode

Handshake Output Mode

Pulse Output Mode

Manual Output Mode (CB2 is held LOW)

Manual Output Mode (CB2 is held HIGH)

INTERRUPT INPUT MODE:

The CB2 interrupt flag (IFR bit 3) will be set on a negative (high-to-low)

transition on the CB2 input line. The CB2 interrupt bit will be cleared on

a read or write to PORT B.

INDEPENDENT INTERRUPT INPUT MODE:

As above, the CB2 interrupt flag will be set on a negative transition on

the CB2 input line. However, reading or writing to PORT B does not clear

the flag.

INPUT MODE:

The CB2 interrupt flag (IFR bit 3) will be set on a positive (low-to-high)

transition of the CB2 line. The CB2 flag will be cleared on a read or write

of PORT B.

INDEPENDENT INPUT MODE:

As above, the CB2 interrupt flag will be set on a positive transition on the

CB2 line. However, reading or writing PORT B does not affect the flag.

HANDSHAKE OUTPUT MODE:

The CB2 line will be set low on a write to PORT B. It will be reset high

again when there is an active transition on the CB1 line.

PULSE OUTPUT MODE:

The CB2 line is set low for one cycle after a write to PORT B.
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MANUAL OUTPUT MODE:

The CB2 line is held low.

MANUAL OUTPUT MODE:

The CB2 line is held high.

R: CB1 CONTROL

This bit selects the active transition of the input signal applied to the CB1

pin. If this bit is 0, the CB1 interrupt flag will be set on a negative transition

(high-to-low). If this bit is a 1, the CB1 interrupt flag will be set on a positive

(low-to-high) transition.

S:CA2 CONTROL

S

BIT# 3

0

0

0

0

1

1

1

1

s

2

0

0

1

1

0

0

1

1

s

1

0

1

0

1

0

1

0

1

DESCRIPTION

interrupt Input Mode

Independent Interrupt Input Mode

Input Mode

Independent Input Mode

Handshake Output Mode

Pulse Output Mode

Manual Output Mode (CA2 is held LOW)

Manual Output Mode (CA2 is held HIGH)

INTERRUPT INPUT MODE:

The CA2 interrupt flag (IFR bit 0) will be set on a negative (high-to-low)

transition on the CA2 input line. The CA2 interrupt bit will be cleared on

a read or write to PORT A.

INDEPENDENT INTERRUPT INPUT MODE:

As above, the CA2 interrupt flag will be set on a negative transition on

the CA2 input line. However, reading or writing to PORT A does not clear

the flag.

INPUT MODE:

The CA2 interrupt flag (IFR bit 0) will be set on a positive (low-to-high)

transition of the CA2 line. The CA2 flag will be cleared on a read or write

of PORT A.
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INDEPENDENT INPUT MODE:

As above, the CA2 interrupt flag will be set on a positive transition on the

CA2 line. However, reading or writing PORT A does not affect the flag.

HANDSHAKE OUTPUT MODE:

The CA2 line will be set low on a read or write to PORT A. It will be reset

high again when there is an active transition on the CA1 line.

PULSE OUTPUT MODE:

The CA2 line is set low for one cycle after a read or write to PORT A.

MANUAL OUTPUT MODE:

The CA2 line is held low.

MANUAL OUTPUT MODE:

The CA2 line is held high.

T: CA1 CONTROL

This bit of the PCR selects the active transition of the input signal applied

to the CA1 input pin. If this bit is 0, the CA1 interrupt flag (Bit) will be set

by a negative transition (high-to-low) on the CA1 pin. If this bit is 1, the

CA1 interrupt flag will be set by a positive transition (low-to-high).

There are two registers associated with interrupts: The INTERRUPT FLAG

REGISTER (IFR) and the INTERRUPT ENABLE REGISTER (IER). The

IFR has eight bits, each one connected to a register in the 6522. Each bit

in the IFR has an associated bit in the IER. The flag is set when a register

wants to interrupt. However, no interrupt will take place unless the cor

responding bit in the IER is set.

UVWXYZab: INTERRUPT FLAG REGISTER

When the flag is set, the pin associated with that flag is attempting to

interrupt the 6502. Bit U is not a normal flag. It goes high if both the flag

and the corresponding bit in the INTERRUPT ENABLE REGISTER are

set. It can be cleared only by clearing all the flags in the IFR or disabling

all active interrupts in the IER.
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U

V

w

X

Y

z

SET BY

IRQ STATUS

TIMER 1 time-out

TIMER 2 time-out

CB1 pin active transition

CB2 pin active transition

Completion of 8 shifts

377

CLEARED BY

Reading TIMER 1 low order

counter and writing TIMER 1

high order latch

Reading TIMER 2 low order

counter and writing TIMER 2

high order counter

Reading or writing PORT B

Reading or writing PORT B

Reading or writing the shift

register

a CA1 pin active transition Reading or writing PORT A

(BBBBBBBB in above chart)

b CA2 pin active transition Reading or writing PORT A

(BBBBBBBB in above chart)

cdefghij: INTERRUPT ENABLE REGISTER

c: ENABLE CONTROL

If this bit is a 0 during a write to this register, each 1 in bits 0-6 clears the

corresponding bit in the IER. If this bit is a 1 during this register, each 1

in bits 0-6 will set the corresponding IER bit.

d TIMER 1 time-out enable

e TIMER 2 time-out enable

f CB1 interrupt enable

g CB2 interrupt enable

h Shift interrupt enable

i CA1 interrupt enable

j CA2 interrupt enable

PORT A

This is similar to BBBBBBBB, except that the handshaking lines (CA1 and

CA2) are unaffected by operations on this port.
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6526 (CIA) Complex Interface Adaptor

REGISTER MAP

RS3

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

RS2

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

RS1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

RSO

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

REG

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

NAME

PRA

PRB

DDRA

DDRB

TALO

TAHI

TBLO

TBHI

TOD 1Oths

TOD SEC

TOD MIN

TODHR

SDR

ICR

CRA

CRB

PERIPHERAL DATA REG A

PERIPHERAL DATA REG B

DATA DIRECTION REG A

DATA DIRECTION REG B

TIMER A LOW REGISTER

TIMER A HIGH REGISTER

TIMER B LOW REGISTER

TIMER B HIGH REGISTER

1Oths OF SECONDS REGISTER

SECONDS REGISTER

MINUTES REGISTER

HOURS—AM/PM REGISTER

SERIAL DATA REGISTER

INTERRUPT CONTROL REGIS

TER

CONTROL REG A

CONTROL REG B

I/O Ports (PRA, PRB, DDRA, DDRB)

Ports A and B each consist of an 8-bit Peripheral Data Register (PR) and

an 8-bit Data Direction Register (DDR). If a bit in the DDR is set to a one,

the corresponding bit in the PR is an output; if a DDR bit is set to a zero,

the corresponding PR bit is defined as an input. On a READ, the PR

reflects the information present on the actual port pins (PA0-PA7, PBO-

PB7) for both input and output bits. Port A and Port B have passive pull-

up devices as well as active pull-ups, providing both CMOS and TTL

compatibility. Both ports have two TTL load drive capability. In addition to

normal I/O operation, PB6 and PB7 also provide timer output functions.

Handshaking

Handshaking on data transfej^_can be accomplished using the PC output

pin and the FLAG input pin. PC will go low for one cycle following a read

or write of PORT B. This signal can be used to indicate "data ready" at

PORT B or "data accepted" from PORT B. Handshaking on 16-bit data

transfers (using both PORT A and PORT B) is possible by always reading
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or writing PORT A first. FLAGJs a negative edge sensitive input which

can be used for receiving the PC output from another 6526, or as a general

purpose interrupt input. Any negative transition of FLAG will set the FLAG

interrupt bit.

REG

0

1

2

3

NAME

PRA

PRB

DDRA

DDRB

D7

PA7

PB7

DPA7

DPB7

D6

PAe

PB6

DPAe

DPB6

D5

PA5

PB5

DPA5

DPB5

D4

PA4

PB4

DPA4

DPB4

D3

PA3

PB3

DPA3

DPB3

D2

PA2

PB2

DPA2

DPB2

Di

PA!

PB,

DPA,

DPB!

Do

PAo

PB0

DPAo

DPB0

Interval Timers (Timer A, Timer B)

Each interval timer consists of a 16-bit read-only Timer Counter and a 16-

bit write-only Timer Latch. Data written to the timer are latched in the Timer

Latch, while data read from the timer are the present contents of the Time

Counter. The timers can be used independently or linked for extended

operations. The various timer modes allow generation of long time delays,

variable width pulses, pulse trains and variable frequency waveforms.

Utilizing the CNT input, the timers can count external pulses or measure

frequency, pulse width and delay times of external signals. Each timer has

an associated control register, providing independent control of the fol

lowing functions:

Start/Stop

A control bit allows the time to be started or stopped by the microprocessor

at any time.

PB On/Off:

A control bit allows the timer output to appear on a PORT B output line

(PB6 for TIMER A and PB7 for TIMER B). This function overrides the

DDRB control bit and forces the appropriate PB line to an output.

Toggle/Pulse

A control bit selects the output applied to PORT B. On every timer un

derflow the output can either toggle or generate a single positive pulse of

one cycle duration. The Toggle output is set high whenever the timer is

started and is set low by RES.
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One-Shot/Continuous

A control bit selects either timer mode. In one-shot mode, the timer will

count down from the latched value to zero, generate an interrupt, reload

the latched value, then stop. In continuous mode, the timer will count from

the latched value to zero, generate an interrupt, reload the latched value

and repeat the procedure continuously.

Force Load

A strobe bit allows the timer latch to be loaded into the timer counter at

any time, whether the timer is running or not.

Input Mode:

Control bits allow selection of the clock used to decrement the timer.

TIMER A can count §2 clock pulses or external pulses applied to the CNT

pin. TIMER B can count $2 pulses, external CNT pulses, TIMER A un

derflow pulses or TIMER A underflow pulses while the CNT pin is held

high.

The timer latch is loaded into the timer on any timer underflow, on a force

load or following a write to the high byte of the prescaler while the timer

is stopped. If the timer is running, a write to the high byte will load the

timer latch, but not reload the counter.

READ

REG

4

5

6

7

(TIMER)

NAME

TALO

TAHI

TBLO

TBHI

TAL7

TAH7

TBL7

TBH7

TAL6

TAH6

TBL6

TBH6

TAL5

TAH5

TBL5

TBH5

TAL4

TAH4

TBL4

TBH4

TAL3

TAH3

TBL3

TBH3

TAL2

TAH2

TBL2

TBH2

TAIh

TAHt

TBIh

TB^

TAL0

TAH0

TBI_o

TBH0

WRITE (PRESCALER)

REG NAME

4

5

6

7

TALO

TAHI

TBLO

TBHI

PAL7

PAH7

PB7

PBH7

PAL6

PAH6

PB6

PBH6

PAL5

PAH5

PB5

PBH5

PAU

PAH4

PB4

PBH4

PAL3

PAH3

PB3

PBH3

PAL2

PAH2

PB2

PBH2

PAL!

PAH!

PBi

PBH!

PAL0

PAH0

PB0

PBH0
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Time of Day Clock (TOD)

The TOD clock is a special purpose timer for real-time applications. TOD

consists of a 24-hour (AM/PM) clock with 1/1 Oth second resolution. It is

organized into 4 registers: 10ths of seconds, Seconds, Minutes and Hours.

The AM/PM flag is in the MSB of the Hours register for easy bit testing.

Each register reads out in BCD format to simplify conversion for driving

displays, etc. The clock requires an external 60 Hz or 50 Hz (programm

able) TTL level input on the TOD pin for accurate timekeeping. In addition

to time-keeping, a programmable ALARM is provided for generating an

interrupt at a desired time. The ALARM registers are located at the same

addresses as the corresponding TOD registers. Access to the ALARM is

governed by a Control Register bit. The ALARM is write-only; any read of

a TOD address will read time regardless of the state of the ALARM access

bit.

A specific sequence of events must be followed for proper setting and

reading of TOD. TOD is automatically stopped whenever a write to the

Hours register occurs. The clock will not start again until after a write to

the 10ths of seconds register. This assures TOD will always start at the

desired time. Since a carry from one stage to the next can occur at any

time with respect to a read operation, a latching function is included to

keep all Time Of Day information constant during a read sequence. All

four TOD registers latch on a read of Hours and remain latched until after

a read of 10ths of seconds. The TOD clock continues to count when the

output registers are latched. If only one register is to be read, there is no

carry problem and the register can be read "on the fly," provided that any

read of Hours is followed by a read of 10ths of seconds to disable the

latching.

READ

REG

8

9

A

B

NAME

TOD

10THS

TOD

SEC

TOD

MIN

TODHR

0

0

0

PM

0

SH4

MH4

0

0

SH2

MH2

0

0

Shh

MHi

HH

T8

SL8

ML8

HL8

T4

SL4

ML4

HL4

T2

SL2

ML2

HL2

Ti

SLt

HLt
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WRITE

CRB7 = 0 TOD

CRB7 = 1 ALARM

(SAME FORMAT AS READ)

Serial Port (SDR)

The serial port is a buffered, 8-bit synchronous shift register system. A

control bit selects input or output mode. In input mode, data on the SP

pin is shifted into the shift register on the rising edge of the signal applied

to the CNT pin. After 8 CNT pulses, the data in the shift register is dumped

into the Serial Data Register and an interrupt is generated. In the output

mode, TIMER A is used for the baud rate generator. Data is shifted out

on the SP pin at 1/2 the underflow rate of TIMER A. The maximum baud

rate possible is <|>2 divided by 4, but the maximum useable baud rate will

be determined by line loading and the speed at which the receiver responds

to input data. Transmission will start following a write to the Serial Data

Register (provided TIMER A is running and in continuous mode). The

clock signal derived from TIMER A appears as an output on the CNT pin.

The data in the Serial Data Register will be loaded into the shift register

then shift out to the SP pin when a CNT pulse occurs. Data shifted out

becomes valid on the falling edge of CNT and remains valid until the next

falling edge. After 8 CNT pulses, an interrupt is generated to indicate more

data can be sent. If the Serial Data Register was loaded with new infor

mation prior to this interrupt, the new data will automatically be loaded

into the shift register and transmission will continue. If the microprocessor

stays one byte ahead of the shift register, transmission will be continuous.

If no further data is to be transmitted, after the 8th CNT pulse, CNT will

return high and SP will remain at the level of the last data bit transmitted.

SDR data is shifted out MSB first and serial input data should also appear

in this format.

The bidirectional capability of the Serial Port and CNT clock allows many

6526 devices to be connected to a common serial communication bus on

which one 6526 acts as a master, sourcing data and shift clock, while all

other 6526 chips act as slaves. Both CNT and SP outputs are open drain

to allow such a common bus. Protocol for master/slave selection can be

transmitted over the serial bus, or via dedicated handshaking lines.

REG NAME

C | SDR | S7 s6 s5 s« s3 s2 s, | s0
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Interrupt Control (ICR)

There are five sources of interrupts on the 6526: underflow from TIMER

A, underflow from TIMER B, TOD ALARM, Serial Port full/empty and

FLAG. A single register provides masking and interrupt information. The

interrupt Control Register consists of a write-only MASK register and a

read-only DATA register. Any interrupt will set the corresponding bit in the

DATA register. Any interrupt which is enabled by the MASK register will

set the IR bit (MSB) of the DATA register and bring the IRQ pin low. In a

multi-chip system, the IR bit can be polled to detect which chip has gen

erated an interrupt request. The interrupt DATA register is cleared and

the IRQ line returns high following a read of the DATA register. Since each

interrupt sets an interrupt bit regardless of the MASK, and each interrupt

bit can be selectively masked to prevent the generation of a processor

interrupt, it is possible to intermix polled interrupts with true interrupts.

However, polling the IR bit will cause the DATA register to clear, therefore,

it is up to the user to preserve the information contained in the DATA

register if any polled interrupts were present.

The MASK register provides convenient control of individual mask bits.

When writing to the MASK register, if bit 7 (SET/CLEAR) of the data written

is a ZERO, any mask bit written with a one will be cleared, while those

mask bits written with a zero will be unaffected. If bit 7 of the data written

is a ONE, any mask bit written with a one will be set, while those mask

bits written with a zero will be unaffected. In order for an interrupt flag to

set IR and generate an Interrupt Request, the corresponding MASK bit

must be set.

READ (INT DATA)

REG NAME

D | ICR | IR 0 0 FLG SP ALRM TB TA

WRITE (INT MASK)

REG NAME

D | ICR | S/C X X FLG SP ALRM TB TA

Control Registers

There are two control registers in the 6526, CRA and CRB. CRA is as

sociated with TIMER A and CRB is associated with TIMER B. The register

format is as follows:
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CRA:

Bit Name

0 START

1 PBON

2

3

4

OUTMODE

RUNMODE

LOAD

5 INMODE

6 SPMODE

7 TODIN

5,6 INMODE

ALARM

Function

1 = START TIMER A, 0 = STOP TIMER A. This

bit is automatically reset when underflow oc

curs during one-shot mode.

1 = TIMER A output appears on PB6, 0 = PB6

normal operation.

1 = TOGGLE, 0 = PULSE

1 = ONE-SHOT, 0 = CONTINUOUS

1 = FORCE LOAD (this is STROBE input, there

is no data storage, bit 4 will always read back

a zero and writing a zero has no effect).

1 = TIMER A counts positive CNT transitions,

0 = TIMER A counts 4>2 pulses.

1 = SERIAL PORT output (CNT sources shift

clock), 0 = SERIAL PORT input (external shift

clock required).

1 =50 Hz clock required on TOD pin for ac

curate time, 0 = 60 Hz clock required on TOD

pin for accurate time.

(Bits CRB0-CRB4 are identical to CRA0-CRA4

for TIMER B with the exception that bit 1 con

trols the output of TIMER B on PB7).

Bits CRB5 and CRB6 select one of four input

modes for TIMER B as:

CRB6 CRB5

0 0 TIMER B counts 4>2

pulses.

0 1 TIMER B counts positive

CNT transitions.

\ 0 TIMER B counts TIMER

A underflow pulses.

1 1 TIMER B counts TIMER

A underflow pulses while

CNT is high.

1= writing to TOD registers sets ALARM,

0 = writing to TOD registers sets TOD clock.
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REG

TOD

NAME IN

SP

MODE

IN

MODE LOAD

RUN

MODE

OUT

MODE PB ON START

E CRA 0 = 60Hz

1=50Hz

0= INPUT

1 = OUT

PUT

0 = 62

1=CNT

1=FORCE

LOAD

(STROBE)

0=CONT

1=O.S.

0=PULSE

1=TOGGLE

0 = PB6OFF

1 = PB6 ON

0 = STOP

1 = START

.TA

REG NAME ALARM IN MODE LOAD

RUN

MODE

OUT

MODE PBON START

F CRB 0 = TOD

1 =

ALARM

0

1

1

1

0 = 62

1=CNT

0 = TA

1=CNT-TA

1= FORCE

LOAD

(STROBE)

0 = CONT.

1=O.S.

0 = PULSE

1=TOGGLE

0 = PB7OFF

1=PB7ON

0 = STOP

1=START

.TB. I

All unused register bits are unaffected by a write and are forced to zero

on a read.

COMMODORE SEMICONDUCTOR GROUP reserves the right to

make changes to any products herein to improve reliability, function

or design. COMMODORE SEMICONDUCTOR GROUP does not

assume any liability arising out of the application or use of any product

or circuit described herein; neither does it convey any license under

its patent rights nor the rights of others.

6566/6567 (VIC-II) Chip Specifications
The 6566/6567 are multi-purpose color video controller devices for use in

both computer video terminals and video game applications. Both devices

contain 47 control registers which are accessed via a standard 8-bit mi

croprocessor bus (65XX) and will access up to 16K of memory for display

information. The various operating modes and options within each mode

are described.

Character Display Mode

In the character display mode, the 6566/6567 fetches CHARACTER

POINTERS from the VIDEO MATRIX area of memory and translates the

pointers to character dot location addresses in the 2048 byte CHARACTER

BASE area of memory. The video matrix is comprised of 1000 consecutive

locations in memory which each contain an eight-bit character pointer.

The location of the video matrix within memory is defined by VM13-VM10

in register 24($18) which are used as the 4 MSB of the video matrix
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address. The lower order 10 bits are provided by an internal counter (VC3-

VCO) which steps through the 1000 character locations. Note that the

6566/6567 provides 14 address outputs; therefore, additional system hard

ware may be required for complete system memory decodes.

CHARACTER POINTER ADDRESS

A13

VM13

A12

VM12

A11

VM11

A10

VM10

A09

VC9

A08

VC8

A07

VC7

A06

VC6

A05

VC5

A04

VC4

A03

VC3

A02

VC2

A01

VC1

A00

VCO

The eight-bit character pointer permits up to 256 different character def

initions to be available simultaneously. Each character is an 8x8 dot

matrix stored in the character base as eight consecutive bytes. The location

of the character base is defined by CB13-CB11 also in register 24 ($18)

which are used for the 3 most significant bits (MSB) of the character base

address. The 11 lower order addresses are formed by the 8-bit character

pointer from the video matrix (D7-D0) which selects a particular character,

and a 3-bit raster counter (RC2-RC0) which selects one of the eight char

acter bytes. The resulting characters are formatted as 25 rows of 40

characters each. In addition to the 8-bit character pointer, a 4-bit COLOR

NYBBLE is associated with each video matrix location (the video matrix

memory must be 12 bits wide) which defines one of sixteen colors for

each character.

CHARACTER DATA ADDRESS

A13

CB13

A12

CB12

A11

CB11

A10

D7

A09

D6

A08

D5

A07

D4

A06

D3

A05

D2

A04

D1

A03

DO

A02

RC2

A01

RC1

A00

RC0

Standard Character Mode (MCM = BMM =

ECM = 0)

In the standard character mode, the 8 sequential bytes from the character

base are displayed directly on the 8 lines in each character region. A "0"

bit causes the background #0 color (from register 33 ($21)) to be displayed

while the color selected by the color nybble (foreground) is displayed for

a "1" bit (see Color Code Table).
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FUNCTION

Background

Foreground

CHARACTER

BIT

0

1

COLOR DISPLAYED

Background #0 color

(register 33 ($21))

Color selected by 4-bit color nybble

Therefore, each character has a unique color determined by the 4-bit color

nybble (1 of 16) and all characters share the common background color.

Multi-Color Character Mode (MCM = 1,

BMM = ECM = 0)

Multi-color mode provides additional color flexibility allowing up to four

colors within each character but with reduced resolution. The multi-color

mode is selected by setting the MCM bit in register 22 ($16) to "1," which

causes the dot data stored in the character base to be interpreted in a

different manner. If the MSB of the color nybble is a "0," the character

will be displayed as described in standard character mode, allowing the

two modes to be inter-mixed (however, only the lower order 8 colors are

available). When the MSB of the color nybble is a "1" (if MCM:MSB(CM)

= 1) the character bits are interpreted in the multi-color mode:

FUNCTION

Background

Background

Foreground

Foreground

CHARACTER

BIT PAIR

00

01

10

11

COLOR DISPLAYED

Background #0 Color

(register 33 ($21))

Background #1 Color

(register 34 ($22))

Background #2 Color

(register 35 ($23))

Color specified by 3 LSB of color

nybble

Since two bits are required to specify one dot color, the character is now

displayed as a 4 x 8 matrix with each dot twice the horizontal size as in

standard mode. Note, however, that each character region can now con

tain 4 different colors, two as foreground and two as background (see

MOB priority).
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Extended Color Mode (ECM = 1, BMM =

MCM = 0)

The extended color mode allows the selection of individual background

colors for each character region with the normal 8x8 character resolution.

This mode is selected by setting the ECM bit of register 17 ($11) to "1."

The character dot data is displayed as in the standard mode (foreground

color determined by the color nybble is displayed for a "1" data bit), but

the 2 MSB of the character pointer are used to select the background

color for each character region as follows:

CHAR. POINTER

MS BIT PAIR

00

01

10

11

BACKGROUND COLOR DISPLAYED FOR 0 BIT

Background #0 color (register 33 ($21))

Background #1 color (register 34 ($22))

Background #2 color (register 35 ($23))

Background #3 color (register 36 ($24))

Since the two MSB of the character pointers are used for color information,

only 64 different character definitions are available. The 6566/6567 will

force CB10 and CB9 to "0" regardless of the original pointer values, so

that only the first 64 character definitions will be accessed. With extended

color mode each character has one of sixteen individually defined fore

ground colors and one of the four available background colors.

NOTE: Extended color mode and multi-color mode should not be enabled simulta

neously.

Bit Map Mode
In bit map mode, the 6566/6567 fetches data from memory in a different

fashion, so that a one-to-one correspondence exists between each dis

played dot and a memory bit. The bit map mode provides a screen res

olution of 320H x 200V individually controlled display dots. Bit map mode

is selected by setting the BMM bit in register 17 ($11) to a "1." The VIDEO

MATRIX is still accessed as in character mode, but the video matrix data

is no longer interpreted as character pointers, but rather as color data.

The VIDEO MATRIX COUNTER is then also used as an address to fetch

the dot data for display from the 8000-byte DISPLAY BASE. The display

base address is formed as follows:
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A13

CB13

A12

VC9

A11

VC8

A10

VC7

A09

VC6

A08

VC5

A07

VC4

A06

VC3

A05

VC2

A04

VC1

A03

VCO

A02

RC2

AO1

RC1

AOO

RCO

VCx denotes the video matrix counter outputs, RCx denotes the 3-bit raster

line counter and CB13 is from register 24 ($18). The video matrix counter

steps through the same 40 locations for eight raster lines, continuing to

the next 40 locations every eighth line, while the raster counter increments

once for each horizontal video line (raster line). This addressing results

in each eight sequential memory locations being formatted as an 8 x 8

dot block on the video display.

Standard Bit Map Mode (BMM = 1,

MCM = 0)

When standard bit map mode is in use, the color information is derived

only from the data stored in the video matrix (the color nybble is disre

garded). The 8 bits are divided into two 4-bit nybbles which allow two

colors to be independently selected in each 8 x 8 dot block. When a bit

in the display memory is a "0" the color of the output dot is set by the

least significant (lower) nybble (LSN). Similarly, a display memory bit of

"1" selects the output color determined by the MSN (upper nybble).

BIT

0

1

DISPLAY COLOR

Lower nybble of video matrix pointer

Upper nybble of video matrix pointer

Multi-Color Bit Map Mode (BMM = MCM

Multi-colored bit map mode is selected by setting the MCM bit in register

22 ($16) to a "1" in conjunction with the BMM bit. Multi-color mode uses

the same memory access sequences as standard bit map mode, but

interprets the dot data as follows:

BIT PAIR

00

01

10

11

DISPLAY COLOR

Background #0 color (register 33 ($21))

Upper nybble of video matrix pointer

Lower nybble of video matrix pointer

Video matrix color nybble
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Note that the color nybble (DB11-DB8) IS used for the multi-color bit map

mode, again, as two bits are used to select one dot color, the horizontal

dot size is doubled, resulting in a screen resolution of 160H x 200V.

Utilizing multi-color bit map mode, three independently selected colors can

be displayed in each 8x8 block in addition to the background color.

Movable Object Blocks

The movable object block (MOB) is a special type of character which can

be displayed at any one position on the screen without the block constraints

inherent in character and bit map mode. Up to 8 unique MOBs can be

displayed simultaneously, each defined by 63 bytes in memory which are

displayed as a 24x21 dot array (shown below). A number of special

features make MOBs especially suited for video graphics and game ap

plications.

BYTE

00

03

57

60

MOB DISPLAY BLOCK

BYTE

01

04

58

61

BYTE

02

05

59

62

Enable

Each MOB can be selectively enabled for display by setting its corre

sponding enable bit (MnE) to "1" in register 21 ($15). If the MnE bit is

"0," no MOB operations will occur involving the disabled MOB.

Position

Each MOB is positioned via its X and Y position register (see register

map) with a resolution of 512 horizontal and 256 vertical positions. The

position of a MOB is determined by the upper-left corner of the array. X

locations 23 to 347 ($17-$157) and Y locations 50 to 249 ($32-$F9) are

visible. Since not all available MOB positions are entirely visible on the

screen, MOBs may be moved smoothly on and off the display screen.
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Color

Each MOB has a separate 4-bit register to determine the MOB color. The

two MOB color modes are:

STANDARD MOB (MnMC = 0)

In the standard mode, a "0" bit of MOB data allows any background data

to show through (transparent) and a "1" bit is displayed as the MOB color

determined by the corresponding MOB Color register.

MULTI-COLOR MOB (MnMC = 1)

Each MOB can be individually selected as a multi-color MOB via MnMC

bits in the MOB Multi-color register 28 ($1C). When the MnMC bit is "1,"

the corresponding MOB is displayed in the multi-color mode. In the multi

color mode, the MOB data is interpreted in pairs (similar to the other multi

color modes) as follows:

BIT PAIR

00

01

10

11

COLOR DISPLAYED

Transparent

MOB Multi-color #0 (register 37 ($25))

MOB Color (registers 39-46 ($27-$2E))

MOB Multi-color #1 (register 38 ($26))

Since two bits of data are required for each color, the resolution of the

MOB is reduced to 12x21, with each horizontal dot expanded to twice

standard size so that the overall MOB size does not change. Note that up

to 3 colors can be displayed in each MOB (in addition to transparent) but

that two of the colors are shared among all the MOBs in the multi-color
mode.

Magnification

Each MOB can be selectively expanded (2 x) in both the horizontal and

vertical directions. Two registers contain the control bits (MnXE,MnYE)

for the magnification control:

REGISTER

23 ($17)

29($1D)

FUNCTION

Horizontal expand MnXE—"1" = expand;

"0" = normal

Vertical expand MnYE—"1" = expand; "0" = normal
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When MOBs are expanded, no increase in resolution is realized. The same

24x21 array (12x21 if multi-colored) is displayed, but the overall MOB

dimension is doubled in the desired direction (the smallest MOB dot may

be up to 4 x standard dot dimension if a MOB is both multi-colored and

expanded).

Priority

The priority of each MOB may be individually controlled with respect to

the other displayed information from character or bit map modes. The

priority of each MOB is set by the corresponding bit (MnDP) of register

27 ($1B) as follows:

REG BIT

0

1

PRIORITY TO CHARACTER OR BIT MAP DATA

Non-transparent MOB data will be displayed (MOB in

front)

Non-transparent MOB data wil be displayed only in

stead of Bkgd #0 or multi-color bit pair 01 (MOB be

hind)

MOB—DISPLAY DATA PRIORITY

MnDP = 1

MOBn

Foreground

Background

MnDP = 0

Foreground

MOBn

Background

MOB data bits of "0" ("00" in multi-color mode) are transparent, always

permitting any other information to be displayed.

The MOBs have a fixed priority with respect to each other, with MOB 0

having the highest priority and MOB 7 the lowest. When MOB data (except

transparent data) of two MOBs are coincident, the data from the lower

number MOB will be displayed. MOB vs. MOB data is prioritized before

priority resolution with character or bit map data.

Collision Detection

Two types of MOB collision (coincidence) are detected, MOB to MOB

collision and MOB to display data collision:

1) A collision between two MOBs occurs when non-transparent output data of

two MOBs are coincident. Coincidence of MOB transparent areas will not

generate a collision. When a collision occurs, the MOB bits (MnM) in the
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MOB-MOB COLLISION register 30 ($1E) will be set to "1" for both colliding

MOBs. As a collision between two (or more) MOBs occurs, the MOB-MOB

collision bit for each collided MOB will be set. The collision bits remain set

until a read of the collision register, when all bits are automatically cleared.

MOBs collisions are detected even if positioned off-screen.

2) The second type of collision is a MOB-DATA collision between a MOB and

foreground display data from the character or bit map modes. The MOB-

DATA COLLISION register 31 ($1F) has a bit (MnD) for each MOB which

is set to "1" when both the MOB and non-background display data are

coincident. Again, the coincidence of only transparent data does not generate

a collision. For special applications, the display data from the 0-1 multicolor

bit pair also does not cause a collision. This feature permits their use as

background display data without interfering with true MOB collisions. A MOB-

DATA collision can occur off-screen in the horizontal direction if actual display

data has been scrolled to an off-screen position (see scrolling). The MOB-

DATA COLLISION register also automatically clears when read.

The collision interrupt latches are set whenever the first bit of either register

is set to "1." Once any collision bit within a register is set high, subsequent

collisions will not set the interrupt latch until that collision register has been

cleared to all "Os" by a read.

MOB Memory Access

The data for each MOB is stored in 63 consecutive bytes of memory. Each

block of MOB data is defined by a MOB pointer, located at the end of the

VIDEO MATRIX. Only 1000 bytes of the video matrix are used in the

normal display modes, allowing the video matrix locations 1016-1023 (VM

base + $3F8 to VM base + $3FF) to be used for MOB pointers 0-7, re

spectively. The eight-bit MOB pointer from the video matrix together with

the six bits from the MOB byte counter (to address 63 bytes) define the

entire 14-bit address field:

A13

MP7

A12

MP6

A11

MP5

A10

MP4

A09

MP3

A08

MP2

A07

MP1

A06

MP0

A05

MC5

A04

MC4

A03

MC3

A02

MC2

A01

MC1

A00

MC0

Where MPx are the MOB pointer bits from the video matrix and MCx are

the internally generated MOB counter bits. The MOB pointers are read

from the video matrix at the end of every raster line. When the Y position

register of a MOB matches the current raster line count, the actual fetches

of MOB data begin. Internal counters automatically step through the 63

bytes of MOB data, displaying three bytes on each raster line.



334 MACHINE LANGUAGE FOR COMMODORE MACHINES

Other Features

Screen Blanking

The display screen may be blanked by setting the DEN bit in register 17

($11) to a "0." When the screen is blanked, the entire screen will be filled

with the exterior color as in register 32 ($20). When blanking is active,

only transparent (Phase 1) memory accesses are required, permitting full

processor utilization of the system bus. MOB data, however, will be ac

cessed if the MOBs are not also disabled. The DEN bit must be set to "1"

fornormal video display.

Row/Column Select

The normal display consists of 25 rows of 40 characters (or character

regions) per row. For special display purposes, the display window may

be reduced to 24 rows and 38 characters. There is no change in the format

of the displayed information, except that characters (bits) adjacent to the

exterior border area will now be covered by the border. The select bits

operate as follows:

NUMBER OF

RSEL ROWS

0 24 rows

1 25 rows

NUMBER OF

CSEL COLUMNS

0 38 columns

1 40 columns

The RSEL bit is in register 17 ($11) and the CSEL bit is in register 22

($16). For standard display the larger display window is normally used,

while the smaller display window is normally used in conjunction with

scrolling.

Scrolling

The display data may be scrolled up to one entire character space in both

the horizontal and vertical direction. When used in conjunction with the

smaller display window (above), scrolling can be used to create a smooth

panning motion of display data while updating the system memory only

when a new character row (or column) is required. Scrolling is also used

to center a fixed display within the display window.

BITS

X2,X1,X0

Y2.Y1 ,Y0

REGISTER

22 ($16)

17 ($11)

FUNCTION

Horizontal Position

Vertical Position
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Light Pen

The light pen input latches the current screen position into a pair of reg

isters (LPX,LPY) on a low-going edge. The X position register 19 ($13)

will contain the 8 MSB of the X position at the time of transition. Since the

X position is defined by a 512-state counter (9 bits) resolution to 2 hori

zontal dots is provided. Similarly, the Y position is latched to its register

20 ($14) but here 8 bits provide single raster resolution within the visible

display. The light pen latch may be triggered only once per frame, and

subsequent triggers within the same frame will have no effect. Therefore,

you must take several samples before turning the light pen to the screen

(3 or more samples, average), depending upon the characteristics of your

light pen.

Raster Register

The raster register is a dual-function register. A read of the raster register

18 ($12) returns the lower 8 bits of the current raster position (the MSB-

RC8 is located in register 17 ($11)). The raster register can be interrogated

to implement display changes outside the visible area to prevent display

flicker. The visible display window is from raster 51 through raster 251

($033-$0FB). A write to the raster bits (including RC8) is latched for use

in an internal raster compare. When the current raster matches the written

value, the raster interrupt latch is set.

Interrupt Register

The interrupt register shows the status of the four sources of interrupt. An

interrupt latch in register 25 ($19) is set to "1" when an interrupt source

has generated an interrupt request. The four sources of interrupt are:

LATCH

BIT

IRST

IMDC

IMMC

ILP

IRQ

ENABLE

BIT

ERST

EMDC

EMMC

ELP

WHEN SET

Set when (raster count) = (stored raster

count)

Set by MOB-DATA collision register (first

collision only)

Set by MOB-MOB collision register (first

collision only)

Set by negative transition of LP input (once

per frame)

Set high by latch set and enabled (invert of

IRQ/ output)
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To enable an interrupt request to set the IRQ/ output to "0," the corre

sponding interrupt enable bit in register 26 ($1 A) must be set to "1." Once

an interrupt latch has been set, the latch may be cleared only by writing

a "1" to the desired latch in the interrupt register. This feature allows

selective handling of video interrupts without software required to "re

member" active interrupts.

Dynamic Ram Refresh

A dynamic ram refresh controller is built into the 6566/6567 devices. Five

8-bit row addresses are refreshed every raster line. This rate guarantees

a maximum delay of 2.02 ms between the refresh of any single row address

in a 128 refresh scheme. (The maximum delay is 3.66 ms in a 256 address

refresh scheme.) This refresh is totally transparent to the system, since

the refresh occurs during Phase 1 of the system clock. The 6567 generates

both RAS/ and CAS/ which are normally connected directly to the dynamic

rams. RAS/ and CAS/ are generated for every Phase 2 and every video

data access (including refresh) so that external clock generation is not

required.

Reset

The reset bit (RES) in register 22 ($16) is not used for normal operation.

Therefore it should be set to "0" when initializing the video chip. When

set to a "1," the entire operation of the video chip is suspended, including

video outputs and sync, memory refresh, and system bus access.

Theory of Operation

System Interface

The 6566/6567 video controller devices interact with the system data bus

in a special way. A 65XX system requires the system buses only during

the Phase 2 (clock high) portion of the cycle. The 6566/6567 devices take

advantage of this feature by normally accessing system memory during

the Phase 1 (clock low) portion of the clock cycle. Therefore, operations

such as character data fetches and memory refresh are totally transparent

to the processor and do not reduce the processor throughput. The video

chips provide the interface control signals required to maintain this bus

sharing.

The video devices provide the signal AEC (address enable control) which

is used to disable the processor address bus drivers allowing the video

device to access the address bus. AEC is active low which permits direct
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connection to the AEC input of the 65XX family. The AEC signal is normally

activated during Phase 1 so that processor operation is not affected. Be

cause of this bus "sharing," all memory accesses must be completed in

1/2 cycle. Since the video chips provide a 1-MHz clock (which must be

used as system Phase 2), a memory cycle is 500 ns including address

setup, data access and, data setup to the reading device.

Certain operations of the 6566/6567 require data at a faster rate than

available by reading only during the Phase 1 time; specifically, the access

of character pointers from the video matrix and the fetch of MOB data.

Therefore, the processor must be disabled and the data accessed during

the Phase 2 clock. This is accomplished via the BA (bus available) signal.

The BA line is normally high but is brought low during Phase 1 to indicate

that the video chip will require a Phase 2 data access. Three Phase-2

times are allowed after BA low for the processor to complete any current

memory accesses. On the fourth Phase 2 after BA low, the AEC signal

will remain low during Phase 2 as the video chip fetches data. The BA

line is normally connected to the RDY input of a 65XX processor. The

character pointer fetches occur every eighth raster line during the display

window and require 40 consecutive Phase 2 accesses to fetch the video

matrix pointers. The MOB data fetches require 4 memory accesses as

follows:

PHASE

1

2

1

2

DATA

MOB Pointer

MOB Byte 1

MOB Byte 2

MOB Byte 3

CONDITION

Every raster

Each raster while MOB is displayed

Each raster while MOB is displayed

Each raster while MOB is displayed

The MOB pointers are fetched every other Phase 1 at the end of each

raster line. As required, the additional cycles are used for MOB data

fetches. Again, all necessary bus control is provided by the 6566/6567

devices.

Memory Interface

The two versions of the video interface chip, 6566 and 6567, differ in

address output configurations. The 6566 has thirteen fully decoded ad

dresses for direct connection to the system address bus. The 6567 has

multiplexed addresses for direct connection to 64K dynamic RAMs. The

least significant address bits, A06-A00, are present on A06-A00 while RAS/

is brought low, while the most significant bits, A13-A08, are present on

A05-A00 while CAS/ is brought low. The pins A11-A07 on the 6567 are
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COLOR CODES
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DEC
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COLOR

BLACK

WHITE

RED

CYAN
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BLUE

YELLOW

ORANGE

BROWN

LTRED

DARK GRAY

MED GRAY

LT GREEN

LT BLUE

LT GRAY

static address outputs to allow direct connection of these bits to a con

ventional 16K (2K x 8) ROM. (The lower order addresses require external

latching.)

6581 Sound Interface Device (SID) Chip

Specifications

Concept

The 6581 Sound Interface Device (SID) is a single-chip, 3-voice electronic

music synthesizer/sound effects generator compatible with the 65XX and

similar microprocessor families. SID provides wide-range, high-resolution

control of pitch (frequency), tone color (harmonic content), and dynamics

(volume). Specialized control circuitry minimizes software overhead, fa

cilitating use in arcade/home video games and low-cost musical instru

ments.

Features

• 3 TONE OSCILLATORS

Range: 0-4 kHz
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• 4 WAVEFORMS PER OSCILLATOR

Triangle, Sawtooth,

Variable Pulse, Noise

• 3 AMPLITUDE MODULATORS

Range: 48 dB

• 3 ENVELOPE GENERATORS

Exponential response

Attack Rate: 2 ms—8 s

Decay Rate: 6 ms—24 s

Sustain Level: 0—peak volume

Release Rate: 6 ms—24 s

• OSCILLATOR SYNCHRONIZATION

• RING MODULATION

Description
The 6581 consists of three synthesizer "voices" which can be used in

dependently or in conjunction with each other (or external audio sources)

to create complex sounds. Each voice consists of a Tone Oscillator/Wave

form Generator, an Envelope Generator and an Amplitude Modulator. The

Tone Oscillator controls the pitch of the voice over a wide range. The

Oscillator produces four waveforms at the selected frequency, with the

unique harmonic content of each waveform providing simple control of

tone color. The volume dynamics of the oscillator are controlled by the

Amplitude Modulator under the direction of the Envelope Generator. When

triggered, the Envelope Generator creates an amplitude envelope with

programmable rates of increasing and decreasing volume. In addition to

the three voices, a programmable Filter is provided for generating complex,

dynamic tone colors via subtractive synthesis.

SIS allows the microprocessor to read the changing output of the third

Oscillator and third Envelope Generator. These outputs can be used as

a source of modulation information for creating vibrator, frequency/filter

sweeps and similar effects. The third oscillator can also act as a random

number generator for games. Two A/D converters are provided for inter

facing SID with potentiometers. These can be used for "paddles" in a

game environment or as front panel controls in a music synthesizer. SID

can process external audio signals, allowing multiple SID chips to be daisy-

chained or mixed in complex polyphonic systems.
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SID Control Registers
There are 29 eight-bit registers in SID which control the generation of

sound. These registers are either WRITE-only or READ-only and are listed

below in Table 1.

SID Register Description

Voice 1

FREQ LO/FREQ HI (Registers 00,01)

Together these registers form a 16-bit number which linearly controls the

frequency of Oscillator 1. The frequency is determined by the following

equation:

FOut = (Fn x Fclk/16777216)Hz

Where Fn is the 16-bit number in the Frequency registers and Fclk is the

system clock applied to the $2 input (pin 6). For a standard 1.0-MHz clock,

the frequency is given by:

FOut = (Fn x 0.059604645) Hz

A complete table of values for generating 8 octaves of the equally tempered

musical scale with concert A (440 Hz) tuning is provided in Appendix E.

It should be noted that the frequency resolution of SID is sufficient for any

tuning scale and allows sweeping from note to note (portamento) with no

discernable frequency steps.

PW LO/PW HI (Registers 02,03)

Together these registers form a 12-bit number (bits 4-7 of PW HI are not

used) which linearly controls the Pulse Width (duty cycle) of the Pulse

waveform on Oscillator 1. The pulse width is determined by the following

equation:

PW0Ut = (PWn/40.95)%

Where PWn is the 12-bit number in the Pulse Width registers.

The pulse width resolution allows the width to be smoothly swept with no

discernable stepping. Note that the Pulse waveform on Oscillator 1 must

be selected in order for the Pulse Width registers to have any audible
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effect. A value of 0 or 4095 ($FFF) in the Pulse Width registers will produce

a constant DC output, while a value of 2048 ($800) will produce a square

wave.

CONTROL REGISTER (Register 04)

This register contains eight control bits which select various options on

Oscillator 1.

Gate (Bit 0): The GATE bit controls the Envelope Generator for Voice 1.

When this bit is set to a one, the Envelope Generator is Gated (triggered)

and the ATTACK/DECAY/SUSTAIN cycle is initiated. When the bit is reset

to a zero, the RELEASE cycle begins. The Envelope Generator controls

the amplitude of Oscillator 1 appearing at the audio output, therefore, the

GATE bit must be set (along with suitable envelope parameters) for the

selected output of Oscillator 1 to be audible. A detailed discussion of the

Envelope Generator can be found at the end of this Appendix.

SYNC (Bit 1): The SYNC bit, when set to a one, synchronizes the fun

damental frequency of Oscillator 1 with the fundamental frequency of

Oscillator 3, producing "Hard Sync" effects.

Varying the frequency of Oscillator 1 with respect to Oscillator 3 produces

a wide range of complex harmonic structures from Voice 1 at the frequency

of Oscillator 3. In order for sync to occur, Oscillator 3 must be set to some

frequency other than zero but preferably lower than the frequency of

Oscillator 1. No other parameters of Voice 3 have any effect on sync.

RING MOD (Bit 2): The RING MOD bit, when set to a one, replaces the

Triangle waveform output of Oscillator 1 with a "Ring Modulated" com

bination of Oscillators 1 and 3. Varying the frequency of Oscillator 1 with

respect to Oscillator 3 produces a wide range of non-harmonic overtone

structures for creating bell or gong sounds and for special effects. In order

for ring modulation to be audible, the Triangle waveform of Oscillator 1

must be selected and Oscillator 3 must be set to some frequency other

than zero. No other parameters of Voice 3 have any effect on ring mod

ulation.

TEST (Bit 3): The TEST bit, when set to a one, resets and locks Oscillator 1

at zero until the TEST bit is cleared. The Noise waveform output of Oscillator 1

is also reset and the Pulse waveform output is held at a DC level. Normally

this bit is used for testing purposes, however, it can be used to synchronize

Oscillator 1 to external events, allowing the generation of highly complex

waveforms under real-time software control.
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(Bit 4): When set to a one, the Triangle waveform output of Oscillator 1

is selected. The Triangle waveform is low in harmonics and has a mellow,

flute-like quality.

(Bit 5): When set to a one, the Pulse waveform output of Oscillator 1 is

selected. The Sawtooth waveform is rich in even and odd harmonics and

has a bright, brassy quality.

(Bit 6): When set to a one, the Pulse waveform of Oscillator 1 is selected.

The harmonic content of this waveform can be adjusted by the Pulse

Width registers, producing tone qualities ranging from a bright, hollow

square wave to a nasal, reedy pulse. Sweeping the pulse width in real

time produces a dynamic "phasing" effect which adds a sense of motion

to the sound. Rapidly jumping between different pulse widths can produce

interesting harmonic sequences.

NOISE (Bit 7): When set to a one, the Noise output waveform of Oscillator 1

is selected. This output is a random signal which changes at the frequency

of Oscillator 1. The sound quality can be varied from a low rumbling to

hissing white noise via the Oscillator 1 Frequency registers. Noise is useful

in creating explosions, gunshots, jet engines, wind, surf and other un-

pitched sounds, as well as snare drums and cymbals. Sweeping the os

cillator frequency with Noise selected produces a dramatic rushing effect.

One of the output waveforms must be selected for Oscillator 1 to be au

dible, however, it is NOT necessary to de-select waveforms to silence the

output of Voice 1. The amplitude of Voice 1 at the final output is a function

of the Envelope Generator only.

NOTE: The oscillator output waveforms are NOT additive. If more

than one output waveform is selected simultaneously, the result will

be a logical ANDing of the waveforms. Although this technique can

be used to generate additional waveforms beyond the four listed

above, it must be used with care. If any other waveform is selected

while Noise is on, the Noise output can "lock up." If this occurs, the

Noise output will remain silent until reset by the TEST bit or by

bringing RES (pin 5) low.

ATTACK/DECAY (Register 05)

Bits 4-7 of this register (ATK0-ATK3) select 1 of 16 ATTACK rates for

the Voice 1 Envelope Generator. The ATTACK rate determines how rapidly

the output of Voice 1 rises from zero to peak amplitude when the Envelope

Generator is Gated. The 16 ATTACK rates are listed in Table 2.
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Bits 0-3 (DCYO—DCY3) select 1 of 16 DECAY rates for the Envelope

Generator. The DECAY cycle follows the ATTACK cycle and the DECAY

rate determines how rapidly the output falls from the peak amplitude to

the selected SUSTAIN level. The 16 DECAY rates are listed in Table 2.

SUSTAIN/RELEASE (Register 06)

Bits 4-7 of this register (STNO—STN3) select 1 of 16 SUSTAIN levels

for the Envelope Generator. The SUSTAIN cycle follows the DECAY cycle

and the output of Voice 1 will remain at the selected SUSTAIN amplitude

as long as the Gate bit remains set. The SUSTAIN levels range from zero

Table 2. Envelope Rates

VALUE

DEC (HEX)

0 (0)

1 (1)
2 (2)

3 (3)

4 (4)

5 (5)

6 (6)

7 (7)

8 (8)

9 (9)

10 (A)

11 (B)
12 (C)

13 (D)

14 (E)

15 (F)

ATTACK RATE

(Time/Cycle)

2 ms

8 ms

16 ms

24 ms

38 ms

56 ms

68 ms

80 ms

100 ms

250 ms

500 ms

800 ms

1 s

3s

5s

8s

DECAY/RELEASE

RATE

(Time/Cycle)

6 ms

24 ms

48 ms

72 ms

114 ms

168 ms

204 ms

240 ms

300 ms

750 ms

1.5 s

2.4 s

3s

9s

15s

24 s

NOTE: Envelope rates are based on a 1.0-MHz c|>2 clock. For other

<|>2 frequencies, multiply the given rate by 1 MHz/<}>2. The rates refer

to the amount of time per cycle. For example, given an ATTACK

value of 2, the ATTACK cycle would take 16 ms to rise from zero to

peak amplitude. The DECAY/RELEASE rates refer to the amount of

time these cycles would take to fall from peak amplitude to zero.
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to peak amplitude in 16 linear steps, with a SUSTAIN value of 0 selecting

zero amplitude and a SUSTAIN value of 15 ($F) selecting the peak am

plitude. A SUSTAIN value of 8 would cause Voice 1 to SUSTAIN at an

amplitude one-half the peak amplitude reached by the ATTACK cycle.

Bits 0-3 (RLS0-RLS3) select 1 of 16 RELEASE rates for the Envelope

Generator. The RELEASE cycle follows the SUSTAIN cycle when the

Gate bit is reset to zero. At this time, the output of Voice 1 will fall from

the SUSTAIN amplitude to zero amplitude at the selected RELEASE rate.

The 16 RELEASE rates are identical to the DECAY rates.

NOTE: The cycling of the Envelope Generator can be altered at any

point via the Gate bit. The Envelope Generator can be Gated and

Released without restriction. For example, if the Gate bit is reset

before the envelope has finished the ATTACK cycle, the RELEASE

cycle will immediately begin, starting from whatever amplitude had

been reached. If the envelope is then gated again (before the RE

LEASE cycle has reached zero amplitude), another ATTACK cycle

will begin, starting from whatever amplitude had been reached. This

technique can be used to generate complex amplitude envelopes

via real-time software control.

Voice 2

Registers 07-$0D control Voice 2 and are functionally identical to registers

00-06 with these exceptions:

1) When selected, SYNC synchronizes Oscillator 2 with Oscillator 1.

2) When selected, RING MOD replaces the Triangle output of Oscillator 2 with

the ring modulated combination of Oscillators 2 and 1.

Voice 3

Registers $0E-$14 control Voice 3 and are functionally identical to reg

isters 00-06 with these exceptions:

1) When selected, SYNC synchronizes Oscillator 3 with Oscillator 2.

2) When selected, RING MOD replaces the Triangle output of Oscillator 3 with

the ring modulated combination of Oscillators 3 and 2.

Typical operation of a voice consists of selecting the desired parameters:

frequency, waveform, effects (SYNC, RING MOD) and envelope rates,

then gating the voice whenever the sound is desired. The sound can be

sustained for any length of time and terminated by clearing the Gate bit.
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Each voice can be used separately, with independent parameters and

gating, or in unison to create a single, powerful voice. When used in unison,

a slight detuning of each oscillator or tuning to musical intervals creates

a rich, animated sound.

Filter

FC LO/FC HI (Registers $15,$16)

Together these registers form an 11-bit number (bits 3-7 of FC LO are

not used) which linearly controls the Cutoff (or Center) Frequency of the

programmable Filter. The approximate Cutoff Frequency ranges from 30

Hz to 12 KHz.

RES/FILT (Register $17)

Bits 4-7 of this register (RES0-RES3) control the resonance of the filter.

Resonance is a peaking effect which emphasizes frequency components

at the Cutoff Frequency of the Filter, causing a sharper sound. There are

16 resonance settings ranging linearly from no resonance (0) to maximum

resonance (15 or $F). Bits 0-3 determine which signals will be routed

through the Filter:

FILT 1 (Bit 0): When set to a zero, Voice 1 appears directly at the audio

output and the Filter has no effect on it. When set to a one, Voice 1 will

be processed through the Filter and the harmonic content of Voice 1 will

be altered according to the selected Filter parameters.

FILT 2 (Bit 1): Same as bit 0 for Voice 2.

FILT 3 (Bit 2): Same as bit 0 for Voice 3.

FILTEX (Bit 3): Same as bit 0 for External audio input (pin 26).

MODE VOL (Register $18)

Bits 4-7 of this register select various Filter mode and output options:

LP (Bit 4): When set to a one, the Low-Pass output of the Filter is selected

and sent to the audio output. For a given Filter input signal, all frequency

components below the Filter Cutoff Frequency are passed unaltered, while

all frequency components above the Cutoff are attenuated at a rate of 12

dB/Octave. The Low-Pass mode produces full-bodied sounds.

BP (Bit 5): Same as bit 4 for the Bandpass output. All frequency com

ponents above and below the Cutoff are attenuated at a rate of 6 dB/

Octave. The Bandpass mode produces thin, open sounds.
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HP (Bit 6): Same as bit 4 for the High-Pass output. All frequency com

ponents above the Cutoff are passed unaltered, while all frequency com

ponents below the Cutoff are attenuated at a rate of 12 dB/Octave. The

High-Pass mode produces tinny, buzzy sounds.

3 OFF (Bit 7): When set to a one, the output of voice 3 is disconnected

from the direct audio path. Setting Voice 3 to bypass the Filter (FILT 3 =

0) and setting 3 OFF to a one prevents Voice 3 from reaching the audio

output. This allows Voice 3 to be used for modulation purposes without

any undesirable output.

NOTE: The Filter output modes ARE additive and multiple Filter

modes may be selected simultaneously. For example, both LP and

HP modes can be selected to produce a Notch (or Band Reject)

Filter response. In order for the Filter to have any audible effect, at

least one Filter output must be selected and at least one Voice must

be routed through the Filter. The Filter is, perhaps, the most important

element in SID as it allows the generation of complex tone colors

via subtractive synthesis (the Filter is used to eliminate specific fre

quency components from a harmonically rich input signal). The best

results are achieved by varying the Cutoff Frequency in real-time.

Bits 0-3 (VOL0-VOL3) select 1 of 16 overall Volume levels for the final

composite audio output. The output volume levels range from no output

(0) to maximum volume (15 or $F) in 16 linear steps. This control can be

used as a static volume control for balancing levels in multi-chip systems

or for creating dynamic volume effects, such as Tremolo. Some Volume

level other than zero must be selected in order for SID to produce any

sound.

Miscellaneous

POTX (Register $19)

This register allows the microprocessor to read the position of the poten

tiometer tied to POTX (pin 24), with values ranging from 0 at minimum

resistance, to 255 ($FF) at maximum resistance. The value is always valid

and is updated every 512 c}>2 clock cycles. See the Pin Description section

for information on pot and capacitor values.

POTY (Register $1 A)

Same as POTX for the pot tied to POTY (pin 23).
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OSC 3 RANDOM (Register $1B)

This register allows the microprocessor to read the upper 8 output bits of

Oscillator 3. The character of the numbers generated is directly related to

the waveform selected. If the Sawtooth waveform of Oscillator 3 is se

lected, this register will present a series of numbers incrementing from 0

to 255 ($FF) at a rate determined by the frequency of Oscillator 3. If the

Triangle waveform is selected, the output will increment from 0 up to 255,

then decrement down to 0. If the Pulse waveform is selected, the output

will jump between 0 and 255. Selecting the Noise waveform will produce

a series of random numbers, therefore, this register can be used as a

random number generator for games. There are numerous timing and

sequencing applications for the OSC 3 register, however, the chief function

is probably that of a modulation generator. The numbers generated by

this register can be added, via software, to the Oscillator or Filter Fre

quency registers or the Pulse Width registers in real-time. Many dynamic

effects can be generated in this manner. Siren-like sounds can be created

by adding the OSC 3 Sawtooth output to the frequency control of another

oscillator. Synthesizer "Sample and Hold" effects can be produced by

adding the OSC 3 Noise output to the Filter Frequency control registers.

Vibrato can be produced by setting Oscillator 3 to a frequency around

7 Hz and adding the OSC 3 Triangle output (with proper scaling) to the

Frequency controj of another oscillator. An unlimited range of effects are

available by altering the frequency of Oscillator 3 and scaling the OSC 3

output. NormaNy, when Oscillator 3 is used for modulation, the audio output

of Voice 3 should be eliminated (3 OFF = 1).

ENV 3 (Register $1C)

Same as OSC 3, but this register allows the microprocessor to read the

output of the Voice 3 Envelope Generator. This output can be added to

the Filter Frequency to produce harmonic envelopes, WAH-WAH, and

similar effects. "Phaser" sounds can be created by adding this output to

the frequency control registers of an oscillator. The Voice 3 Envelope

Generator must be Gated in order to produce any output from this register.

The OSC 3 register, however, always reflects the changing output of the

oscillator and is not affected in any way by the Envelope Generator.
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6525 Tri-Port Interface

Concept

The 6525 TRI-PORT Interface (TPI) is designed to simplify the imple

mentation of complex I/O operations in microcomputer systems. It com

bines two dedicated 8-bit I/O ports with a third 8-bit port programmable

for either normal I/O operations or priority interrupt/handshaking control.

Depending on the mode selected, the 6525 can provide 24 individually

programmable I/O lines or 16 I/O lines, 2 handshake lines and 5 priority

interrupt inputs.

6525 Addressing

6525 REGISTERS/(Direct Addressing)

PRA—Port Register A

PRB—Port Register B

PRC—Port Register C

DDRA—Data Direction Register A

DDRB—Data Direction Register B

DDRC—Data Direction Register C/lnterrupt Mask Register

CR—Control Register

AIR-—Active Interrupt Register

*NOTE: RS2, RS1, RSO respectively

6525 Control Registers

000

001

010

011

100

101

110

111

R0

R1

R2

R3

R4

R5

R6

R7

CR

AIR

DDRC

When MC = 1

PRC

When MC = 1

CB, CB0 CA,

CB CA IRQ

CA0

A4

M4

u

IE4

A3

M3

I3

IE3

A2

M2

■2

IP

A,

M,

li

MC

Ao

Mo

lo

CA, CB Functional Description

The CA, CB lines are outputs used in the same fashion as the CA2 and

CB2 output of the 6520.
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CAt CA0 MODE

CA Output

353

Modes

DESCRIPTION

0

1

"Handshake"

on Read

Pulse Output

Manual

Output

CA is set high on an active transition of the l3

interrupt input signal and set low by a micropro

cessor "Read A Data" operation. This allows

positive control of data transfers from the pe

ripheral device to the microprocessor.

CA goes low for IMS after a "Read A Data" op

eration. This pulse can be used to signal the

peripheral device that data was taken.

CA set low.

Manual CA set high.

Output

CB Output Modes

MODE DESCRIPTION

0

1

"Handshake"

on Write

Pulse Output

Manual

Output

Manual

Output

CB is set low on microprocessor "Write B Data"

operation and is set high by an active transition

of the l4 interrupt input signal. This allows positive

control of data transfers from the microprocessor

to the peripheral device.

CB goes low for IMS after a microprocessor "Write

B Data" operation. This can be used to signal

the peripheral device that data is available.

CB set low.

CB set high.

INTERRUPT MASK REGISTER DESCRIPTION

When the Interrupt Mode is selected (MC = 1), the Data Direction Register

for Port C (DDRC) is used to enable or disable a corresponding interrupt

input. For example: If Mo = 0 then l0 is disabled and any l0 interrupt latched

in the interrupt latch register will not be transferred to the AIR and will not

cause IRQ to.go low. The interrupt latch can be cleared by writing a zero

to the appropriate I bit in PRC.
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PORT REGISTER C DESCRIPTION

Port Register C (PRC) can operate in two modes. The mode is controlled

by bit MC in register CR. When MC = 0, PRC is a standard I/O port,

operating identically to PRA & PRB. If MC = 1, then port register C is

used for handshaking and priority interrupt input and output.

PRC When MC = 0:

PC7 PC6 PC5

PRC When MC = 1

CB CA IRQ

PC4

U

PC3

i3

PC2

l2

PC,

l1

PCo

lo

INTERRUPT EDGE CONTROL

Bits IE4 and IE3 in the control register (CR) are used to determine the

active edge which will be recognized by the interrupt latch.

If IE4 (IE3) = 0 then l4 (l3) latch will be set on a negative transition of l4

(l3) input.

If IE4 (IE3) = 1 then l4 (l3) latch will be set on a positive transition of the

l4 (l3) input.

All other interrupt latches (l2, li, l0) are set on a negative transition of the

corresponding interrupt input.

Interrupt Latch Register

Clears on Read of AIR Using Following

Equation

ILR «- ILR © AIR

Active Interrupt Register

Clears on Write to AIR

Interrupt Priority Select

IP = 0 No Priority

IP = 1 Interrupts Prioritized

u U >2 li lo

A4 A3 A2

IP

A, Ao
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FUNCTIONAL DESCRIPTION

1. IP = 0 No Priority

All interrupt information latched into interrupt latch register_([LR) is im

mediately transferred into activejnterrupt register (AIR) and IRQ is pulled

low. Upon read of interrupt the IRQ is reset high and the appropriate bit(s)

of the interrupt latch register is cleared by exclusive OR-ing. The ILR with

AIR (ILR0AIR). After the appropriate interrupt request has been serviced

a Write to the AIR will clear it and initiate a new interrupt sequence if any

interrupts were received during previous interrupt servicing. In this non-

prioritized mode it is possible for two or more interrupts to occur simul

taneously and be transferred to the AIR. If this occurs it is a software effort

to recognize this and act accordingly.

2. IP = 1 Interrupts Prioritized

In this mode the Interrupt Inputs are prioritized in the following order l4 >

l3 > l2 > li > lo

In this mode only one bit of the AIR can be set at any one time. If an

interrupt occurs it is latched into the interrupt latch register, the IRQ line

is pulled low and the appropriate bit of the AIR is set. To understand fully

the operation of the priority interrupts it is easiest to consider the following

examples.

A. The first case is the simplest. A single interrupt occurs and the pro

cessor can service it completely before another interrupt request is

received.

1. Interrupt 1j is received.

2. BitJ1 is set high in Interrupt Latch Register.

3. IRQ is pulled low.

4. Ai is set high.

5. Processor recognizes IRQ and reads AIR to determine which in

terrupt occurred.

6. Bit I, is reset and IRQ is reset to high.

7. Processor Services Interrupt and signals completion of Service

routine by writing to AIR.

8. Ai is reset low and interrupt sequence is complete.

B. The second case occurs when an interrupt has been received and a

higher priority interrupt occurs. (See Note)

1. Interrupt I, is received.

2. Bitj! is set high on the Interrupt Latch Register.

3. IRQ is pulled low and AA is set high.
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4. Processor recognizes IRQ and reads AIR to determine which

interrupt occurred.

5. Bit \, is reset and IRQ is reset high.

6. Processor begins servicing ^ interrupt and the l2 interrupt is re

ceived.

7. A2 is set, A1 is reset low and IRQ is pulled low.

8. Processor has not yet completed servicing I, interrupt so this

routine will be automatically stacked in 6500 stack queue when

new IRQ for l2 of interrupt is received.

9. Processor reads AIR to determine l2 interrupt occurrence and bit

l2 of interrupt latch is reset.

10. Processor services l2 interrupt, clears A2 by writing AIR and re

turns from interrupt. Returning from interrupt causes 650X pro

cessor to resume servicing ^ interrupt.

11. Upon clearing A2 bit in AIR, the A^ bit will not be restored to a

one. Internal circuitry will prevent a lower priority interrupt from

interrupting the resumed l1a

C. The third case occurs when an interrupt has been received and a

lower priority interrupt occurs.

1. Interrupt \A is received and latched.

2. IRQ is pulled low and A1 is set high.

3. Processor recognizes IRQ and reads AIR to determine that h in

terrupt occurred.

4. Processor logic servicing I, interrupt during which l0 interrupt oc

curs and is latched.

5. Upon completion of ^ interrupt routine the processor writes AIR

to clear A, to signal 6525 that interrupt service is complete.

6. Latch l0 interrupt is transferred to AIR and IRQ is pulled low to

begin new interrupt sequence.

NOTE: It was indicated that the 6525 will maintain Priority Interrupt

information from previously serviced interrupts.

This is achieved by the use of an Interrupt Stack. This stack is pushed

whenever a read of AIR occurs and is pulled whenever a write to

AIR occurs. It is therefore important not to perform any extraneous

reads or writes to AIR since this will cause extra and unwanted stack

operations to occur.

The only time a read of AIR should occur is to respond to an interrupt

request.

The only time a write of AIR should occur is to signal the 6525 that

the interrupt service is complete.



J
Disk User's

Guide
The optional disk holds programs supplementary to the book. The pro

grams are as follows:

SUPERM0N1 (for original ROM PET computers)

SUPERM0N5 (for upgrade ROM PET/CBM computers)

SUPERM0N4 (for 4.0 PET/CBM computers)

SUPERMON. V (for VIC-20 computers)

SUPERM0Nt4 (for Commodore 64 computers)

SUPERMON INST(instructions, BASIC)

SUPERMON + PET (for upgrade and 4.0 PET/CBM)

SUPERMON + VIC (for VIC-20 computers)

SUPERMON + b4(for Commodore 64 computers)

SUPERMON + INST (instructions, Basic)

UNIC0PYb4 (for Commodore 64)

UNICOPYINST (instructions, BASIC)

UNICOPY LIST (BASIC, all machines)

JUNICOPY ASSY (data file for UNICOPY LIST)

COPY-ftLL (for PET/CBM)

COPY - ALL. b< (for Commodore 64)

CROSS REF (for PET/CBM)

CROSS REFb4 (for Commodore 64)

CROSS REF 12 fl (for Commodore 128)

FACTORS (for PET/CBM)
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FACTORS Vt4 (for VIC-20, Commodore 64, and Plus-4)

FACTORS lEfl (for Commodore 128)

PENTOMINOS INST (instructions)

PENTOMINOS (BASIC, all machines)

PENTOMINOS PET (for PET/CBM)

PENTOMINOS Vb4 (for VIC-20, Commodore 64, and Plus-4)

PENTOMINOS lEfl (for Commodore 128)

PENTOMINOS BlEfl (boot for B128 system)

+ PENT01Efl (program for B128)

+ XFER (transfer sequence for B128)

STRING THING (BASIC, for PET/CBM)

STRING THING Vb4 (BASIC, for VIC-20, Commodore 64)

STRING THING lEfl (for Commodore 128)

]SAMPLE FILE (for use with STRING THING)

These programs are public domain, and may be obtained from user groups.

They are available here for user convenience.

The following notes may be useful in using or studying the programs.

SUPERMON1 (for original ROM PET computers)

SUPERMONE (for upgrade ROM PET/CBM computers)

SUPERM0N4 (for 4.0 PET/CBM computers)

SOPERMON. V (for VIC-20 computers)

SUPERMONb4 (for Commodore 64 computers)

SUPERMON INST (instructions, BASIC)

Supermon 2 and 4 are "extensions" to the built-in MLM of the respective

machines. The other Supermon versions are complete monitors. These

are the "original" Supermon programs.

Remember that the programs on disk are "monitor generators," that is,

they build the monitor for you. After the monitor has been built, you should

remove the builder program so that you don't end up with two copies. In

other words, after RUN type .X to return to BASIC, NEW to scrap the

builder, and then SYS^orSYSflto return to the monitor whenever de

sired.

The monitor is always built near the top of memory. Its entry address can

be determined by checking the TOM (top-of-memory) pointer. Monitors

are complex, but feel free to ask the monitor to disassemble itself for your

information.

After Supermon is placed, you may load BASIC programs and use the

computer normally. Supermon will remain until you shut off the power.
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SUPERMON + PET (for upgrade and 4.0 PET/CBM)

SUPERMON + VIC (for VIC-20 computers)

SUPERMON + b4 (for Commodore 64 computers)

SUPERMON + INST (instructions, Basic)

A revised version of SOPERMON; the commands closely correspond to

those of the built-in monitors of the Plus-4 and Commodore 128. Contains

a number of convenience features not found in the original SUPER

MON.

UHICOPYt*

A utility for copying files from one disk to another, on a single drive; or

copying from one disk to cassette tape. The program is written entirely in

machine language, apart from the SYS that starts it up.

Information is copied from the selected files into RAM memory. When the

output phase begins, the data is then written to disk or tape.

0NIC0PY INST

A BASIC program explaining how to use UNICOPYb4.

UNICOPY LIST

JUNICOPY ASSY

An assembly listing of program UNICOPY. Because UNICOPY is written

entirely in machine language, a number of tasks are performed in the

program that are often more conveniently done in BASIC. For example,

files are opened and closed by machine language. This makes the program

listing particularly interesting for students of these techniques.

Assembly listings have a somewhat different appearance from the machine

language programs this book has dealt with. The most visible difference

is in the use of symbolic addresses. If there is any confusion, concentrate

on the machine language half of the listing; that will clarify what's going

on. Program UNICOPY LIST allows output to the screen or to a Com

modore printer.

For cassette tape output, direct calls to the ROM routines are made; that's

usually not good practice, but there's little choice here.

The program is written in machine language so that the BASIC ROM can

be flippped out, allowing for more memory space in which to copy pro

grams.

COPY-ALL (for PET/CBM)

COPY - ALL. bA (for Commodore 64)
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A utility for copying files from one disk drive to another. You will find two

S Y S commands in the BASIC part of the program: one to get the directory,

and the other to do the actual copying.

Information is copied from the selected file into a BASIC string that has

been set aside for the purpose. A similar technique may be found in the

simpler STRING THING.

CROSS REF (for PET/CBM)

CROSS REF b4 (for Commodore 64)

CROSS REF 15fl (for Commodore 128)

This program prepares a cross-reference listing for any selected BASIC
program on disk. It cross-references both line numbers and variables. It's

a good way to document a BASIC program.

The program uses two table lookup techniques that may be confusing to

the beginning machine language program reader. First, it classifies all

characters received from BASIC in terms of "type"; this is done with a
table of 256 elements, one for each possible character. Second, it uses

a "state transition table" to record the nature of the job in progress; for
example, after meeting a GOSUB "token," it will expect to receive a line

number.

The second S YS in the BASIC program is used to print the line numbers

of the cross-reference. It employs an efficient binary-to-decimal conversion

technique, which uses decimal mode.

FACTORS (for PET/CBM)

FACTORS Vb4 (for VIC-20, Commodore 64, and Plus-4)

FACTORS lEfl (for Commodore 128)

This program finds factors of numbers up to nineteen digits long. This

shows a powerful feature of machine language as opposed to BASIC: the

size of numbers is not limited by the language.

The program contains a number of useful techniques worth studying. First,

it allows a decimal input of any number up to 19 digits (a 64-bit or 8-byte

binary number). Second, to find factors it performs division with remainder.

Finally, to print results, it must convert binary-to-decimal, using the same

decimal mode technique as in CROSS REF.

The program does not try all divisors. After trying a few initial values (2,

3, and 5), it switches to a "30-counter" technique, trying only multiples of

30 plus 1,7, 11, 17, 19, 23, and 29.

The machine language program is relocated by BASIC so that it starts at

hexadecimal 13 DD (in the C128 version, 1DDD) regardless of where it
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was originally loaded. This was originally done to allow for the VIC-20's

variable start-of-BASIC, which rambles according to the amount of extra

memory fitted. It turns out to be useful for study to have the program in a

fixed location; so the PET/CMB version was also set up in this way.

Students wishing to disassemble FACTORS will find the following infor

mation useful:

VARIABLES (see note for C-128):

$D34R—number of times a factor divides evenly

$D34 A—"equals" or "asterisk" character for formatting

$D34B—zero suppression flag

$ D 3 A C—30—counter

$D35D to $0357—value under analysis

$D35fl to $D35F—value work area

$D3tD to $D3b7—"base" value for 30-counter

$D3bC to $D37R—division work area, including:

$D3tC to $D3tF—remainder

$D37D to $D377—quotient

C-128 note: The above locations are sensitive in the C128; the above

variables have been relocated to page B. Thus, instead oi $Q3A^ given

above, address $UBAC\ will be used.

PROGRAM (see note for C128):

$13DD: Main routine, including:

$ 13 D D: Start, clear work area

$13ID: Get number digits from user

$1331: Handle bad input

$133 A: Begin factoring; check non-zero

$13 5 D: Try divisors 2, 3, and 5

$1315: Try higher divisors

$13AE: Print remaining value.

$ 13 B A: Prompt subroutine

$13CA: Input and analyze digit

$ 1A D B: Multiply-by-two subroutine

$1415: Division subroutine

$ 1A 7 A: Try a divisor (short)

$147D: Try a divisor (long)

$1465 : Check if remainder zero

$14^2: Log factor if found

$14 A 5 : Check if more to do

$14BCI: Print value subroutine
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$1<DD: Print factor subroutine

$1504 : Clear output area

$15OF: Convert to decimal and print

$1535: Print a digit with zero suppression

$1515: 30-count values: 1,7,11, etc.

C128 note: Basic is located at quite a high address in this machine; the

start address of the program has been moved up to $1DDD to allow for

this. The above table is correct if the extra offset is allowed; thus $1415

above becomes $ IE 15 in the C128.

Even at machine language speeds, this program can take a long time to

analyze large factors and prime numbers. The RUN/STOP key is active

to allow the user to stop the run.

PENTOMINOS INST (instructions)

PENTOMINOS (BASIC, all machines)

PENTOMINOS PET (for PET/CBM)

PENTOMINOS Vb4 (for VIC-20, Commodore 64, and Plus-4)

PENTOMINOS lEfl (for Commodore 128)

PENTOMINOS BlEfl (boot for B128 system)

+ PENTO12Q (program for B128)

+ XFE R (transfer sequence for B128)

This is a puzzle solving problem. Pieces are fitted into a selected rectan

gular shape "visibly"—in other words, they may be seen on the screen

as they are tried.

The machine language programs follow the logic of the BASIC program

precisely. The "shape tables" have been rearranged for greater machine

language convenience (each piece is reached by indexing; the index range

of 0 to 255 dictates the piece being selected and its rotation).

The machine language program uses no indirect addressing and no sub

routines. That is not necessarily good practice; it is largely a result of

writing the program logic to exactly match the BASIC program.

This program makes use of tables, and is worth studying for that reason.

It is also useful to examine the close relationship between the BASIC

program and its machine language equivalent, especially starting at line

2000 in BASIC.

As with FACTORS, the machine language program is relocated by BASIC

so that it starts at hexadecimal 15bD (with tables starting at $12Ffi)

regardless of where it was originally loaded. Again, this is necessary for

the VIC-20 and proves to be convenient for study purposes on all ma

chines—except the B-128 version, where this relocation does not happen.
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Students wishing to disassemble PENTOMINOS will find the following

information useful:

VARIABLES (see C128 note):

$D33C—piece number, BASIC variable P

$D33D to $D33E—variables W1 and W2, board size

$D33F—P1, number of pieces placed

$D34D to $U3AB—U(..) log of pieces placed

$D3AC to $0357—T(..) rotation of piece

$D35fl to $D35C—X(..) location of piece

$D35D to $D3bl—Y(..) location of piece

$D3b5 to $D37D—tables to place a piece

$D37F to $D3qC—board "edge" table

$D3qD to $D3Dfl—B(...) the board.

C128 note: The above locations are sensitive in the C128; the above

variables have been relocated to page B. Thus, instead of $D3t5 given

above, address $DBb2 will be used.

PROGRAM (see C128 note):

$15bD: Start, BASIC line 1070

$15A< : Clear screen, BASIC line 1120

$ 15 An: Clear variables, set up

$15CC: Find space, BASIC line 2010

$lbDD: Get new piece, BASIC line 2030

SlbDq : Try piece, BASIC line 2060

$lbflb: Put piece in, BASIC line 2120

$lbED: Print "Solution11, BASIC line 2170

$17 Dl: Undraw piece, BASIC line 2190

$17 AB: Rotate piece, BASIC line 2260

$17BC: Give up on piece, BASIC line 2280

$17C1: Look for new piece, BASIC line 2300

C128 note: Basic is located at quite a high address in this machine; the

start address of the program has been moved up to $lFbD to allow for

this. The above table is correct if the extra offset is allowed; thus $lbDD

above becomes $2DDD in the C128.

The B128 version does not align to the above addresses. It is written to

illustrate the "boot" loading system needed for that computer. Programs

whose names begin with a + symbol are loaded by the bootstrap program;

do not try to load them directly.
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STRING THING (BASIC, for PET/CBM)

STRING THING Vb4 (BASIC, for VIC-20, Commodore 64, Plus-4)

STRING THING lEfl (Commodore 128)

JSAMPLE FILE

A simple machine language program , POKEable directly from BASIC, to

substitute for an INPUT# statement.

INPUT# has several limitations that sometimes make it awkward for use

with files:

• No more than 80 characters may be read.

• The comma or colon character will break up input.

• Leading spaces will disappear.

STRING THING reads everything up to the next RETURN or end of

file. It is pure BASIC, but POKEs machine language into the cassette

buffer area. It finds the first variable and uses it as an input buffer.

The 128 machine language program is brief and makes good study ma

terial. Since the program is in bank 0 but the variable table is in bank 1,

it is necessary to call special Kernal routine INDFET ($FF7 A ) to get

the information. Later, when the program wishes to place a character into

the string (which also resides in bank 1), it must call special Kernal routine

INDSTA ($FF77 ) to get it there. The manner in which the calls are set

up is instructive.



Glossary

The numbers in parentheses indicate the chapter in which the word or

phrase is first used.

Absolute address: (5) An address that can indicate any location in

memory.

Accumulator: (3) The A register; the register used for arithmetic.

Address bus: (1) A bus that signals which part of memory is wanted

for the next memory operation.

Address mode: (5) The manner in which an instruction reaches in

formation within memory.

Address: (1) The identity of a specific location within memory.

Algorithm: (1) A method or procedure to perform a computing task.

Arithmetic shift or rotate: (4) A shift or rotate that usually preserves

the sign of a number.

Assembler: (2) A program that assembles or changes source code

into object code.

Assembly: (1) The process of changing source code into object code.

Assembly code: (1) Also called source code. A program written in a

somewhat human-readable form. Must be translated ("assembled") before

use.

365
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Assembly language: (1) The set of instructions, or language, in which

a source program must be written before assembly.

Binary: (1) Something that has two possible states; a number based

on digits, each of which has two possible states.

Bit: (1) A binary digit; the smallest element of information within a

computer.

Bootstrap: (6) A program that starts up another program.

Breakpoint: (8) A location where the program will stop so as to allow

checking for errors.

Bug: (8) An error within a program.

Bus: (1) A collection of wires connecting many devices together.

Byte: (1) Eight bits of information grouped together; the normal mea

sure of computer storage.

Calling point: (2) The program location from which a subroutine is

called into play; the subroutine will return to the calling point when finished.

Channel: (8) A path connecting the computer to one of its external

devices.

Comment: (8) A program element which does not cause the computer

to do anything, used as advice to the human program reader.

Commutative: (3) A mathematical operation that works both ways,

e.g., 3 + 4 gives the same result as 4 + 3.

Control bus: (1) A bus that signals timing and direction of data flow

to the various connected devices.

Data bus: (1) A bus used to transfer data between memory and the

microprocessor.

Debugging: (8) Testing a program to uncover possible errors.

Decimal: (1) A number system based on a system of ten digits; the

"normal" numbering system used by humans.

Decrement: (2) To make smaller by a value of one.

Descriptor: (6) A three-byte set of data giving a string's length and

its location.

Disassembler: (2) A program that changes object code into assembly

code to allow inspection of a program.

Disassemble: (2) To change object code into assembly code. Similar

to a LIST in BASIC.

Dynamic string: (6) A string that must be placed into memory after

being received or calculated.

Effective address: (2) The address used by the processor to handle

data when executing an instruction. It may differ from the instruction ad

dress (or "operand") because of indexing or indirect addressing.

Event flag: (7) A flag that signals that some event has happened.

Execute: (1) To perform an instruction.
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File: (8) A collection of data stored on some external device.

Flag: (3) An on/off indicator that signals some condition.

Floating accumulator: (7) A group of memory iocations used by BASIC
to perform calculations on a number.

Garbage collection: (6) A BASIC process in which active strings are

gathered together and inactive strings are discarded. On some computers

this can be quite time consuming.

Increment: (2) To make larger by a value of one.

Index: (2) To change an address by adding the contents of an index

register.

Index register: (2) The X or Y registers, which may be used for chang

ing effective addresses.

Indirect address: (5) An addressing scheme whereby the instruction

contains the location of the actual address to be used; an address of an

address.

Instruction: (1) An element of a program that tells the processor what

to do.

Interrupt: (1) An event that causes the processor to leave its normal

program so that some other program takes control, usually temporarily.

Interrupt enable register: (7) A location within an IA chip that deter

mines whether or not a selected event will cause an interrupt.

Interrupt flag: (7) A signal within the IA indicating that a certain event

has requested that an interrupt take place.

Interrupt flag register: (7) A location within the IA where interrupt

events can be detected and turned off if desired.

Interrupt source: (7) The particular event that caused an interrupt.

Since many things can do this, it's usually necessary to identify the specific

source of the interrupt.

Kernal: (2) Commodore's operating system.

Label, symbolic address: (8) A name identifying a memory location.

Latch: (7) A flag that "locks in."

Load: (1) To bring information from memory into the processor. A

load operation is a copying activity; the information still remains in memory.

Logical file number: (8) The identity of a file as used by the program

mer.

Logical operator: (3) An operation that affects individual bits within a

byte: AND, ORA, and EOR.

Logical shift or rotate: (4) A shift that does not preserve the sign of

a signed number.

Machine code: (1) Instructions written in machine language.

Machine language: (1) The set of commands that allow you to give

instructions to the processor.
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Machine language monitor: (1) A program that allows communication

with the computer in a manner convenient for machine language pro

gramming.

Memory: (1) The storage used by a computer; every location is iden

tified by an address.

Memory mapped: (1) Circuits that can be reached by the use of a

memory address, even though they are not used for storage or memory

purposes.

Memory page: (5) A set of 256 locations in memory, all of whose

addresses have the same "high byte."

Microcomputer: (1) A computer system containing a microprocessor,

memory, and input/output circuits. A computer built using microchips.

Microprocessor: (1) The central logic of a microcomputer, containing

logic and arithmetic. A processor built on a microchip.

Monitor: (1) A program that allows the user to communicate with the

computer. Alternatively, a video screen device.

Non-maskable interrupt, NMI: (7) A type of interrupt that cannot be

disabled.

Non-symbolic assembler: (2) An assembler in which actual addresses

must be used.

Object code: (1) The machine language program that will run in the

computer.

Octothorpe: (2) Sometimes called a numbers sign, a pounds sign, a

hash mark. The "#" symbol.

Operand: (1) The part of an instruction following the op code that

usually signals where in memory the operation is to take place.

Operating system: (1) A set of programs with a computer that takes

care of general work such as input/output, timing, and so on.

Operation code, op code: (1) The part of an instruction that says

what to do.

Overflow: (3) Condition caused by an arithmetic operation generating

a result that is too big to fit in the space provided.

Pointer: (6) An address held in memory, usually in two bytes.

Processor status word, status register: (3) A processor register that

holds status flags.

Pull: (7) To take something from the stack.

Push: (7) To put something on the stack.

Random access memory, RAM: (1) The part of a computer's memory

where information can be stored and recalled.

Read: (1) To obtain information from a device.

Read only memory, ROM: (1) The part of a computer's memory where

fixed information has been stored. New information cannot be stored in a

ROM; it is preprogrammed.
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Register: (1) Location within a processor where information can be

held temporarily.

Screen editing: (1) The ability to change the screen of a computer

and cause a corresponding change in memory.

Screen memory: (2) The part of a computer holding the information

displayed on the screen. Changing screen memory will change the screen;

reading screen memory will reveal what is on the screen.

Selected: (1) A chip or device that has been signaled to participate

in a data transfer. If the chip or device has not been selected, it will ignore

data operations.

Self-modifying: (7) A type of program that changes itself as it runs.

Rare, and not always considered good programming practice.

Signed number: (3) A number that holds a value that may be either

positive or negative.

Source code: (1) Instructions written in assembly language; usually,

the first code written by the programmer before performing an assembly.

Stack: (7) A temporary, or "scratch pad," set of memory locations.

Status register, processor status word: (3) Within the processor, a

register that holds status flags.

Store: (1) To transfer information from the processor to memory. The

store operation is a copying activity: the information still remains in the

processor.

Subroutine: (2) A set of instructions that can be called up by another

program.

Symbolic address, label: (7) A name identifying a memory location.

Symbolic assembler: (2) An assembler in which symbolic addresses

may be used. This is more powerful than a non-symbolic assembler.

Testable flag: (3) A flag that can be tested by means of a conditional

branch instruction.

Two's complement: (3) A method of representing negative numbers.

With single byte numbers, -1 would be represented by $FF.

Unsigned number: (3) A number that cannot have a negative value.

Write: (1) To send information to a device.

Zero page: (5) The lowest 256 locations in memory. Locations whose

addresses begin with hexadecimal $00...
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A, X, and Y data registers, 9, 11,

46, 47, 142

Absolute addressing, 148

Absolute indexed mode, 77-78

Absolute indirect, 149

Absolute mode, 75-76

Accumulator addressing, 148

Accumulator mode, 74

ADC, Add memory to accumulator

with carry, 149

Addition, 58-60

Address, defined, 3

Address bus, 3-5

Addressing modes, 72-89,

148-149

Algorithms:

decimal to hexadecimal, 7

hexadecimal to decimal, 7

AND, "AND" memory with

accumulator, 121, 149

ASCII, 25, 50, 249-250

ASL, Shift left one bit (memory or

accumulator), 61-62, 149

Assemblers:

nonsymbolic, 27

symbolic, 143-144

BASIC:

breaking into, 124-125

infiltrating, 122-124

linking with, 30-31

machine language exchanging

data, 104-108

memory layout, 92-102

variables, 102-105

BCC, Branch on carry clear, 87,

149

BCS, Branch on carry set, 149

BEQ, Branch on result zero, 149

Binary, defined, 2

Bit, defined, 2

BIT, Test bits in memory with

accumulator, 142, 149

Bit map mode on the 6566/6567,

328-330

BMI, Branch on result minus, 149

BNE, Branch on result not zero,

149

BOS, Bottom of string, 94-95

BPL, Branch on result plus, 149

Branches and branching, 79-80

Branch instructions, 141

BRK, Force-break, 72, 115, 116,

142, 143, 149, 279

Bus:

address, 4-5

control, 5

defined, 3

see also Data bus

BVC, Branch on overflow clear, 150

371
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BVS, Branch on overflow set, 150

Bytes, multiple, 58

C flag, 42, 45, 46

Character display mode of the

6566/6567, 325-327

Character sets, 242-250

Chip information, 293-356

6520 (PIA) Peripheral interface

adaptor, 294-298

6522 (VIA) Versatile interface

adaptor, 309-318

6525 Tri-port interface, 352-356

6526 (CIA) Complex interface

adaptor, 318-325

6545-1 (CRTC) CRT controller,

299-304

6560 (VIC) video interface chip,

304-309

6566/6567 (VIC II) chip

specifications, 325-340

6581 (SID) Sound interface

device, chip specifications,

340-351

CHKIN subroutine, 136

CHKOUT subroutine, 133, 134

CHRGET subroutine, 122-123,

124

CHRGOT subroutine, 123,

124-125

CHROUT subroutine, 25, 133

CIA chip, 120

CLC, Clear carry flag, 150

CLD, Clear decimal mode, 150

CLI, clear interrupt disable bit, 118

Clock speed, 132

CLOSE, 134

CLRCHN subroutine, 133, 135,

136, 137

CLV, Clear overflow flag, 150

CMP, Compare memory and

accumulator, 150

Color codes of the 6566/6567, 340

Commodore computers,

characteristics of, 156-166

Compare, 141

Comparing numbers, 61-62

Complex interface adaptor 6526,

318-325

Control bus, 5

CPX, Compare memory and index

X, 150

CPY, Compare memory and index

Y, 150

Data bus, 4-5

see also Bus

Data exchange, BASIC machine

language, 104-108

Debugging, 143

DEC, Decrement memory by one,

150

Decimal notation to hexadecimal,

7-8

DEX, Decrement index X by one,

150

DEY, Decrement index Y by one,

150

Disassembler, checking the,

29-30

Disk user's guide, 357-364

Division by two, 63-64

Do nothing insruction, 72-74

Dynamic string, 94

Effective address, 32

End of BASIC, 92-93

Envelope rates of the 6581, 347

EOA, end of arrays, 93

EOR, exclusive or, 47, 48, 49, 121,

150

EOR instruction, 87

Exercises, 11-13, 52-54,

84-88, 252-278



INDEX 373

adding a command, 125-126,

256, 271-273

addition, 263-264

for Commodore C128, 257-276

file transfer, 274-276

input, 263

interrupt, 119-120, 254-255,

270-271

loops, 262-263

output, 273-274

print, 26-27, 259-262

screen manipulation, 265-266

Extended color mode of the 6566/

6567, 328

File transfer program, 138-141

Flags, 40-46

Floating point variables, 103

Free memory, 94-95

GETIN, Gets an ASCII character,

25, 133

Glossary, 365-369

Handshaking, 318-319

Hexadecimal notation, 5-6

Hexadecimal notation to decimal,

6-7

IA, Interface adaptor chips, 9, 50,

120-122, 142

IER, Interrupt enable register, 122

IFR, Interrupt flag register, 121

Immediate addressing, 148

Immediate mode, 74-75

Implied addressing, 148

Implied mode, 72-74

INC, Increment memory by one, 74,

150

Increment and decrement

instructions, 141

Indexed absolute addressing, 148

Indexed indirect addressing, 149

Indexed indirect mode, 83-84

Indexed zero page addressing, 148

Indexing modes:

absolute, 77-78

indirect, 81-82

zero page, 78

Index registers, 33

Indirect indexed addressing, 149

Indirect indexed mode, 81-82

Infiltrating BASIC, 122-124

Input, 50-52, 133

Input:

GETIN, 50-51

switching, 136-137

INS, increment, 72

Instruction execution, 10-11

Instruction set, 141-142, 147

alphabetic sequence, 149-151

Integer variables, 104

Interface adaptor chips, 9, 50,

120-122, 142

Interrupt enable register, 122

Interrupt flag register, 121

Interrupt processing, 40

Interrupt request, 115

INX, Increment index X by one, 150

INY, Increment index Y by one, 150

IRQ, Interrupt request, 115,

117-118

JMP, Jump to new location,

80-81, 141-142, 150

JSR, Jump to new location saving

return address, 114-115, 150

Jumps in indirect mode, 80-81

Jump subroutine, 142

Kernal, 24

Kernal subroutines:

CHKIN, 136

CHROUT, 25, 133, 134
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CLRCHN, 136

GETIN, 51

STOP, 52

LDA, Load accumulator with

memory, 150

LDX, Load index X with memory,

150

LDY, Load index Y with memory,

150

Light pen, 335

LOAD, 100-101

Logical and arithmetic routines, 141

Logical operators, 47-50

Loops, 32-34, 262-263

LSR, Shift one bit right (memory or

accumulator), 63-64, 150

Machine language and BASIC

exchanging data, 104-108

Machine language linking with

BASIC, 30-31

Machine language monitor SAVE,

99-100

Memory, free, 94-95

Memory contents:

changing, 17

displaying, 17

Memory elements, 8-9

Memory interface of the 6566/6567,

337-340

Memory layout, BASIC, 92-102

Memory maps:

B series, 203-212

CBM8032, 179-180

Commodore PLUS/4 "TED" chip,

201-203

Commmodore 64, 191-200

Commodore 128, 213-230

FAT-40 6545 CRT, controller,

179-180

"Original ROM" PET, 168-172

Upgrade and BASIC 4.0 systems,

172-179

VIC 20, 181-187

VIC 6522 usage, 189-190

VIC 6560 chip, 188

Microprocessor chips, 650X, 3-4

MLM, Machine language monitors,

14, 284

MLM commands, 16-17, 99-100

.G command, 17

.M command, 16

.R command, 16

Save command, 99-100

.X command, 16

Modes:

absolute indexed, 77-78

addressing, 72-89

all of zero page, 78

indexed, indirect, 83-84

indirect, indexed, 81-82

jumps in indirect, 80-81

no address, 72-74

no address accumulator, 74

not quite an address, 74-75

relative address, 79-80

single address, 75-76

zero page, 76-78

Monitors:

basic, 14

display, 15

extensions, 27-29

machine language (MLM),

14-15, 290-291

machine language SAVE,

99-100

Multi-color character mode of the

6566/6567, 327

Multiplication, 62-63

by two, 61-62

N flag, 42-43, 45, 46

Non-maskable interrupt (NMI), 115,

118
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NOP, No operation, 72-74, 85,

150

NOP BRK, No operation, break,

false interrupt, 142

Numbers:

comparing, 61-62

signed, 43-44, 58

unsigned, 58

Numeric variables, 104

OPEN, 133-134

ORA, "OR" memory with

accumulator, 47, 48, 49, 121,

150

Output, 133

controlling, 24-36

examples of, 135-136

switching, 133-135

Overflow, 44

PC, Program control register, 9

PEEK, 5, 104

PHA, Push accumulator on stack,

113, 150

PHP, Push processor status on

stack, 114, 150

PIA, Peripheral interface adaptor

6520, 120, 294-298

PLA, Pull accumulator from stack,

113, 114, 150

PLP, Pull processor status from

stack, 114, 150

Pointers, fixing, 102

POKE, 5, 26, 104

Program:

entering a, 18-19

running a, 30

Program Counter, 9-11, 149

Programming model, 151

Programming projects, 11-13,

52-54, 84-88, 252-278

adding a command, 125-126,

256

interrupt, 119-120, 254-255

print, 26-27

Programs, file transfer, 138-141

Pull information, 142

Push information, 142

Push processor status, 114

RAM, Random access memory, 8

Register map of the 6566/6567,

338-339

Registers, 9-10, 18

A, X, and Y, 9, 11,46,47

index, 33

status, 45-46

Relative addressing, 148-149

mode, 79-80

ROL, Rotate one bit left (memory or

accumulator), 62, 150

ROM, Read only memory, 8-9

link, 80-81

ROR, Rotate one bit right (memory

or accumulator), 63-64, 150

Rotate, comments, 64-65

RTI, Return from interrupt, 115, 150

RTS, Return from subroutine, 65,

114-115, 151

RUN STOP key, 51-52

6502 Instruction set, 147

6509 Instruction set, 147

6510 Instruction set, 147

6520 (PIA) Peripheral interface

adaptor, 294-298

6522 (VIA) Versatile interface

adaptor, 309-318

6525 Tri-port interface, 352-356

6526 (CIA) Complex interface

adaptor, 318-325

6545-1 (CRTC) CRT controller,

299-304

6560 (VIC) Video interface chip,

304-309
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6566/6567 (VIC II) chip

specifications, 325-340

6581 (SID) Sound interface device,

chip specifications, 340-351

7501 Insruction set, 147

SAVE, 34, 141

stopgap, 34-35

SBC, Subtract memory from

accumulator with borrow, 151

Screen codes, 242-250

Screen manipulations, 84-88

Screen memory address, 21

SEC, Set carry flag, 151

SED, Set decimal mode, 151

SEI, Set interrupt disabler status,

118, 151

Shift, comments on, 64-65

Shift and rotate instructions,

61-63, 74, 141

Signed numbers, 43-44, 58

Single address mode, 75-76

SOA, Start of arrays, 93

SOB, Start of BASIC, 92

Sound interface device (SID) chip

specification 6591, 340-351

SOV, Start of variables, 93,

97-102

SP, Stack pointer register, 9

SR, Status register, 9

STA, Store accumulator in memory,

151

Stack, 112-115

Status register, 45-46

Stop, 25, 51-52

Stopgap save command, 34-35

Storage, temporary, 112-115

String variables, 103

STX, Store index X in memory, 151

STY, Store index Y in memory, 151

Subroutines:

CHROUT, 25

GETIN, 25, 50-51

KERNAL, 24

prewritten, 24-25

STOP, 25, 51-52

Subtraction, 60-61

Supermon program, 27, 284-289

Supermon+ program, 290-291

Symbolic assemblers, 143-144

SYS, Go to the address supplied,

116

TAX, Transfer accumulator to index

X, 113, 151

TAY, Transfer accumulator to index

Y, 72, 113, 151

Testable flags, 40-45

Time of day clock, 321

Timing, machine language program,

132-133

TOM, Top of memory, 93-94

Tri-port interface 6525, 352-356

TSX, Transfer stack pointer to

index X, 151

Two's complement, 43

TXA, Transfer index X to

accumulator, 151

TXS, Transfer index X to stack

register, 151

TYA, Transfer index Y to

accumulator, 151

Uncrashing techniques, 280-281

Unsigned numbers, 58

USR, Go to a fixed address and

execute machine code there as

a subroutine, 116-117

Variables, 102-105

V flag, 44, 45, 46

VIA, Versatile interface adaptor,

120-121

VIC II chip specifications 6566/

6567, 325-340
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(VIC) Video interface chip 6560,

304-309

Wedge, 122-124

program, 124-125

Zero page addressing, 148

Zero page mode, 76-78

indexed, 78

Zflag, 40-41,45, 46
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Pull up a chair and sit down with Jim Butterfield—the Commodore guru

himself—and get the answers to all your questions about machine lan

guage with . . .

Machine Language for the

Commodore 64, 128, and Other
Commodore Computers
Revised & Expanded Edition /by Jim Butterfield

Authored by the world-renowned expert on all facets of the Commodore,

this comprehensive tutorial introduces programmers of all levels to the

principles of machine language—what it is, how it works, and how to

program with it. With speed and versatility, you'll share in Butterfield's

vast experience as you:

• Learn-by-doing—with easy-to-follow, step-by-step instructions, exam

ples, and exercises

• Uncover the critical elements to understanding machine language,

machine architecture, and machine language tools

• Master principles of good coding practices—for more efficient and

effective programming

• Explore the inner workings of the Commodore, write and enter a simple

program, learn the details behind output, flags, logic, input, subrou

tines, address modes, and more!

Not only an excellent tutorial, it's an invaluable resource you'll refer to

again and again!
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