I Brady
JIM BUTTERFIELD

MACHINE LANGUAGE

FOR THE COMMODORE 64.128, AND
OTHER COMMODORE COMPUTERS

REVISED &EXPAN ED E HUN







MACHINE
LANGUAGE
FOR THE
COMMODORE 64, 128,
and Other
Commodore
Computers

Jim Butterfield

A Brady Book
Published by Prentice Hall Press
New York, New York 10023



Machine Language for the Commodore 64, 128, and Other
Commodore Computers

Copyright © 1986 by Brady Communications Company, Inc.
All rights reserved

including the right of reproduction

in whole or in part in any form

A Brady Book

Published by Prentice Hall Press

A Division of Simon & Schuster, Inc.
Gulf + Western Building

One Gulf + Western Plaza

New York, New York 10023

PRENTICE HALL PRESS is a trademark of Simon & Schuster, Inc.
Manufactured in the United States of America
123 4567 8 9 10

Library of Congress Cataloging in Publication Data

Butterfield, Jim
Machine language for the Commodore 64, 128, and
other Commodore computers

Includes index.

1. Commodore 64 (Computer)—Programming. 2. Commodore
computers—Programming. 3. Programming languages
(Electronic computers) |. Title.

QA76.8.C64B88 1986 001.64'2 84-6351

ISBN 0-89303-652-8



Contents

Note to Readers vii
Preface ix
Introduction xiii
1 First Concepts 1

The Inner Workings of Microcomputers
Memory Elements
Microprocessor Registers
Instruction Execution

First Program Project

Monitors: What They Are

The Machine Language Monitor
MLM Commands

Changing Memory Contents
Changing Registers

Entering the Program

Things You Have Learned
Detail: Program Execution
Questions and Projects

2 Controlling Output 23
Calling Machine Language Subroutines
CHROUT—The Output Subroutine
Why Not POKE?

A Print Project

Monitor Extensions
Checking: The Disassembler
Running the Program
Linking with BASIC

Loops

Things You Have Learned
Questions and Projects



Flags, Logic, and Input
Flags

A Brief Diversion: Signed Numbers
A Brief Diversion: Overflow
Flag Summary

The Status Register
Instructions: A Review
Logical Operators

Why Logical Operations?
Input: The GETIN Subroutine
STOP

Programming Project

Things You Have Learned
Questions and Projects

Numbers, Arithmetic, and Subroutines
Numbers: Signed and Unsigned
Big Numbers: Multiple Bytes
Addition '

Subtraction

Comparing Numbers
Multiplication

Subroutines

The Project

Things You Have Learned
Questions and Projects

Address Modes

Addressing Modes

No Address: Implied Mode

No Address: Accumulator Mode

Not Quite an Address: Immediate Mode
A Single Address: Absolute Mode
Zero-Page Mode

A Range of 256 Addresses: Absolute, Indexed Mode

All of Zero Page: Zero-Page, Indexed
Branching: Relative Address Mode

39

57

[l



Data From Anywhere: Indirect, Indexed
A Rarity: Indexed, Indirect

Project: Screen Manipulation

Comment for VIC-20-and Commodore 64
Things You Have Learned

Questions and Projects

Linking BASIC and Machine Language
Siting the Program

BASIC Memory Layout

The Wicked SOV

BASIC Variables - - . _
Exchanging Data: BASIC and Machine Language
Things You Have Learned

Questions and Projects

Stack, USR, Interrupt, afid Wedge
A Brief Intermission :
Temporary Storage: The Stack
Interrupts and RTI

USR: A Brother to SYS
Interrupts: NMI, IRQ, and BRK
An Interrupt Project

The IA Chips: PIA, VIA, and CIA
Infiltrating BASIC: The Wedge
Project: Adding a Command
Things You Have Learned
Questions and Projects

Timing, Input/Output, and Conclusion
Timing

Input and Output

A File Transfer Program

Review: The Instruction Set

Debugging

Symbolic Assemblers

What You Have Learned

Questions and Projects

91

m

131



Appendix A
Appendix B

Appendix C
Appendix D
Appendix E

Appendix F
Appendix G
Appendix H
Appendix |
Appendix J
Glossary
Index

The 6502/6510/6509/7501/8500 Instruction
Set

Some Characteristics of Commodore
Machines

Memory Maps
Character Sets

Exercises for Alternative Commodore
Machines

Floating Point Representation
Uncrashing

Supermon Instructions

IA Chip Information

Disk User’s Guide

Vi

147

155
167
241

251
277
279
283
293
357
365
3N



Note to Readers

This book introduces beginners to the principles of machine language: what it
is, how it works, and how to program with it.

It is based on an intensive two-day course on machine language that has been
presented many times over the past five years.

Readers of this book should have a computer on hand: students will learn by
doing, not just by reading. Upon completing the tutorial material in this book, the
reader will have a good idea of the fundamentals of machine language. There will
be more to be learned; but by this time, students should understand how to adapt
other material from books and magazines to their own particular computers.

LIMITS OF LIABILITY AND
DISCLAIMER OF WARRANTY

The author and publisher of this book have used their best efforts in preparing
this book and the programs contained in it. These efforts include the development,
research, and testing of the programs to determine their effectiveness. The author
and the publisher make no warranty of any kind, expressed or implied, with regard
to these programs, the text, or the documentation contained in this book. The
author and the publisher shall not be liable in any event for claims of incidental
or consequential damages in connection with, or arising out of, the furnishing,
performance, or use of the text or the programs.

Note for Commodore 128 Owners

The Commodore 128 is three machines in one: a Commodore 64, a Commodore
128, and a CP/M machine. You may select any of the three at any time.

If you choose the Commodore 64 mode, you'll find examples within this book
that will work on your machine. The programs you write will be compatible with
other (“real”) Commodore 64 computers. But you'll lose access to extra memory
and to other features of the new machine. In particular, you won't have a built-in
machine language monitor and will need to load one from tape or disk.

If you choose the Commodore 128 mode, you're working with a richer and more
powerful machine. You will have a built-in machine language monitor for speed
and convenience, and access to new features such as 80 columns, with extra
complexity. There are new rules to be learned. This book contains extra material
to enable you to cope with the new features of the C128.

If you choose CP/M mode, you will be in an environment that is quite different
from other Commodore machines. This book, working with the 64 or 128 mode,
can teach you principles of machine language and skills which may be carried to
other computer environments, including CP/M. But it will not teach you CP/M itself
or CP/M’s machine language.

vii



A Commodore 128 owner can read each chapter of this book twice, if desired.
The first time, the exercises for the Commodore 64 can be worked through; the
second time, those for the 128 can be used. The principles are the same; the
code is similar; but the 128 often calls for a little more detailed work.

If you wish to learn machine language for the Commodore 128, please read the
Introduction in Appendix E, under Exercises for the Commodore 128. It will give
you some starting facts about your machine. There is more information on the
128 in the latter section of Appendix B and elsewhere, but don't try to read it all
at the start. It will be there when you need it.

viii




Preface

This book is primarily tutorial in nature. It contains, however, extensive reference
material, which the reader will want to continue to use.

No previous machine language experience is required. It is useful if the reader
has had some background in programming in other languages, so that concepts
such as loops and decisions are understood.

Beginners will find that the material in this book moves at a fast pace. Stay with
it; if necessary, skip ahead to the examples and then come back to reread a difficult
area.

Readers with some machine language experience may find some of the material
too easy; for example, they are probably quite familiar with hexadecimal notation
and don't need to read that part. If this is the case, skip ahead. But do enter all
the programming projects; if you have missed a point, you may spot it while doing
an exercise.

Programming students learn by doing. The beginner needs to learn simple things
about his or her machine in order to feel in control. The elements that are needed
may be itemized as:

® Machine language. This is the objective, but you can’t get there without the
next two items.

® Machine architecture. All the machine language theory in the world will have
little meaning unless the student knows such things as where a program may
be placed in memory, how to print to the screen, or how to input from the
keyboard.

® Machine language tools. The use of a simple machine language monitor to
read and change memory is vital to the objective of making the computer do
something in machine language. Use of a simple assembler and elements of
debugging are easy once you know them; but until you know them, it's hard
to make the machine do anything.

Principles of sound coding are important. They are seldom discussed explicitly,
but run as an undercurrent through the material. The objective is this: it's easy to
do things the right way, and more difficult to do them the wrong way. By introducing
examples of good coding practices early, the student will not be motivated to look
for a harder (and inferior) way of coding.

It should be pointed out that this book deals primarily with machine language,
not assembly language. Assembler programs are marvellous things, but they are

ix



too advanced for the beginner. | prefer to see the student forming an idea of how
the bytes of the program lie within memory. After this concept is firmly fixed in
mind, he or she can then look to the greater power and flexibility offered by an
assembler.




Acknowledgements

Thanks go to Elizabeth Deal for acting as resource person in the preparation
of this book. When | was hard to find, the publisher could call upon Elizabeth for
technical clarification. ’

xi






Introduction

Why learn machine language? There are three reasons. First, for speed; ma-
chine language programs are fast. Second, for versatility; all other languages are
limited in some way, but not machine language. Third, for comprehension; since
the computer really works in machine language only, the key to understanding
how the machine operates is machine language.

Is it hard? Not really. It's finicky, but not difficult. Individual machine language
instructions don’t do much, so we need many of them to do a job. But each
instruction is simple, and anyone can understand it if he or she has the patience.

Some programmers who started their careers in machine language find “higher
level” languages such as BASIC quite difficult by comparison. To them, machine
language instructions are simple and precise, whereas BASIC statements seem
vague and poorly defined by comparison.

Where will this book take you? You will end up with a good understanding of
what machine language is, and the principles of how to program in it. You won't
be an expert, but you'll have a good start and will no longer be frightened by this
seemingly mysterious language.

Will the skills you learn be transportable to other machines? Certainly. Once
you understand the principles of programming, you'll be able to adapt. If you were
to change to a non-Commodore machine that used the 6502 chip (such as Apple
or Atari), you'd need to learn about the architecture of these machines and about
their machine language monitors. They would be different, but the same principles
would apply on all of them.

Even if you change to a computer that doesn’t use a chip from the 6502 family,
you will be able to adapt. As you pick through the instructions and bits of the
Commodore machine, you will have learned about the principles of all binary
computers. You will need to learn the new microprocessor’s instruction set, but it
will be much easier the second time around.

Do you need to be a BASIC expert before tackling machine language? Not at
all. This book assumes you know a little about programming fundamentals: loops,
branching, subroutines, and decision making. But you don’t need to be an ad-
vanced programmer to learn machine language.

xiii






First
Concepts

This chapter discusses:

® The inner workings of microcomputers

e Computer notation: binary and hexadecimal

® The 650x’s inner architecture

® Beginning use of a machine language monitor
® A computer’s “memory layout”

® First machine language commands

® Writing and entering a simple program



2 MACHINE LANGUAGE FOR COMMODORE MACHINES

The Inner Workings of Microcomputers

All computers contain a large number of electrical circuits. Within any
binary computer, these circuits may be in only two states: “on” or “off.”

Technicians will tell you that “on” usually means full voltage on the circuit
concerned, and “off” means no voltage. There’s no need for volume control
adjustments within a digital computer: each circuit is either fully on or fully
off.

The word “binary” means “based on two,” and everything that happens
within the computer is based on the two possibilities of each circuit: on or
off. We can identify these two conditions in any of several ways:

ON or OFF
TRUE or FALSE
YES or NO
1or0

The last description, 1 or 0, is quite useful. It is compact and numeric. If
we had a group of eight circuits within the computer, some of which were
“on” and others “off,” we could describe their conditions with an expression
such as:

110001311

This would signify that the two leftmost wires were on, the next three off,
and the remaining three on. The value 11000111 looks like a number; in
fact, it is a binary number in which each digit is 0 or 1. It should not be
confused with the equivalent decimal value of slightly over 11 million; the
digits would look the same, but in decimal each digit could have a value
from O to 9. To avoid confusion with decimal numbers, binary numbers
are often preceded by a percent sign, so that the number might be shown
as 21,1000111.

Each digit of a binary number is called a bit, which is short for “binary
digit.” The number shown above has eight bits; a group of eight bits is a
byte. Bits are often numbered from the right, starting at zero. The right-
hand bit of the above number would be called “bit 0,” and the left-hand
bit would be called “bit 7.” This may seem odd, but there’s a good math-
ematical reason for using such a numbering scheme.



FIRST CONCEPTS 3

The Bus

It's fairly common for a group of circuits to be used together. The wires
run from one microchip to another, and then on to the next. Where a group
of wires are used together and connect to several different points, the
group is called a bus (sometimes spelled “buss”).

The PET, CBM, and VIC-20 use a microprocessor chip called the 6502.
The Commodore 64 uses a 6510. The Commodore B series uses a 6509
chip, and the Commodore PLUS/4 uses a chip called 7501. All these chips
are similar, and there are other chips in the same family with numbers like
6504; every one works on the same principles, and we'll refer to all of
them by the family name 650x.

Let's take an example of a bus used on any 650x chip. A 650x chip has
little built-in storage. To get an instruction or perform a computation, the
650x must call up information from “memory”—data stored within other
chips.

The 650x sends out a “call” to all memory chips, asking for information.
It does this by sending out voltages on a group of sixteen wires called the
“address bus.” Each of the sixteen wires may carry either voltage or no
voltage; this combination of signals is called an address.

Every memory chip is connected to the address bus. Each chip reads the
address, the combination of voltages sent by the processor. One and only
one chip says, “That's me!” In other words, the specific address causes

—— — —_— —_—
650x _:_'E
11 111 11
CULLLL I L
MEMORY MEMORY
CHIP

Figure 1.1 Address bus connecting 650x & 3 chips



MACHINE LANGUAGE FOR COMMODORE MACHINES

that chip to be selected; it prepares to communicate with the 650x. All
other chips say, “That's not me!” and will not participate in data transfer.

The Data Bus

Once the 650x microprocessor has sent an address over the address bus
and it has been recognized by a memory chip, data may flow between
memory and 650x. This data is eight bits (it flows over eight wires). It
might look like this:

01011011

The data might flow either way. That is, the 650x might read from the
memory chip, in which case the selected memory chip places information
onto the data bus which is read by the microprocessor. Alternatively, the
650x might wish to write to the memory chip. In this case, the 650x places
information onto the data bus, and the selected memory chip receives the
data and stores it.

—ADDRESS BUS——= —

650x
DATA BUS — .
t I ‘ 4 (3L} z 11
11l 1] 111
MEMORY MEMORY
MEHP CHiP cip
“SELECTED"’ oT
( ED") SELECTED) SELECTED)

Figure 1.2 Two-way data bus

All other chips are still connected to the data bus, but they have not been
selected, so they ignore the information.

The address bus is accompanied by a few extra wires (sometimes called




FIRST CONCEPTS 5

the control bus) that control such things as data timing and the direction
in which the data should flow: read or write.

Number Ranges

The address bus has sixteen bits, each of which might be on or off. The
possible combinations rnumber 65536 (two raised to the sixteenth power).
We then have 65536 different possibilities of voltages, or 65536 different
addresses.

The data bus has eight bits, which allows for 256 possibilities of voltages.
Each memory locatioh can store only 256 distinct values.

It is often convenient to refer to an address as a decimal number. This is
especially true for PEEK and POKE statements in the BASIC language.
We may do this by giving each bit a “weight.” Bit zero (at the right) has
a weight of 1; each bit to the left has a weight of double the amount, so
that bit 15 (at the left) has a weight of 32768. Thus, a binary address such
as

0001001010102100

has a value of 4096 +512+128+32+8+4 or 4780. A POKE to 4780
decimal would use the above binary address to reach the correct part of

memory.
128|64|32|16|8|4|2|1
EIGHT BITS

Y /777 /77 /' /7 4 Y/ 7Y

32768]|16384(8192(4096/2048[1024|512|256|128|64|32(16 §
ZLLY DIY4 ZLL v 4 y.
SIXTEEN BITS

Figure 1.3

Direct conversion between decimal and binary is seldom needed. Such
conversions usually pass through an intermediate number system, called
hexadecimal.

Hexadecimal Notation

Binary is an excellent system for the computer, but it is inconvenient for
most programmers. If one programmer asks another, “What address should



6 MACHINE LANGUAGE FOR COMMODORE MACHINES

| use for some activity?””, an answer such as "Address
%0001001010102200" might be correct but would probably be un-
satisfactory. There are too many digits.

Hexadecimal is a code used by humans to conveniently represent binary
numbers. The computer uses binary, not hexadecimal; programmers use
hexadecimal because binary is cumbersome.

To represent a binary number in hexadecimal, the bits must be grouped
together four at a time. If we take the binary value given above and split
it into groups of four, we get

0001 0010 1010 1100

Now each group of four bits is represented by a digit as shown in the
following table:

oooo-o 0100-4 1000-8 1100-C
0001-1 0101-5 1001-9 1101-D
0o1o-2 0110-6 1010-A2 1110-E
0011-3 01137 1011-B 1111-F

Thus, the number would be represented as hexadecimal L2AC. A dollar
sign is often prefixed to a hexadecimal number so that it may be clearly
recognized:$12AC.

The same type of weighting is applied to each bit of the group of four as
was described before. In other words, the rightmost bit (bit zero) has a
weight of 1, the next left a weight of 2, the next a weight of 4, and the
leftmost bit (bit three) a weight of 8. If the total of the weighted bits exceeds
nine, an alphabetic letter is used as a digit: A represents ten; B, eleven;
C, twelve; and F, fifteen.

Eight-bit numbers are represented with two hexadecimal digits. Thus,
%01011011 may be written as $5B.

Hexadecimal to Decimal

As we have seen, hexadecimal and binary numbers are easily inter-
changeable. Although we will usually write values in “hex,” occasionally
we will need to examine them in their true binary state to see a particular
information bit.

Hexadecimal isn't hard to translate into decimal. You may recall that in
early arithmetic we were taught that the number 24 meant, “two tens and
four units.” Similarly, hexadecimal 24 means “two sixteens and four units,”
or a decimal value of 36. By the way, it's better to say hex numbers as



FIRST CONCEPTS 7

“two four” rather than “twenty-four,” to avoid confusion with decimal val-
ues.

The formal procedure, or algorithm, to go from hex to decimal is as follows.

Step 1: Take the leftmost digit; if it's a letter A to F, convert it to the appropriate
numeric value (A equals 10, B equals 11, and so on).

Step 2: If there are no more digits, you're finished; you have the number. Stop.
Step 3: Multiply the value so far by sixteen. Add the next digit to the result,
converting letters if needed. Go back to step 2.

Using the above steps, let's convert the hexadecimal number $12AC.
Step 1: The leftmost digit is 1.
Step 2: There are more digits, so we'll continue.
Step 3. 1 times 1b is 1k, plus 2 gives 18.
Step 2: More digits to come.
Step 3: 18 times L& is 288, plus 10 (for &) gives 294.
Step 2: More digits to come. »
Step 3: 298 x 1L is 4768, plus 12 (for C) gives 4780.
Step 2: No more digits: 4780 is the decimal value.

This is easy to do by hand or with a calculator.

Decimal to Hexadecimal

The most straightforward method to convert from decimal to hexadecimal
is to divide repeatedly by 16; after each division, the remainder is the next
hexadecimal digit, working from right to left. This method is not too well
suited to small calculators, which usually don’t give remainders. The fol-
lowing fraction table may offer some help:

.0ooo-0 .2500-4 .5000-48 .7500-C
.0E25-1 .3125-5 .5625-9 .8125-D
.1250-2 .3750-6 .6250-A .8750-E
.1875-3 .4375-7 .6B75-B .9375-F

If we were to translate 4780 using this method, we would divide by 16,
giving 298.75. The fraction tells us the last digit is C; we now divide 298
by 16, giving 18.625. The fraction corresponds to A, making the last two
digits AC. Next we divide 18 by 16, getting 1.125—now the last three
digits are 2 AC. We don't need to divide the one by 16, although that would
work; we just put it on the front of the number to get an answer of $12AC.

There are other methods of performing decimal-to-hexadecimal conver-



8 MACHINE LANGUAGE FOR COMMODORE MACHINES

sions. You may wish to look them up in a book on number systems.
Alternatively, youy may wish to buy a calculator that does the job electron-
ically. Some programmers get so experienced that they can do conver-
sions in their heads; | call them “hex nuts.”

Do not get fixed on the idea of numbers. Memory locations can always
be described as binary numbers, and thus may be converted to decimal
or hexadecimal at will. But they may not mean anything numeric: the
memory location may contain an ASCII coded character, an instruction,
or any of several other things.

Memory Elements

There are generally three types of devices attached to the memory busses
(address, data, and control busses):

e RAM: Random access memory. This is the read and write memory, where
we will stare the programs we write, along with values used by the program.
We may store information into RAM, and may recall the information at any
time.

e ROM: Read only memory. This is where the fixed routines are kept within the
computer. We may not store information into ROM; its contents were fixed

ADDRESS BUS TO
650x | MEMORY BUS
B e i i D
(SQA% (282"0 IA
AND (SPECIAL)
WRITE) ONLY)
CONNECTIONS

TO ““OUTSIDE WORLD"’

Figure 1.4




FIRST CONCEPTS 9

when the ROM was made. We will use program units (subroutines) stored in
ROM to do special tasks for us, such as input and output.

® IA: Interface adaptor chips. These are not memory in the usual sense; but,
these chips are assigned addresses on the address bus, so we call them
“memory-mapped” devices. Information may be passed to and from these
devices, but the information is generally not stored in the conventional sense.
IA chips contain such functions as: input/output (I/0) interfaces that serve
as connections to the “outside world”; timing devices; interrupt control sys-
tems; and sometimes specialized functions, such as video control or sound
generation. TA chips come in a wide variety of designs, including the PIA
(peripheral interface adaptor), the VI A (versatile interface adaptor), the CIA
(complex interface adaptor), the VIC (video interface chip), and the SID
(sound interface device).

Within a given computer, some addresses may not be used at all. Some
devices may respond to more than one address, so that they seem to be
in two places in memory.

An address may be thought of as split in two parts. One part, usually the
high part of the address, selects the specific chip. The other part of the
address selects a particular part of memory within the chip. For example,
in the Commodore 64, the hex address $D020 (decimal 53280) sets
the border color of the video screen. The first part of the address (roughly,
$DO . ..) selects the video chip; the last part of the address (... 20)
selects the part of the chip that controls border color.

Microprocessor Registers

‘Within the 650x chip are several storage areas called registers. Even
though they hold information, they are not considered “memory” since
they don't have an address. Six of the registers are important to us. Briefly,
they are:

PC: (16 bits) The program counter tells where the next
’ instruction will come from.

A, X and Y (8 bits each) These registers hold data.

SR The status register, sometimes called PSW
(processor status word), tells about the re-
sults of recent tests, data handling, and so
on.

SP The stack pointer keeps track of a temporary
storage area.

We will talk about each of these registers in more detail later. At the

moment, we will concentrate on the PC (program counter).



10 MACHINE LANGUAGE FOR COMMODORE MACHINES

PC

_—

SP

RIEIRIGTS

ADDRESS BUS

650x CHIP

Figure 1.5

Instruction Execution

DATA BUS

Suppose that the 650x is stopped (not an easy trick), and that there is a
certain address, say $1234, in the PC. The moment we start the micro-
computer, that address will be put out to the address bus as a read address,
and the processor will add one to the value in the PC.

Thus, the contents of address $1.234 will be called for, and the PC will
change to $1235. Whatever information comes in on the data bus will

be taken to be an instruction.

The microprocessor now has the instruction, which tells it to do something.
The action is performed, and the whole action now repeats for the next

PC
.
\::::§
ADDRESS
BUS

Figure 1.6

PC

$1234 )

ADDRESS

BUS

|-
INSTRUCTION <)___

DATA BUS



FIRST CONCEPTS 11

instruction. In other words, address $1235 will be sent to memory, and
the PC will be incremented to $123k.

You can see that the processor works in the same way that most computer
languages do: an instruction is executed, and then the computer proceeds
to the next instruction, and then the next, and so on. We can change the
sequence of execution by means of a “jump” or “branch” to a new location,

but normally, it's one instruction after another.

Data Registers:R, X, and Y

Any of three registers can be used to hold and manipulate eight bits of
data. We may /oad information from memory into A, X, or Y; and we may
store information into memory from any of A, X, or Y.

Both “load” and “store” are copying actions. If | load A (LDR) from
address $2345, | make a copy of the contents of hex 2345 into A; but
2345 still contains its previous value. Similarly, if | store Y into $3456,
| make a copy of the contents of Y into that address; Y does not change.

The 650x has no way of moving information directly from one memory
address to another. Thus, this information must pass via &, X, or Y; we
load it from the old address, and store it to the new address.

Later, the three registers will take on individual identities. For example,
the R register is sometimes called the accumulator, since we perform
addition and subtraction there. For the moment, they are interchangeable:
we may load to any of the three, and we may store from any of them.

First Program Project

C128 note: The programming task that follows will need to be slightly
changed if you are using a Commodore 128 in C128 mode. In particular,
the program will need to be written into a different part of memory from
that which is shown below. Check Appendix E, Exercises for the Com-

modore C128, page 251 for the correct C128 coding. o 28t0B 8 od oBgI

Here's a programming task: locations $0380 and $0381 contain in-
formation. We wish to write a program to exchange the contents of the
two locations. How can we do this?

We must make up a plan. We know that we cannot transfer information
directly from memory to memory. We must load to a register, and then
store. But there’s more. We must not store and destroy data in memory
until that data has been safely put away. How can we do this?



12

MACHINE LANGUAGE FOR COMMODORE MACHINES

Here’s our plan. We may load one value into A (say, the contents of
$0380), and load the other value into X (the contents of $0381). Then
we could store B and X back, the other way around.

We could have chosen a different pair of registers for our plan, of course:
A and Y, or X and Y. But let's stay with the original plan. We can code
our plan in a more formal way:

LDA $0380 (bring in first value)
LDX $0381 (bring in second value)
STA $0381 (store in opposite place)
STX $0380 (and again)

You will notice that we have coded "1oad A" as LDA, "load X" as
LDX,"store A" as STA,and "store X" as STX. Every command
has a standard three-letter abbreviation called a mnemonic. Had we used
the Y register, we might have needed to use LDY and STY.

One more command is needed. We must tell the computer to stop when
it has finished the four instructions. In fact, we can't stop the computer,;
but if we use the command BRK (break), the computer will go to the
machine language monitor (MLM) and wait for further instructions. We’'ll
talk about the MLM in a few moments.

We have written our program in a notation styled for human readability,
called assembly language. But the computer doesn’t understand this no-
tation. We must translate it to machine language.

The binary code for LDA is 10101101, or hexadecimal AD. That's
what the computer recognizes; that’s the instruction we must place in
memory. So we code the first line:

AD 40 03 LDA $0380

It's traditional to write the machine code on the left, and the source code
on the right. Let’s look closely at what has happened.

LDA has been translated into $AD. This is the operation code, or op
code, which says what to do. It will occupy one byte of memory. But we
need to follow the instruction with the address from which we want the
load to take place. That's address $0380; it's sixteen bits long, and so
it will take two bytes to hold the address. We place the address of the
instruction, called the operand, in memory immediately behind the instruc-
tion. But there’s a twist. The last byte comes first, so that address $0380
is stored as two bytes: 80 first and then 03.



FIRST CONCEPTS 13

This method of storing addresses—low byte first—is standard in the 650x.
It seems unusual, but it's there for a good reason. That is, the computer
gets extra speed from this “backwards” address. Get used to it; you'll see
it again, many times.

Here are some machine language op codes for the instructions we may
use. You do not need to memorize them.

LDA-AD LDX-AE LDY-AC BRK-00
STA-8D STX-8E STY-8C
Now we can complete the translation of our program.
AD 80 03 LDA $03a0
AE 81 03 LDX $0381
8D a1 03 STA $0381
8E &0 03 STX $03a0
0o BRK

On the right, we have our plan. On the left, we have the actual program
that will be stored in the computer. We may call the right side assembly
code and the left side machine code, to distinguish between them. Some
users call the right-hand information source code, since that's where we
start to plan the program, and the left-hand program object code, since
that's the object of the exercise—to get code into the computer. The job
of translating from source code to object code is called assembly. We
performed this translation by looking up the op codes and translating by
hand; this is called hand assembly.

The code must be placed into the computer. It will consist of 13 bytes:
AD 40 03 AE 81 03 8D 81 03 8E &0 03 0OO0. Thatsthe
whole program. But we have a new question: where do we put it?

Choosing a Location

128

We must find a suitable location for our program. It must be placed into
RAM memory, of course, but where?

For the moment, we'll place our program into the cassette buffer, starting
at address $033C (decimal 828). That's a good place o put short test

programs, which is what we will be writing for a while.
FOBO0 decsmzl 3814
Now that we've made that decision, we face a new hurdle: how do we get

the program in there? To do that, we need to use a machine language
monitor.



14 MACHINE LANGUAGE FOR COMMODORE MACHINES

Monitors: What They Are

All computers have a built-in set of programs called an operating system
that gives the machine its style and basic capabilities. The operating sys-
tem takes care of communications—reading the keyboard, making the
proper things appear on the screen, and transferring data between the
computer and other devices, such as disk, tape, or printer.

When we type on the computer keyboard, we use the operating system,
which detects the characters we type. But there’s an extra set of programs
built into the computer that must decide what we mean. When we are
using the BASIC language, we’ll be communicating with the BAS/C mon-
itor, which understands BASIC commands such as NEW, LOAD, LIST,
or RUN. It contains editing features that allow us to change the BASIC
program that we are writing.

But when we switch to another system—often another language—we’ll
need to use a different monitor. Commands such as NEW or LIST don't
have any meaning for a machine language program. We must leave the
BASIC monitor and enter a new environment: the machine language mon-
itor. We'll need to learn some new commands because we will be com-
municating with the computer in a different way.

The Machine Language Monitor

Most PET/CBM computers have a simple MLM (machine language mon-
itor) built in. It may be extended with extra commands. The Commodore
PLUS/4 contains a very powerful MLM. The VIC-20 and Commodore 64
do not have a built-in MLM, but one can be added. Such a monitor may
be either loaded into RAM or plugged in as a cartridge. Monitors may be
purchased or obtained from user clubs.

Most machine language monitors work in a similar way, and have about
the same commands. To proceed, you'll need an MLM in your computer.
Use the built-in one, plug it in, load it in, or load and run . . . whatever the
instructions tell you. On a PET/CBM machine, typing the command SYS
4 will usually switch you to the built-in monitot. After an MLM has been
added to a VIC or Commodore 64, the command SYS 8 will usually get
you there. On the Commodore PLUS/4, the BASIC command MONITOR
will bring the monitor into play.



FIRST CONCEPTS 15

C128 note: When the Commodore 128 is in C64 mode, it needs to have
a monitor program loaded, as does the Commodore 64. When in the C128
mode, however, the command MONITOR will bring the monitor into play
There will be slight differences in the screen display of this monitor. Ap
pendix H contains information on the various monitor commands and
formats.

Caution: Occasionally, you may run across a monitor which uses—and
changes—memory locations in the address range $033C to $03F0,
which is where we will put many of our programs. There is a version of
program MICROMON which does this. Such a monitor will create problems
for us as we try to work the following examples, since our programs and
data will be changed by the monitor as we use it. The built-in monitors
will certainly not have any problem. If you encounter any problems with
the following examples, and it appears that your program is being mys-
teriously changed, switch to another machine language monitor.

Monitor Display

The moment you enter the MLM, you'll see a display that looks something
like this:

Bx
PC SR AC XR YR SP
0005 20 S4 23 LA Fa

The cursor will be flashing to the right of the period on the bottom line.
The exact appearance of the screen information may vary according to
the particular monitor you are using. Other material may be displayed—
in particular, a value called I RQ—which we will ignore for the time being.

The information you see may be interpreted as follows:

B*—we have reached the MLM by means of a “break.” More about that later.

PC—The value shown below this title is the contents of the program counter.
This indicates where the program “stopped.” In other words, if the value shown
is address 0005, the program stopped at address 0004, since the PC is
ready to continue at the following address. The exact value (0004 versus
0005) may vary depending on the particular MLM.

SR—The value shown below shows the status register, which tells us the results
of recent tests and data operations. We'd need to split apart the eight bits and
look at them individually to establish all the information here; we will do this at
a later time.



16

MACHINE LANGUAGE FOR COMMODORE MACHINES

AC, XR, and YR—The values shown below these three titles are the contents
of our three data registers: B, X, and Y.

SP—The value shown below is that of the stack pointer, which indicates a
temporary storage area that the program might use. A value of F 8, for example,
tells us that the next item to be dropped into the stack area would go to address
$01F8 in memory. More on this later.

You will notice that the display printed by the monitor (called the register
display) shows the internal registers within the 650x chip. Sometimes there
is another item of information, titled IRQ, in this display. It doesn’t belong,
since it does not represent a microprocessor register. IRQ tells us to what
address the computer will go if an interrupt occurs; this information is
stored in memory, not within the 650x.

MLM Commands

The machine language monitor is now waiting for you to enter a command.
The old BASIC commands don’t work any more; LIST or NEW or SYS
are not known to the ML M. We'll list some popular commands in a moment.
First, let's discuss the command that takes us back to BASIC.

X exits the MLM and returns to the BASIC monitor. Try it. Remember
to press RETURN after you've typed the X, of course. You will return to
the BASIC system, and the BASIC monitor will type READY. You're back
in familiar territory. Now go back to the monitor with SYS4 or SYS#8 or
MONITOR as the case may be. BASIC ignores spaces: it doesn’t matter
if you type SYS8 or SYS 8; just use the right number for your machine
(4 for PET/CBM, 8 for VIC/64). ’

Remember: BASIC commands are no good in the MLM, and machine
language monitor commands (such as X) are no good in BASIC. At first,
you'll give the wrong commands at the wrong time because it's hard to
keep track of which monitor system is active. If you type in an MLM
command when you're in BASIC, you'll probably geta 2SYNTAX ERROR
reply. If you type in a BASIC command when you're in the machine lan-
guage monitor, you'll probably get a question mark in the line you typed.

Some other MLM commands are as follows:

M 1000 1010 (display memory from hex 1000 to
1010)
R (display registers . . . again!)




FIRST CONCEPTS 17

G 033C (go to 033C and start running a
program)

Do not enter this last (G) command. There is no program at address
$033C yet, so the computer would execute random instructions and we
would lose control.

There are two other fundamental instructions that we won't use yet: they
are S for save and L for load. These are tricky. Until you learn about
BASIC pointers (Chapter 6), leave them alone.

Displaying Memory Contents

You'll notice that there is a command for displaying the contents of mem-
ory, but there doesn’t seem to be one for changing memory. You can do
both, of course.

Suppose we ask to display memory from $1000 to $1010 with the
command

M 1000 1010

Be careful that you have exactly one space before each address. You
might get a display that looks something like this:

.:1000 11 3A E4 00 21 32 04 AR
.:1006 20 4R 49 4D 20 42 55 54
.:1010 5S4 45 52 4B 49 45 4C 44

C128 note: The above display will differ slightly if you are using C128.
The section Exercises for the Commodore 128, in Appendix E, gives
details.

The four-digit number at the start of each line represents the address in
memory being displayed. The two-digit numbers to the right represent the
contents of memory. Keep in mind that all numbers used by the machine
language monitor are hexadecimal.

In the example above, $1.000 contains a value of $11; $1001 contains
a value of $3A; and so on, until $1007, which contains a value of $AA.
We continue with address $1008 on the next line. Most monitors show
eight memory locations on each line, although some VIC-20 monitors show
only five because of the narrow screen.

We asked for memory locations up to address $1010 only; but we get
the contents of locations up to $1017 in this case. The monitor always
fills out a line, even if you don't ask for the extra values.



18

MACHINE LANGUAGE FOR COMMODORE MACHINES

Changing Memory Contents

Once we have displayed the contents of part of memory, we can change
that part of memory easily. All we need to do is to move the cursor until
it is positioned over the memory contents in question, type over the value
displayed, and then press RETURN.

This is quite similar to the way BASIC programs may be changed; you
may type over on the screen, and when you press RETURN, the new line
replaces the old. The general technique is called screen editing.

If you have displayed the contents of memory, as in the example above,
you might like to change a number of locations to zero. Don't forget to
strike RETURN so that the change on the screen will take effect in mem-
ory. Give another M memory display command to confirm that memory
has indeed been changed.

Changing Registers

We may also change the contents of registers by typing over and pressing
RETURN. You may take a register display with command R, and then
change the contents of PC, AC, XR, and YR. Leave the contents of SR
and SP unchanged—tricky things could happen unexpectedly if you ex-
periment with these two.

Entering the Program

C128 note: Remember to check Exercises for the Commodore 128, in
Appendix E, for the appropriate code.

We might rewrite our program one last time, marking in the addresses
that each instruction will occupy. You will recall that we have decided to
put our program into memory starting at address $033C (part of the
cassette buffer).

033C AD a0 03 LDA $034a0
033F AE 81 03 LDX $0381
0342 6D 81 03 STA $03481
034S 8E a0 03 STX $03480

0346 00




FIRST CONCEPTS 19

Remember that most of the above listing is cosmetic. The business end
of the program is the set of two-digit hex numbers shown to the left. At
the extreme left, we have addresses—that's information, but not the pro-
gram. At the right, we have the “source code”—our notes on what the
program means.

How do we put it in? Easy. We must change memory. So, we go to the
MLM, and display memory with

M 033C D348

We might have anything in that part of memory, but we'll get a display
that looks something like

.:033C xx XX XX XX XX XX XX XX
.:0344 xxX XX XX XX XX XX XX XX

You won't see “xx,” of course; there will be some hexadecimal value
printed for each location. Let's move the cursor back and change this
display so that it looks like this:

.:033C AD A0 03 AE A1 D3 8D 81
.:0344 03 AE A0 03 00 xX XX XX

Don't type in the “xx"—just leave whatever was there before. And be
sure to press RETURN to activate each line; if you move the cursor down
to get to the next line without pressing RETURN, the memory change
would not happen.

Display memory again (M 033C 0348) and make sure that the
program is in place correctly. Check the memory display against the pro-
gram listing, and be sure you understand how the program is being tran-
scribed into memory.

If everything looks in order, you're ready to run your first machine language
program.

Preparation

There’s one more thing that we need to do. If we want to swap the contents
of addresses $0380 and $0381, we'd better put something into those
two locations so that we'll know that the swap has taken place correctly.

Display memory with M 0380 0381 and set the resulting display
so that the values are

.:0380 11 99 xx XX XX XX XX XX



20

MACHINE LANGUAGE FOR COMMODORE MACHINES

Remember to press RETURN. Now we may run our program; we start it
up with

G 033C

The program runs so quickly that it seems instantaneous (the run time is
less than one fifty thousandth of a second). The last instruction in our
program was BRK for break, and that sends us straight to the MLM with
a display of *B (for break, of course) plus all the registers.

Nothing seems to have changed. But wait. Look carefully at the register
display. Can you explain the values you see in the AC and XR registers?
Can you explain the PC value?

Now you may display the data values we planned to exchange. Give the
memory display command M 0380 038l—have the contents of
the two locations changed?

They'd better have changed. Because that's what the writing of our pro-
gram was all about.

Things You Have Learned

—Computers use binary. If we want to work with the inner fabric of the computer,
we must come to terms with binary values.

—Hexadecimal notation is for humans, not for computers. It's a less clumsy
way for people to cope with binary numbers.

—The 650x microprocessor chip communicates with memory by sending an
address over its memory bus.

—The 650x has internal work areas called registers.

—The program counter tells us the address from which the processor will get
its next instruction.

—Three registers, called R, X, and Y, are used to hold and manipulate data.
They may be loaded from memory, and stored into memory.

—Addresses used in 650x instructions are “flipped:” the low byte comes first,
followed by the high byte.

—The machine language monitor gives us a new type of communications path
into the computer. Among other things, it allows us to inspect and change
memory in hexadecimal.

Detail: Program Execution

When we say G 033C to start up our program, the microprocessor goes
through the following steps:




FIRST CONCEPTS 21

1. It asks for the contents of $033C; it receives $AD, which it recognizes as
the op code "1oad A." It realizes that it will need a two-byte address to
go with this instruction.

2. It asks for the contents of $033D, and then $033E. As it receives the
values of $80 and $03 it gathers them into an “instruction address.”

3. The microprocessor now has the whole instruction. The PC has moved along
to $033F. The 650x now executes the instruction. It sends address $0380
to the address bus; when it gets the contents (perhaps $11), it delivers this
to the A register. The A register now contains $1 1.

4. The 650x is ready to take on the next instruction; the address $033F goes
from the PC out to the address bus; and the program continues.

Questions and Projects

Do you know that your computer has a part of memory called “screen
memory”? Whatever you put into that part of memory appears on the
screen. You'll find this described in BASIC texts as “screen POKE-ing.”

The screen on the PET/CBM is at $8000 and up; on the VIC, it's often
(but not always) at $1LEDO and up; on the Commodore 64, it's usually at
$0400; and on the PLUS/4, it may be found at $0C00. With the C128,
the 40-column screen is at $0400, but if you are in the 80-column mode,
the screen is not mapped directly to memory.

If you write a program to store information in the screen memory address,
the appropriate characters will appear on the screen. You might like to try
this. You can even “swap” characters around on the screen, if you wish.

Two pitfalls may arise. First, you might write a perfect program that places
information near the top of the screen; then, when the program finishes,
the screen might scroll, and the results would disappear. Second, the VIC
and Commodore 64 use color, and you might inadvertently produce white-
on-white characters; these are hard to see.

Here’s another question. Suppose | asked you to write a program to move
the contents of five locations, $0380 to $0384, in an “end-around”
fashion, so that the contents of $0380 moved to $0381, $0381 to
$0382, and so on, with the contents of $0384 moved to $0380. At
first glance, we seem to have a problem: we don'’t have five data registers,
we have only three (B, X, and Y). Can you think of a way of doing the
job?






Controlling
Output

This chapter discusses:

® Calling machine language subroutines
e The PRINT subroutine

® Immediate addressing

® Calling machine language from BASIC
® Tiny assembler programs

® Indexed addressing

® Simple loops

® Disassembly

23



24 MACHINE LANGUAGE FOR COMMODORE MACHINES

Calling Machine Language Subroutines

In BASIC, a “package” of program statements called a subroutine may
be brought into action with a GOSUB command. The subroutine ends with
a RETURN statement, which causes the program to return to the calling
point, i.e., the statement immediately following GOSUB.

The same mechanism is available in machine language. A group of in-
structions may be invoked with a jump subroutine (JSR) command. The
650x goes to the specified address and performs the instructions given
there until it encounters a return from subroutine (RTS) command, at
which time it resumes execution of instructions at the calling point: the
instruction immediately following JSR.

For example, if at address $033C | code the instruction JSR $1234,
the 650x will change its PC to $1234 and start to take instructions from
that address. Execution will continue until the instruction RTS is encoun-
tered. At this time, the microprocessor would switch back to the instruction
following the JSR, which in this case would be address $033F (the JSR
instruction is three bytes long).

As in BASIC, subroutines may be “nested;” that is, one subroutine may
call another, and that subroutine may call yet another. We will deal with
subroutine mechanisms in more detail later. For the moment, we'll concern
ourselves with calling prewritten subroutines.

Prewritten Subroutines

A number of useful subroutines are permanently stored in the ROM mem-
ory of the computer. All Commodore machines have a standard set of
subroutines that may be called up by your programs. They are always at the
same addresses, and perform in about the same way regardless of which
Commaodore machine is used: PET, CBM, Commodore 64, PLUS/4, Com-
modore 128, or VIC-20. These routines are called the kernal subroutines.
Details on them can be found in the appropriate Commodore reference
manuals, but we'll give usage information here.

The original meaning of the term kernal seems to be lost in legend. It was
originally an acronym, standing for something like “Keyboard Entry Read,
Network and Link.” Today, it's just the label we apply to the operating
system that makes screen, keyboard, other input/output and control mech-
anisms work together. To describe this central control system, we might
choose to correct the spelling so as to get the English word, “kernel.” For
now, we'll use Commodore’s word.




CONTROLLING OUTPUT 25

The three major kernal subroutines that we will deal with in the next few
chapters are shown here:

Address Name What it does

$FFD2 CHROUT Outputs an ASCII character
$FFE4 GETIN Gets an ASCII character
$FFEL STOP Checks the RUN/STOP key

With the first two subroutines, we can input and output data easily. The
third allows us to honor the RUN/STOP key, to guard against certain types
of programming error. In this chapter, we'll use CHROUT to print infor-
mation to the screen.

CHROUT—The Output Subroutine

The CHROUT subroutine at address $FFD2 may be used for all types
of output: to screen, to disk, to cassette tape, or to other devices. It's
similar to PRINT and PRINT#, except that it sends only one character.
For the moment, we’ll use CHROUT only for sending information to the
computer screen.

Subroutine: CHROUT

Address: $FFD2

Action: Sends a copy of the character in the A register to the
output channel. The output channel is the computer screen
unless arrangements have been made to switch it.

The character sent is usually ASCII (or PET ASCIl). When sent to the
screen, all special characters—graphics, color codes, cursor move-
ments—will be honored in the usual way.

Registers: All data registers are preserved during a CHROUT call.
Upon return from the subroutine, A, X, and Y will not have changed.

Status: Status flags may be changed. In the most recent Commodore
machines, the C (carry) flag indicates some type of problem with output.

To print a letter X on the screen, we would need to follow these steps:

1. Bring the ASCII letter X ($58) into the A register;
2. JSR to address $FFD2.



26 MACHINE LANGUAGE FOR COMMODORE MACHINES

Why Not POKE ?

It may seem that there's an easier way to make things appear on the
screen. We might POKE information directly to screen memory; in ma-
chine language, we would call this a store rather than a POKE, of course.
The moment we change something in this memory area, the information
displayed on the screen will change. Screen memory is generally located
at the following addresses:

PET/CBM: $8000 and up (decimal 327&8)
Commodore 64 and 128: $0400 and up (decimal 1024)
264/364 $0C00 and up (decimal 3072)
VIC-20: $LEOD0 and up (decimal ?E480)

The screen memory of the VIC-20 in particular may move around a good
deal, depending on how much additional RAM memory has been fitted.

Occasionally, screen POKEs are the best way to do the job. But most of
the time we’ll use the CHROUT, $FFD2 subroutine. Here are some of
the reasons why:

e As with PRINT, we won't need to worry about where to place the next
character; it will be positioned automatically at the cursor point.

o If the screen is filled, scrolling will take place automatically.

e Screen memory needs special characters. For example, the character X has
a standard ASCII code of $58, but to POKE it to the screen we’d need to
use the code $18. The CHROUT subroutine uses $58.

e Screen memory may move around, depending on the system and the pro-
gram. The POKE address would need to change; but CHROUT keeps
working.

® Special control characters are honored: $0D for RETURN, to start a new
line; cursor movements; color changes. We can even clear the screen by
loading the screen-clear character ($93) and calling $FFD2.

e To POKE the screen of the Commodore machines with color, the corre-
sponding color nibble memory must also be POKEd (see the appropriate
memory map in Appendex C). With the subroutine at $FFD2, color is set
automatically.

A Print Project

Let's write some code to print the letter H on the screen. Once again, we’'ll
use address $033C, the cassette buffer, to hold our program. Reminder:
be sure to have your monitor loaded and ready before you start this project.



CONTROLLING OUTPUT 27

First, the plan; we lay out the instructions
LDA #$48

We're using a new symbol (#) to signal a special type of information. It
goes by a variety of names: pounds sign, sharp, hash mark, or numbers
sign. A more formal name for the symbol is octothorpe, meaning “eight
points.” Whatever you call it, the symbol means “the following information
is not an address, it's a value.” In other words, we don’t want the computer
to go to address $48, we want it to load the A register with the value
$48, which represents the ASCI| letter H. This type of information access
is called immediate addressing. In other words, take the information im-
mediately, don’t go to memory for it.

JSR $FFDE

The previous instruction brought the letter H into the A register; this one
prints it to the screen. Now all we need to do is quit. BRK takes us to the
machine language monitor.

Monitor Extensions

We could repeat the steps of the previous chapter: hand-assembling the
source code into machine language, and then placing it into memory. We
would need to know the instruction codes, and then do a careful translation.
But there’s an easier way.

Most machine language monitors contain extra commands to help us do
this type of mechanical translation. We'll use the assembler feature of
these monitors.

Most monitors contain the assemble (R) command. The notable excep-
tion is the built-in monitors within the PET/CBM; these, however, can be
extended by loading in a “monitor extension” program such as Supermon.
The Commodore PLUS/4 series contains an extended monitor, which
includes the A command.

These assemblers are often called nonsymbolic assemblers. This means
that whenever an address is needed, you must furnish that exact address.
You cannot type in a name such as CHROUT and expect the tiny assem-
bler to know what address that represents; instead, you must type $FFD2.

C128 note: Remember to check Exercises for the Commodore 128, in
Appendix E, for the appropriate coding, and information on how the C128
assembler works.



28

MACHINE LANGUAGE FOR COMMODORE MACHINES

Load your monitor or monitor extension. Do any setup that may be needed.
Then type the following monitor command:

A 033C LDA #%48

We are asking the computer to assemble (R) at address $033C (note
we don't use the $ here) the command LDA, Load R, the immediate value
of $48, which represents the ASCII letter H. When you press RETURN
after entering this line, the computer may do either of two things:

1. It may do nothing except print a question mark somewhere on the line. The
question mark indicates an error in your coding. If the question mark appears
directly after the letter B, your monitor does not understand the A assemble
instruction; get another monitor or properly set up the one you have.

2. Or, it will correctly translate your instruction, and put the object code into
memory starting at the address specified. In this case, that would happen
to be $A9 at address $033C and $48 at address $033D. It would then
help you by printing part of the next expected instruction. The computer
expects that you will type a line starting with

A D33E

It places the first part of this line on the screen to save you typing. The
screen should now look like this:

A 033C LDR #$448
A O33E

You may now complete the instruction by typing in JSR $FFDZ and
pressing RETURN. Again, the computer will anticipate your next line by
printing A 0341, which allows you to type in the final command, BRK.
The screen now looks like this:

A 033C LDR #$448
A 033E JSR $FFDE
A 0341 BRK

A 0342

The computer is still waiting for another instruction. We have no more
instructions, so we press RETURN to signal that we're finished.

At this point, our program is stored in memory. The instructions have been
assembled directly into place, and the object code is hopefully ready to

go.
Note that this saves us the trouble of remembering—or looking up—the

op codes for each instruction. And we don’t need to keep track of how
long each instruction should be; the assembler does it for us.



CONTROLLING OUTPUT 29

If you like, you can display memory and look at the object program with
theM 033C 0341. You'll see the bytes of your program in memory:

.:033C A9 484 20 D2 FF 00 xx xXx

The first six bytes are your program. The last two bytes don’t matter: they
were whatever was in that part of memory before. We don’t care what is
there, since the program will stop when it reaches the BRK ($00) at
address $0341; it won't be concerned with the contents of memory at
$0342 or $0343.

Checking: The Disassembler

When we changed our source code into object code, we called this process
of translation assembly, and we called a program that did the job an
assembler.

Now we've written a program and it's safely stored in memory. We have
inspected memory and have seen the bytes there; but they are hard to
read. It would be convenient if we could perform an inverse assembly,
that is, take the contents of memory and translate it into source code. The
monitor has this capability, called a disassembler.

If we ask the computer to disassemble the code starting at $033C, it will
examine the code there and establish that the contents ($ A9) correspond
to an LDA immediate command. It will then print for our information LDA
#$48, which is much more readable than the original two bytes, A9 48.

Give the command D 033C and press RETURN. D stands for disas-
semble, of course, and the address must follow.

The computer will now show a full screen of code. On the left is the address
followed by the bytes making up the instruction. On the right is the re-
constructed source code. The screen shows much more memory than our
program needs. Again, we ignore all lines beyond address $0341, which
is the last instruction of our program. Anything following is “junk” left in
memory that the program does not use.

An interesting feature of most disassembly listings is that the cursor is left
flashing on the last line of the disassembly rather than on the line below.
When you have a large program, this allows you to type the letter D
followed by RETURN and the next part of your program will immediately
be displayed. On the other hand, if you don’t want to disassemble more
code, press the cursor down key and move to a “clean” line before typing
your next instruction.



30

MACHINE LANGUAGE FOR COMMODORE MACHINES

A disassembly is a good way to check for errors. If you find an error in
the listing, you may correct that line by re-assembling it, using the A
command once again. Minor errors may be corrected directly on the left-
hand side of the disassembly listing. In other words, suppose that you had
incorrectly coded LDA #$58 during the assembly phase; when you per-
form the disassembly, this line will show as

., 033C A9 548 LDA #$58

You recognize that the 58 should be 4 8; you may move the cursor up—
use cursor home if you wish—and type over the value on the left-hand
side. In this case, you place the cursor over the 5, type 4 to change the
display to 48, and press RETURN. You will see from the display that the
problem has been fixed.

Running the Program

If necessary, move the cursor down to an empty line. Type the command
G 033C and the program will run. Again, it doesn’t take long; the break
back to the ML M seems instantaneous. Where’s the letter H that we were
supposed to print? It's hard to see, but it's there. Look at your G 033C
command and you'll see it.

Project for enthusiasts: Can you add to the program and print HI? The
ASCII code for the letter I is $49. Can you add again and print HI on
a separate line? The ASCII code for a RETURN is $0D. Remember that
you can find all ASCII codes in Appendix D; look in the column marked
ASCII.

Linking with BASIC

So far we have started up our programs with a G (go) command from
the MLM, and we have terminated our programs with a BRK command
that returns us to the monitor. That's not a convenient way to run a program;
most users would prefer to say RUN out of BASIC and have the computer
do everything.

We can link to a machine language program from BASIC and when the
program is finished, it can return to BASIC and allow the BASIC program
to continue to run. The commands we need are

(BASIC) SYS—Go to a machine language subroutine at the stated address;
(Machine language) RTS—Return to whoever called this subroutine.



CONTROLLING OUTPUT 31

Let's change our machine language program first. We must change the
BRK at the end to RT S (return from subroutine) so that when the program
is finished it will return to BASIC. If you like, you may change it directly
on the disassembly listing: disassemble and then type over the 00 byte
that represents BRK with a value of 0. Press RETURN and you'll see
that the instruction has now changed to RTS. Alternatively, you may re-
assemble with

A D33C LDR #%$48
A 033E JSR $FFD2
A 0341 RTS

Now return to BASIC (using the X command). The computer will say
READY; you may now call your program with a SYS command.

Address $033C is 828 in decimal. Thus, we type SYS 828. When we
press RETURN, the letter H will be printed.

We're not finished. Any machine language subroutine may be called from
a BASIC program. Type NEW, which clears out the BASIC work area; our
machine language program is left untouched, since NEW is a BASIC com-
mand. Now enter the following program:

100 FOR J=1TO 10
110 SYS 8248
120 NEXT J

How many times will our program at 828 ($033C) be called? How many
times will the letter H be printed? Will they be on the same line or separate
lines? Type RUN and see.

Project for enthusiasts: Again, change the machine language program
to say HI. Use your imagination. What else would you like the computer
to say? Would you like to use colors or reverse font?

We've achieved an important new plateau: BASIC and machine language
working together. It's easier on the user, who doesn'’t have to learn spe-
cialized monitor commands. It's easier on the programmer, too, since
things that are easy to do in BASIC can be written in that language; things
that are clumsy or slow in BASIC can be written in machine language. We
can get the best of both worlds.

Let's distinguish our three different types of subroutine calls:

GOSUB—calls a BASIC subroutine from a BASIC program.
SYS—calls a machine language subroutine from a BASIC program.
JSR—calls a machine language subroutine from machine language.



32 MACHINE LANGUAGE FOR COMMODORE MACHINES

Loops

We know how to send characters to the screen, one at a time. But long
messages, such as THE QUICK BROWN CAT .. ., might lead to te-
dious coding if we had to write an instruction for each letter to be sent.
We need to set up a program loop to repeat the printing activity.

Let's write a program to print the word HELLO followed by a RETURN.

C128 note: Remember to check Exercises for the Commodore 128, in
Appendix E, for the appropriate coding.

We must store the word HELLO somewhere in memory. It doesn’'t matter
where, provided it doesn’t conflict with anything else. I'll arbitrarily choose
address $034A to $034F. We'll put it there in a moment. Remember
that the characters that make up the word HELLO (plus the RETURN)
are not program instructions; they are simple data. We must put them in
place with a memory change—we must not try to assemble them.

We will need to count the characters as we send them. We wish to send
six characters, so a count of six is our limit. Let's use the X register to
keep track of the count. First, we must set X to zero:

A 033C LDX #%00

Note that we use the # symbol to denote an immediate value: we want
to load X with the value zero, not something from address 0. Now, we’ll
do something new. | want to take a character to be printed from address
$034A. But wait, that's only the first time around. When we come back
to this point in the loop, | want to take a character from $034B, and then
from $034C, and so on.

How can we do this? It seems that we must write one address into the
LDA instruction, and that address can’t change. But there is a way.

We can ask the computer to take the address we supply, and add the
contents of X or Y to this address before we use it. The computed address
is called an effective address.

Let's look at our position. The first time around the loop, X is counting the
characters and has a value of zero. If we specify our addressas 034 A + X,
the effective address will be 034 A. That's where we will have stored the
letter H.

When we come back around the loop—we haven’t written that part yet—
X should now equal one. An address of 034 A + X would give an effective
address of 034B; the computer would go there and get the letter E. As



CONTROLLING OUTPUT 33

we go around the loop, the letters, L, L, O, and RETURN will be brought
in as needed.

As we enter the LD A instruction, we don't type the plus sign. Instead, we
signal indexing with a comma: LDA $034A, X. We may use either X or
Y for indexing: they are sometimes called index registers. In this case, of
course, we use X. So we code

A 0O33E LDA $034A,X
A 0341 JSR $FFD2

The first time, the computer loads the contents of address $034R (the
letter H of HELLO) and prints it. When the loop comes back here, with
X equal to one, this instruction will load the contents of $034B and print
the letter E.

The X register counts the number of letters printed, so we must add one
to the contents of X. There’s a special command that will add one to the
contents of X: INX, for increment X. A similar code, INY, allows Y to
be incremented; and DEX (decrement X) and DEY (decrement Y) allow
X or Y to be decremented, or reduced, by one. At the moment, INX is
the one we need for counting:

A 0344 INX

Now we can test X to see if it is equal to six yet. The first time around, it
won't be since X started at zero and was incremented to a value of 1. If
X is not equal to six, we'll go back to $033E and print another letter.
Here's how we code it:

A 0345 CPX #%06
A 0347 BNE $033E

CPX stands for compare X; note that we are testing for an immediate
value of six, so we use the # symbol. BNE means branch not equal; if X
is not equal to six, back we go to address $033E.

A little careful thought will reveal that the program will go back five times
for a total of six times around the loop. It's exactly what we want.

Let's show the whole code, completing it with RTS:

R 033C LDX #%00

A 0O33E LDA $034R,X
R 0341 JSR $FFD2

A 0344 INX

A 0345 CPX #3506

A 0347 BNE $033E

A 0349 RTS



34

MACHINE LANGUAGE FOR COMMODORE MACHINES

We may now put the characters for HELLO into memory. These are data,
not instructions, so we must not try to assemble them. Instead, we change
memory in the usual way, by displaying and then typing over. We give
the command M 034A 034F, and type over the display to show

:034R 48 45 4C 4C 4F 0D xx XX
By a lucky coincidence, this data fits exactly behind our program.

Everything should -be ready now. Disassemble the program at $033C
and check it. You may note that the data at $034R doesn’t disassemble
too well, but that's to be expected; these bytes are not instructions and
cannot be decoded.

When all looks well, return to BASIC (with . X) and try SYS 828. The
computer should say HELLO.

Once again, set up a BASIC loop program:

100 FOR J=1TO3
110 SYS 4acé8
120 NEXT J

A Commenton SAVE

If you wished to save the program to cassette tape, you'd have a problem
on the VIC or Commodore 64. The machine language program is in the
cassette buffer; a save-to-tape command would cause the contents of that
buffer to be destroyed before the program could be written to tape. Even
disk commands would not be completely safe: 4.0 BASIC disk commands
use the cassette buffer area as a work area; using these commands would
probably destroy our machine language program.

But saving the program is not the main problem. A correctly saved program
can give trouble when you try to bring it back and run it safely. The difficulty
is related to BASIC pointers, especially the start-of-variables pointer. The
problem, and how to solve it, will be discussed in some detail in Chapter
6

A Stopgap SAVE

We can preserve short programs by making them part of DATA state-
ments. The procedure is not difficult if screen editing is used intelligently.

We note that the program extends from $033C to $034F, including the
message (HELLO) at the end. The decimal equivalents to these ad-
dresses are 828 to 847. C128 note: Appendix E, in the section Exercises



CONTROLLING OUTPUT 35

for the Commodore 128, will give you the correct addresses and values
for doing this on the C128. Enter the following BASIC line:

FOR J=0828 TO 847 :PRINT PEEK(J); :NEXT J

Study the above line. You will see that it asks BASIC to go through the
part of memory containing your machine language program, and display
the contents (in decimal notation, of course). You'll see a result that looks
something like this:

62 D0 189 7?4 3 32 210 255 232 2284 b 208 245 9k
2 B9 7?6 P& ?9 13

These are indeed the bytes that make up your program. With a little study,
you could reconstruct the 1E2-0 combination to be LDX #$00, or the
?2-69-76-76-79 atthe end to be the word HELLO in ASCII. It looks
different when it's in decimal, but it's still the same numbers.

You may try a little skill and artistry, using screen editing to perform the
next activity, or you may just retype the numbers into data lines a shown.
Either way, arrange the numbers as follows:

50 DATA 1&ké2,0,189,7?4,3,32,210,255,232,224,6
&0 DATA 208,245,9&,72,69,76,76,79,13

We now have a copy of our program, exactly the way it appears in memory,
but stored within DATA statements. The DATA statements are part of a
normal BASIC program, of course, and will SAVE and LOAD with no
trouble at all.

We can now reconstruct our machine language program, placing it back
into memory, with a simple BASIC POKE program:

80 FOR J=828 TO 847: READ X:POKE J,X:NEXT J

Now our program is safe and sound—it handles like BASIC, but it will do
a machine language task for us as desired. Let'’s display the entire BASIC
program

SO DATA 162,0,189,74,3,32,210,255,232,224,6
&0 DATA 208,245,96,72,69,?6,76,79,13

40 FOR J =828 TO 847:READ X:POKE J,X:NEXT J
100 FORJ=1 TO 3

110 SYS ac28

120 NEXTJ

This method of saving a machine language program is clean and trouble
free, but it becomes awkward where long programs are involved. More
advanced methods will be discussed in Chapter 6.



36 MACHINE LANGUAGE FOR COMMODORE MACHINES

Things You Have Leamed

—Subroutines can be called from machine language using the JSR command.
There are several useful kernal subroutines permanently available.

—A BASIC program may call a machine language program as a subroutine:
the BASIC command is SYS. The machine language subroutine returns to
the calling point with an RTS (return from subroutine) instruction.

—The CHROUT subroutine at address $FFD2 allows output of a character,
usually to the screen. In addition to printable characters, special cursor- and
color-control characters may be sent.

—Most machine language monitors have a small assembler to help program
preparation, and a disassembler to assist in program checking.

—Immediate mode is signaled by use of the # symbol. The computer is asked
to take the value given, instead of going to a specified address for its data.

—X and Y are called index registers. We may add the contents of X or Y to a
specified address, to create an effective address that changes as the program
runs. This addition is called indexing.

—X and Y also have special instructions that increase or decrease the selected

register by one. These are called increment and decrement instructions, and
are coded INX, INY, DEX, and DEY.

Questions and Projects

Look through the table of ASCII characters in Appendix D. Note that hex
q3 is “clear screen.” Write a program to clear the screen and print ""HO
HO! M.

You may have noticed that in our example, we had register X counting
up from zero to the desired value. What would happen if you started X at
S and counted down? Try it if you like.

Remember that you can also include cursor movements, color codes (if
your machine has color), and other special ASCII characters. Could you
lay out the coding to draw a box? (Try it in BASIC first). Draw a box with
the word HELLO inside it.










Flags, Logic,

This chapter discusses:

Flags that hold status information
Testable flags: Z, C, N, and V
Signed numbers

The status register

First concepts of interrupt

Logical operators: OR, AND, EOR
The GETIN subroutine for input
The STOP subroutine

and Input

39



40 MACHINE LANGUAGE FOR COMMODORE MACHINES

Flags

Near the end of Chapter 2, we coded a program that had the seemingly
natural sequence

CPX #3506
BNE §....

It made sense: compare X for a value of &, and if not equal, branch back.
Yet it implies something extraordinary; the two instructions are somehow
linked.

Let's flash forward for a moment. Even when you have a machine language
program running, the computer “freezes” sixty times a second. The com-
puter undertakes a special activity, called interrupt processing. It stops
whatever it was doing, and switches to a new set of programs that do
several tasks: flashing the cursor, checking the keyboard, keeping the
clock up to date, and checking to see whether the cassette motor needs
power. When it's finished, it “unfreezes” the main program and lets it
continue where it left off.

This interrupt might take place between the two instructions shown above,
that is, after the CPX and before the BNE. Hundreds of interrupt instruc-
tions might be executed between the two, yet nothing is harmed. The two
instructions work together perfectly to achieve the desired effect. How can
the computer-do this?

The two instructions are linked by means of a flag—a part of the 650x
that records that something has happened. The CPX instruction tests X
and turns a special flag on or off to signal how the comparison turned out:
equal or unequal. The BNE instruction tests that flag. If it's on (meaning
equal), no branch will take place and the program will continue with the
next instruction; if it's off (meaning not equal), a branch will take place.

In other words, some instructions leave a “trail” of status information; other
instructions can check this information. The status information is called
“flags.” There are four flags that may be tested: Z, C, N, and V. They are
discussed below.

Z Flag

The Z (zero) flag is probably misnamed, and should have been called the
E flag (for “equals”). After any comparison (CPX to compare X, CPY to
compare Y, or CMP to compare R), the Z flag will be set to “on” if the
compared values are equal; otherwise it will be reset to “off.”




FLAGS, LOGIC, AND INPUT 41

Sometimes the Z flag checks for equal to zero, hence its name, Z for
zero. This happens for every activity that may change one of the three
data registers. Thus, any load command will affect the Z flag status. The
same is true of increment and decrement instructions, which obviously
change registers. And later, when we meet other operations such as ad-
dition and subtraction, they too will affect the Z flag.

There are many instructions that don'’t affect the Z flag (or any flag, for
that matter). Store instructions (STA, STX, STY), never change a flag.
Branch instructions test flags but don’t change them.

An example will help illustrate the way that some instructions change flags
and others do not. Examine the following coding:

LDA #%$23  (Load 23 to A)

LDX #$00  (Load zero to X)

STA $1234 (store 23 to address $1234)
BEQS$....

Will the branch (BEQ) be taken, or will the 650x continue with the next
instruction? Let's analyze the Z flag’s activity step by step. The first in-
struction (LDR #3$23) resets the Z flag, since 23 is not equal to zero.
The second instruction (LDX #$00) sets the Z flag because of the zero
value. The third instruction (STR $1234) does not affect the Z flag; in
fact, store instructions do not affect any flags. Thus, by the time we reach
the BEQ instruction, the Z flag is set “on” and the branch will be taken.

650x reference manuals show the specific flags that are affected by each
instruction. In case of doubt, they are easy to check.

The Z flag is quite busy—it clicks on and off very often since many in-
structions affect it. It's an important flag.

If the Z flag is set “on,” the BEQ (branch equals) instruction will branch
to the specified address; otherwise it will be ignored and the next instruction
in sequence will be executed. If the Z flag is reset “off,” the BNE (branch
not equals) instruction will branch.

We can see in more detail how our program from Chapter 2 worked.
CPX #3$0k causes the Z flag to be set “on” if X contains the value E;
otherwise it causes the Z flag to be reset “off.” BNE tests this flag, and
branches back to the loop only if the Z flag is off—in other words, only if
the contents of X is not equal to six.



42 MACHINE LANGUAGE FOR COMMODORE"MACHINES

C Flag

The C (carry) flag is probably misnamed, too. It should have been called
the GE (greater/equal) flag, since after acomparison (CPX, CPY, or CMP),
the C flag is set “on” if the register (X, Y, or R) is greater than or equal
to the value compared. If the register concerned is smaller, the C flag will
be reset “off.”

The C flag is not as busy as the Z flag. The C flag is affected only by
comparison instructions and by arithmetic activities (add, subtract, and a
type of multiplication and division called rotate or shift). When used in
arithmetic, the C flag is properly named, since it acts as a “carry” bit
between various columns as they are calculated. For example, an LDA
instruction always affects the 2 flag since a register is being changed, but
never affects the C flag since no arithmetic or comparison is being per-
formed.

If the C flag is set “on,” the BCS (branch carry set) instruction will branch
to the specified address; otherwise it will be ignored and the next instruction
in sequence will be executed. If the C flag is reset “off,” the BCC (branch
carry clear) instruction will branch.

The C flag may be directly set or reset by means of the instructions SEC
(set carry) and CLC (clear carry). We will use these instructions when we
begin to deal with addition and subtraction.

If you examine the last program of Chapter 2, you will see that the BNE
instruction could be replaced by BCC. Instead of “branch back if not equal
to 6,” we could code “branch back if less than 6.” The operation would
be the same in either case.

N Flag

The N (negative) flag is also probably misnamed. It should have been
called the HB (high bit) flag, since numbers are positive or negative only
if they are used in a certain way. The N flag is set to indicate that a register
has been given a value whose high bit is set.

The N flag is as busy as the Z flag; it changes with every instruction that
affects a register. The N flag is affected by comparisons, but in this case
its condition is not usually meaningful to the programmer.

To sort out the operation of the N flag, it's important to become familiar
with hexadecimal-to-binary conversion. For example, will LDA #3$E5 set
the N flag? Rewrite it into binary: $&5 equals 201100101. We can see




FLAGS, LOGIC, AND INPUT 43

that the high bit is not set, meaning that the N flag will be off after loading
this value. As another example, suppose we LDX #$DA. Hex DA is
11011020 binary. We see that the high bit is on and thus the N flag is
set.

If the N flag is set “on,” the BMI (branch minus) instruction will branch
to the specified address; otherwise it will be ignored and the next instruction
in sequence will be executed. If the N flag is reset “off,” the BPL (branch
plus) instruction will branch.

A Brief Diversion: Signed Numbers

How can a location—which is usually thought to contain a decimal value
from O to 255—contain a negative number? It's up to the programmer
to decide whether a memory value is unsigned, having a value range from
0 to 255, or signed, having a value range from — 128 to + 127. There
are still a total of 25k possibilities. The computer’'s memory simply holds
bits, while the programmer decides how the bits are to be used in a specific
case.

Mathematically, it's described this way: signed numbers, if desired, are
held in two’s-complement form. We can hold —1 as hex FF, and — 2
as hex FE, all the way down to — 128 as hex 80. You may have noticed
that in all the examples, the high bit is set for these negative numbers.

We may need more intuitive help, however. If the computer loads the
decimal value 200 into the A register with LDA #$C8, the N flag will be
set and will seemingly indicate that 200 is a negative number. It may be
more comfortable to simply think of 200 as a number with the high bit
set. But in a sense, 200 could be a negative number if we wanted it to
be. Let's examine the situation by means of examples.

If | were asked to count down in hexadecimal from 1.0, I'd start out $10,
$0F, $0E, and $0D, continuingdownto $02, $01, and $00. If | needed
to keep going, I'd continue past $00 with $FF; in this case, hex FF would
clearly represent negative one. Continuing, FE, FD, and FC would rep-
resent —2, —3, and — 4. And the high bit is set on all these “negative”
numbers.

Let’s discuss a decimal analogy. Suppose you have a cassette recorder
with a counter device attached, and the counter reads 0025. If you rewind
the unit a distance of 30 units, you would not be surprised to see a value
of 9995 on the counter and would understand that it meant a position of
—5. If you had a car with 1,500 miles on the odometer, and “rolled back”



44 MACHINE LANGUAGE FOR COMMODORE MACHINES

the mileage by 1,501 miles, you'd see a reading of 99999, which would
mean — 1. (The author does not know this from personal experience, but
is assured by many machine language students that it is so.) In these
cases, based on the decimal system, the negative numbers are called
“ten’'s complement.”

V Flag

As with the other flags, the V (overflow) flag is probably misnamed. It
should have been called the SAO (signed arithmetic overflow) flag, since
itis affected only by addition and subtraction commands, and is meaningful
only if the numbers concerned are considered to be signed.

The V flag is used only occasionally in typical 650x coding. Many machine
language programs don’t use signed numbers at all. The most typical use
of the V flag is in conjunction with a rather specialized command, BIT
(bit test). For this instruction, the V flag signals the condition of bit & of
the memory location being tested. In this case, V and N work in a similar
way: N reflects the high bit, bit 7, and V represents the “next bit down,”
bit 6. The BIT command is used primarily for testing input/output ports
on IA (interface adaptor) chips.

If the V flag is set “on,” the BVS (branch overflow set) instruction will
branch to the specified address; otherwise it will be ignored and the next
instruction in sequence will be executed. If the V flag is reset “off,” the
BVC (branch overflow clear) instruction will branch.

The V flag may be directly reset by means of the CLV (clear overflow)
instruction. Oddly, there is no equivalent instruction to set the flag.

One special feature of the V flag: on some 650x chips, the V flag can be
set by hardware. There is a pin on the chip that can be used so that an
external logic signal will trigger the V flag.

A Brief Diversion: Overflow

The term overflow means “the result is too big to fit.” For example, if |
add 200 to 200, the total is 400 ... but this won't fit in a single byte.
If we have only a single byte to store the result, we say that the addition
has encountered overflow, and we can’t produce a meaningful answer.

If we are using unsigned numbers, the C flag tells us about overflow. If
we are using signed numbers, V tells the story. We'll take this up again
in the next chapter.




FLAGS, LOGIC, AND INPUT 45

Flag Summary

A brief table may help review the four testable flags.

Flag Brief Activity Branch Taken If:
Name Meaning Level Set Not-Set
Z Zero, equal Busy BEQ BNE

Cc Carry, greater/equal Quiet BCS BCC

N Negative, high-bit Busy BMI BPL

\ Signed arithmetic overflow Quiet BVS BVC

The Status Register

The preceding flags—and three others—may be viewed within the status
register (SR). You may recall that the machine language monitor gives
an SR display. If you know how to read it, you can see the condition of
all flags.

Each flag is a bit within the status register. Again, it's useful to be able to
easily translate the hexadecimal display, so as to view the individual flags.
Here's a chart of the flags within the status register:

6543210
NV-BDIZC

Taking the bits one at a time, starting at the high bit:

N—the N flag, as above
V—the V flag, as above.
Bit 5—unused. You'll often find that this bit is “on.”

B—"Break” indicator. When an interrupt occurs, this signals whether or not the
interrupt was caused by a BRK instruction.

D—Decimal mode indicator. This changes the manner in which the add and
subtract instructions operate. In Commodore machines, this flag will always be
off. Don't turn it on unless you know exactly what you're doing. This flag may
be turned on with the SED (set decimal) instruction, and turned off with the
CLD (clear decimal) instruction.

I—Interrupt disable. More exactly, this bit disables the IRQ (interrupt request)
pin activity. More on this control bit much later. This flag may be turned on with
the SETI (set interrupt disable) instruction, and turned off with the CLI (clear
interrupt disable) instruction.

Z—the Z flag, as above.
C—the C flag, as above.



46

MACHINE LANGUAGE FOR COMMODORE MACHINES

Flags B, D, and I are not testable flags in that there are no branch instructions
that test them directly. D, the decimal mode flag, and I, the interrupt lockout
flag, may be considered “control” flags. Instead of reporting conditions found
as the program runs, they control how the program operates.

When we see a value displayed in the SR, or status register, we may
examine it to determine the condition of the flags, especially the testable
flags Z, C, N, and V. For example, if we see an SR value of $B1, we
translate to binary 210110001 and know that the N flag is on, the V
flag is off, the Z flag is off, and the C flag is on.

You may change these flags by typing over the displayed value in the
machine language monitor. Be careful you don't accidentally set the D or
T flags.

A Note on Comparison

If we wish to compare two bytes with each other, we must perform a
comparison. One value must be in a register (B, X, or ¥); the other must
either be stored in memory, or must be an immediate value we use in the
instruction.

We will use the appropriate compare instruction depending on the register
involved; CMP for the A register, CPX for the X register, and CPY for the
Y register. Following the comparison, we may use any of the following
branch tests:

BEQ—branches if the two bytes are equal.
BNE—branches if the two bytes are not equal.

BCS—branches if the value in the register is greater than or equal to the other
value.

BCC—branches if the value in the register is less than the other value.

We can use more than one branch instruction after a comparison. Suppose
our program wanted to test the Y register for a value equal to or less than
5. We might code

CPY #%05
BEQ ..somewhere
BCC ..somewhere

We can see that our code will branch if the value is equal to 5 (using the
BEQ) or less than S (using the BCC); otherwise it will continue without
branching. In this case, we could make the coding more efficient by chang-
ing it to read




FLAGS, LOGIC, AND INPUT 47

CPY #%06
BCC ..somewhere

A little common sense will tell us that testing a number to see if it is less
than & is the same as testing it to see if it is less than or equal to 5.
Common sense is a valuable programming tool.

Instructions: A Review

We have looked at the three data registers—A, X, and Y—and have seen
three types of operation we can perform with them:

Load: LDA, LDX, LDY
Store: STA, STX, STY
Compare: CMP, CPX, CPY

Up to this point, the registers have identical functions, and we can use
any of them for any of these functions. But new instructions are creeping
in that give a different personality to each of the three.

We have noted that INX, INY, DEX, and DEY for increment and dec-
rement are restricted to X and Y only; and we've also mentioned that X
and Y can be used for indexing. Soon, we'll start to examine some of the
functions of the A register, which is often called the accumulator because
of its ability to do arithmetic.

We have seen JSR, which allows us to call a subroutine of prewritten
instructions. We've used RTS, which says, “Go back to the calling point,”
even if the calling point is a BASIC program. And we've almost abandoned
the BRK instruction, which stops the program and goes to the machine
language monitor. BRK will be useful in checking out programs. Specifi-
cally, we can stop a program at any time by inserting a BRK instruction,
allowing us to see whether the program is behaving correctly and whether
it has done the things we planned.

There are eight branch instructions. They have already been discussed,
but there is one additional piece of information that is important to keep
in mind. All branches are good only for short hops of up to a hundred
memory locations or so. So long as we write short programs, that won’t
be a limitation; but we’'ll look at this more closely in Chapter 5.

Logical Operators

Three instructions perform what are called logical operations. They are:
AND (Logical AND); ORA (Logical OR); and EOR (Exclusive OR). These
instructions work on the A register only.



48

MACHINE LANGUAGE FOR COMMODORE MACHINES

Mathematicians describe these operations as commutative. For example,
a value of $3A "AND" $57 gives exactly the same result as $57
WAND'" $3A. The order doesn’'t matter. But we often use these func-
tions—and think of them—in a particular order. It's the same as with
addition, where we think of a “total” to which is added an “amount” to
make a “new total.” With the logical operators we often think of a “value,”
which we manipulate with a “mask” to make a “modified value.”

Logical operators work in such a way that each bit within a byte is treated
independently of all the other bits. This makes these instructions ideal for
extracting bits, or manipulating certain bits while leaving others alone.

We'll look at formal definitions, but the following intuitive concepts are
useful to programmers:

AND—turns bits off.

ORA—turns bits on.

EOR—flips bits over.

AND—Logical AND to A

For each bit in the A register, AND performs the following action:

Original A Bit Mask Resuilting R Bit
0 o 0
1 0 0
0 1 1]
1 1 1

Examine the upper half of this table. When the mask is zero, the original
bit in A is changed to zero. Examine the lower half. When the mask is
one, the original bit is left unchanged. Hence, AND can selectively turn
bits off.

Example: Turn off bits 4, S, and & in the following value: $C7?

Original value: 11000111
Mask: AND 10001111 (hex 8F)
Result 10000111

XXX

Note that the bits marked have been forced to “off,” while all other bits
remain unchanged.



FLAGS, LOGIC, AND INPUT 49

ORA—Logical OR to A

For each bit in the A register, ORA performs the following action:

Original R Bit Mask Resulting A Bit
0 0 0
1 0 1
0 1 1
1 1 1

Examine the upper half of this table. When the mask is zero, the original
bitin A is left unchanged. Examine the lower half. When the mask is one,
the original bit is forced to “on.” Hence, ORA can selectively turn bits on.

Example: Turn on bits 4, 5, and & in the following value: $C?

Original value: 11000111
Mask: ORA 01110000 (hex 70)
Result 11110111

XXX

Note that the bits marked have been forced to “on,” while all other bits
remain unchanged.

EOR—Exclusive OR to A

For each bit in the A register, EOR performs the following action:

Original R Bit Mask Resulting A Bit
0 1] D
1 0 1
0 1 1
1 1 0

Examine the upper half of this table. When the mask is zero, the original
bitin A is left unchanged. Examine the lower half. When the mask is one,
the original bit is inverted; zero becomes one and one becomes zero.
Hence, EOR can selectively flip bits over.

Example: Invert bits 4, S, and & in the following value: $C?

Original value: 11000111
Mask: EOR 01110000 (hex 70)
Result 10110111

XXX



50 MACHINE LANGUAGE FOR COMMODORE MACHINES

Note that the bits marked have been flipped to the opposite value, while
all other bits remain unchanged.

Why Logical Operations?

We use these three commands—AND, ORA, and EOR—to change or
control individual bits within a byte of information. The commands are
unusual in that each bit may be manipulated independently of the others.

We don’t seem to be working with numbers when we use these commands.
Rather, we're working with each individual bit, turning it on or off as we
wish.

Why would we turn individual bits on or off? There are several possible
reasons. For example, we might wish to control external devices through
the I A’s (interface adaptors). Within the IA’s input and output ports each
of the eight bits might control a different signal; we might want to switch
one control line on or off without affecting other lines.

When we're looking at input from an IR port, we often read several input
lines mixed together within a byte. If we want to test a specific bit to see
if it is on or off, we might mask out all other bits with the AND instruction
(changing unwanted bits to zero); if the remaining bit is zero, the whole
byte will now be zero and the Z flag will be set.

Why would we want to flip bits over? Many “oscillating” effects—screen
flashing or musical notes—can be accomplished this way.

Finally, the logical operators can be useful in code translation. For ex-
ample, here are the values for ASCII 5 and binary 5:

ASCII %0011010%
Binary 200000101

We must use the ASCII value for input or output. We must use the binary
value for arithmetic, particularly addition and subtraction. How could we
get from one to the other? By taking bits out (AND) or putting bits in (ORA).
Alternatively, we could use addition or subtraction; the logical operators,
however, are simplier.

Input: The GET I N Subroutine

We have seen how we can use CHROUT at $FFD2 to produce output
to the screen. Now we'll look at the input side—how to use the GETIN
subroutine at $FFE4 to get characters from the keyboard buffer.



FLAGS, LOGIC, AND INPUT 51

You may be familiar with the GET statement in BASIC. If so, you'll find
the same characteristics in GETIN:

® Input is taken from the keyboard buffer, not the screen.

o |f a key is held down, it will still be detected once only.

® The subroutine returns immediately.

e If no key is found, a binary zero is returned in A.

o |f a key is found, its ASCII value will be in A.

® Special keys, such as RETURN, RVS, or color codes, will be detected.
To call for a key from the keyboard, code JSR $FFE4. Values in X and

Y are not guaranteed to be preserved, so if you have important information
in either register, put it away into memory.

Subroutine: GETIN
Address: $FFE4
Action: Takes a character from the input channel and places it

into the A register. The input channel is the keyboard input
buffer unless arrangements have been made to switch it.

The character received is usually ASCIl (or PET ASCIl). When read
from the keyboard, the action is similar to a BASIC GET statement:
one character will be taken from the buffer; it will not be shown on the
screen. If no character is available from the keyboard input buffer, a
value of binary zero will be put into the A register. The subroutine will
not wait for a key to be pressed but will always return immediately.

Registers: The R register will of course always be affected. X and Y
are likely to be changed; do not have data in these when calling
GETIN.

Status: Status flags may be changed. In most recent Commodore
machines, the C (carry) flag indicates some type of problem with input.

If we want keyboard input to appear on the screen, we should follow a
call to GETIN, $FFE4, with a call to CHROUT, $FFD2, so that the
received character is printed.

STOP

Machine language programs will ignore the RUN/STOP key ... unless
the program checks this key itself. It may do so with a call to STOP,
address $FFEL. This checks the RUN/STOP key at that moment. To
make the key operational, $FFE1 must be called frequently.



52

MACHINE LANGUAGE FOR COMMODORE MACHINES

A call to FFE1 should be followed by a BEQ to a program exit so that
the program will terminate when RUN/STOP is pressed.

The RUN/STOP key is often brought into play while programs are being
tested, so that unexpected “hangups” can still allow the program to be
terminated. Coding to test the RUN/STOP key is often removed once
testing is complete, on the assumption that no one will want to stop a
perfect program. Incidentally, if you plan to write nothing but 100 percent
perfect programs, you will not need to use this subroutine.

Subroutine: STOP

Address $FFEL

Action: Check the RUN/STOP key. If RUN/STOP is being pressed
at that instant, the Z flag will be set when the subroutine
returns.

In PET/CBM, the system will exit to BASIC and say READY if the
RUN/STOP key is being pressed. In this case, it will not return to the
calling machine language program.

Registers: B will be affected. X will be affected only if the RUN/STOP
key is being pressed.

Status: Z signals whether RUN/STOP is being pressed.

Programming Project

Here’s our task: we wish to write a subroutine that will wait for a numeric
key to be pressed. All other keys (except RUN/STOP) will be ignored.

C128 note: Remember to check Appendix E, under Exercises for the
Commodore 128, for the appropriate coding.

When a numeric key is pressed, it will be echoed to the screen, and then
the subroutine will be finished. One more thing. The numeric character
will arrive in ASCII from the keyboard: we wish to change it to a binary
value before giving the final RTS statement. This last operation has no
useful purpose yet, except as an exercise, but we'll connect it up in the
next chapter.

Coding sheets ready? Here we go.
A 033C JSR $FFEL

We will check the RUN/STOP key first. But wait. Where will we go if we
find that the key is pressed? To the RTS, of course; but we don’t know



FLAGS, LOGIC, AND INPUT 53

where that is, yet. In these circumstances, we usually make a rough guess
and correct it later. Make a note to check this one . . .

A 033F BEQ $0351
A 0341 JSR S$FFE4

Now we've gotten a character; we must check that it’s a legitimate numeric.
The ASCII number set 0 to 9 has hexadecimal values $30 to $39. So
if the value is less than $30, it's not a number. How do we say ‘“less
than?” After a compare, it's BCC (branch carry clear). So we code

A D344 CMP #$30
A 03d46 BCC $033C

Did you spot the use of immediate mode at address $0344? Make sure
you follow the logic on this. Another point: what if no key has been pressed?
We're safe. There will be a zero in the A register, which is less than hex
30; this will cause us to go back and try again.

Now for the high side. If the number is greater than hex 39, we must
reject it since it cannot be an ASCII numeric. Our first instinct is to code
CMP #$39 and BCS. But wait! BCS (branch carry set) means “branch
if greater than or equal to.” Our proposed coding would reject the digit 9,
since the carry flag would be set when we compared to a value of hex
3aq. v

We must check against a value that is one higher that $39. Be careful,
though, for we're in hexadecimal. The next value is $3A. Code it:

A 03486 CMP #$3A
A 034A BCS $033C

If we get this far, we must have an ASCII character from O to 9; let’s print
it to the screen so that the user gets visual feedback that the right key
has been pressed:

A 034C JSR $FFD2

Now for our final task. We are asked to change the ASCII character into
true binary. We may do this by knocking off the high bits. We remember,
of course, that to turn bits off we must use AND:

A 034F AND #S$0F
A 0351 RTS

It's a good thing that we printed the character first, and then converted to
binary; the character must be ASCI! to print correctly.



54

MACHINE LANGUAGE FOR COMMODORE MACHINES

One last thing. We had a branch (on the RUN/STOP key) that needed to
connect up with the RTS. Did you make that note about going back and
fixing up the branch? Now is the time to do it, but before you go back,
terminate the assembly with an extra RETURN on the keyboard (the
assembler gets confused if it prompts you for one address and you give
another; get out before you go back).

By a fortunate stroke of luck, we happen to have guessed the right address
for the BEQ at address $033F. But if we hadn’t, you know how to change
it, don’t you?

Check your coding, disassemble, go back to BASIC and run with a SYS
8c28. Tap a few letter keys and note that nothing happens. Press a num-
ber; and see it appear on the screen. The program will terminate. SYS it
again and see if the RUN/STOP works. Try a BASIC loop to confirm that
BASIC and machine language work together.

Project for enthusiasts: Try modifying the program so that it checks for
alphabetic characters only. Alphabetic characters run from $41 to $5A,
inclusive.

Things You Have Learned

—Flags are used to link instructions together. This might be an activity such
as load or compare, followed by a test such as branch on a given condition.

—Some instructions affect one or more flags, and some do not affect flags.
Thus, an instruction that sets a flag might not be followed immediately with
the instruction that tests or uses that flag.

—There are four testable flags: Z (zero, or equals); C (carry, or greater/equal);
N (negative, or high bit); and V (signed arithmetic overflow). The flags are
checked by means of “branch” instructions such as BEQ (branch equal) or
BNE (branch not equal).

—Flags are stored in the status register, sometimes called the processor status
word. The SR contains the four testable flags, plus three other flags: B (break
indicator); D (decimal mode for add/subtract); and I (interrupt lockout). The
hexadecimal value in SR can be changed to binary and used to determine
the exact condition of all flags.

—Usually, the processor is interrupted sixty times a second to do special high-
priority jobs. Everything, including the status register flags, is carefully pre-
served so that the main program can continue as though nothing had
happened.

—A number stored in memory can be considered as signed if we decide to
handle it that way. The value of a signed number is held in two’s-complement
form. The high bit of the number is zero if the number is positive, one if the



FLAGS, LOGIC, AND INPUT 55

number is negative. The computer doesn't care. It handles the bits whether
the number is considered signed or not, but we must write our program
keeping in mind the type of number being used.

—There are three logical operator instructions: AND, ORA, and EOR. These
allow us to modify bits selectively within the A register. AND turns bits off;
ORA turns bits on; and EOR inverts bits, or flips them over.

Questions and Projects

Write extra coding to allow both numeric and alphabetic characters, but
nothing else.

Write a program to accept only alphabetic characters. As each ASCII
character is received, turn on its high bit with ORA #$80 and then print
it. How has the character been changed?

Write a program to accept only numeric digits. As each ASCII character
is received, turn off its lowest bit with AND #$FE and then print it. What
happens to the numbers? Can you see why?






This chapter discusses:

Numbers: signed and unsigned
Big numbers: multiple bytes
Arithmetic: add and subtract
Rotate and shift instructions
Multiplication

Home grown subroutines

Numbers,
Arithmetic,
and
Subroutines

57



58 MACHINE LANGUAGE FOR COMMODORE MACHINES

Numbers: Signed and Unsigned

We have looked briefly at the question of signed versus unsigned numbers.
The most important concept is that you, the programmer, choose whether
or not a number is to be considered a signed number (for a single byte,
in the decimal range —128 to +127) or an unsigned integer (single-
byte range O to 255).

It makes no difference to the computer. If you consider a number signed,
you may wish to test the sign using the N flag. If not, you won't do such
a test.

Big Numbers: Multiple Bytes

You may use more than one byte to hold a number. Again, it's your
decision. If you think the numbers may go up to a million, you might allocate
three bytes (or more or fewer). If you are doing arithmetic on multi-byte
numbers, the computer will help you by signaling in the carry flag that
there’s something to be carried across from a lower byte to a higher one.
But it’s up to you to write the code to handle the extra bytes.

You may size numbers by using the following table:

Unsigned: Signed:
1 byte 0 to 255 —-128 to +127
2 bytes 0 to 65,535 —32768 to +32767
3 bytes 0to 16,777,215 — 8,388,608 to + 8,388,607
4 bytes to over 4 billion —2 billion to + 2 billion

It's possible to work with binary fractions, but that is beyond the scope of
this book. Many applications “scale” numbers, so that dollar-and-cents
amounts are held as integer quantities of pennies. Thus, two bytes un-
signed would hold values up to $£55.35, and three bytes up to
$167,772.15.

When signed numbers are held in multiple bytes, the sign is the highest
bit of the highest byte only.

We will concentrate on single-byte arithmetic principles here, touching on
multiple-byte numbers as a generalization of the same ideas.

Addition

Principles of addition are similar to those we use in decimal arithmetic;
for decimal “columns,” you may substitute “bytes.” Let’s look at a simple
decimal addition:




NUMBERS, ARITHMETIC, AND SUBROUTINES 59

142856
+ 389217

Rule 1: We start at the right-hand column (the low-order byte).

Rule 2: We add the two values, plus any carry from the previous column. A new
carry may be generated; it can never be greater than one. (ADC includes any
carry from a previous activity, and may generate a new carry bit, which is either
Dorl.)

Rule 3: When we start at the right-hand column, there is no carry for the first
addition. (We must clear the carry with CLC before starting a new addition.)

Rule 4: When we have finished the whole addition, if we have a carry and no
column to put it in, we say the answer “won't fit.” (If an addition sequence of
unsigned numbers ends up with the carry flag set, it's an overflow condition.)

HIGH BYTE LOW BYTE
START:
00101011 10111001 NO CARRY
+ 00001010 11100101
10011110
CARRY
00110110

Figure 4.1

How do we translate these rules into machine language addition?

1. Before we start an addition sequence, clear the carry with CLC.

2. If the numbers are more than one byte in size, start at the low byte and work
up to the high ones. Addition will take place in the A register only; you may
add the contents of an address or an immediate value. The carry flag will
take care of any carries.

3. When the addition sequence is complete, check for overflow:
a) if the numbers are unsigned, a set C flag indicates overflow;
b) if the numbers are signed, a set V flag indicates overflow.

Thus, to add two unsigned numbers located at addresses $0380 and
$0361 and to place the result at $0382, we might code



60

MACHINE LANGUAGE FOR COMMODORE MACHINES

CLC

LDA $03480
ADC $0381
STA $0348¢

We might also BCS to an error routine, if desired.

To add a two-byte number located at $03A0 (low) and $03A1L (high)
to another two-byte number located at $03B0 (low) and $03B1 (high),
placing the result at $03C0/1, we might code

CLC

LDA $03A0
ADC $03BO
STA $03CO
LDA $03A1
ADC $03B1
STA $03C1

Again, we might BCS to an overflow error routine.

If we had two-byte signed numbers in the same locations, we'd add them
exactly the same way, using the same code as above. In this case, how-
ever, we'd check for overflow by adding the instruction BV S, which would
branch to an error routine. The carry flag would have no meaning at the
end of the addition sequence.

Subtraction

Subtraction might be defined as “upside down” addition. The carry flag
again serves to link the parts of a multibyte subtraction, but its role is
reversed. The carry flag is sometimes called an “inverted borrow” when
used in subtraction. Before performing a subtraction, we must set the C
flag with SEC. If we are worried about unsigned overflow, we look to
confirm that the carry is set at the completion of the subtraction operation.
If the carry is clear, there’s a problem.

Thus, to perform a subtraction, we follow these rules:

1. Before we start a subtraction sequence, set the carry with SEC.

2. If the numbers are more than one byte in size, start at the low byte and work
up to the high ones. Subtraction will take place in the A register only; you
may subtract the contents of an address or an immediate value. The C flag
will take care of any “borrows.”

3. When the subtraction sequence is complete, check for overflow:
a) if the numbers are unsigned, a clear C flag indicates overflow;



NUMBERS, ARITHMETIC, AND SUBROUTINES 61

b) if the numbers are signed, a set V flag indicates overflow.

Thus, to subtract two unsigned numbers located at addresses $0380
and $0381 and to place the result at $0382, we might code

SEC

LDA $0340
SBC $0381
STA $038¢2

A BCC could go to an error routine.

Comparing Numbers

If we have two unsigned numbers and wish to know which one is larger,
we can use the appropriate compare instruction—CMP, CPX, or CPY—
and then check the carry flag. We've done this before. If the numbers are
more than one byte long, however, it's not quite so easy. We must then
use a new technique.

The easiest way to go about such a comparison is to subtract one number
from the other. You need not keep the result; all you care about is the
carry flag when the subtraction is complete. If the C flag is set, the first
number (the one you are subtracting from) is greater than or equal to the
second number. Why? Because carry set indicated that the unsigned
subtraction was legal; we have subtracted the two numbers and have
obtained a positive (unsigned) result. On the other hand, if the C flag ends
up clear, this would mean that the first number is less than the second.
The subtraction couldn’t take place correctly since the result—a negative
number—can't be represented in unsigned arithmetic.

Left Shift: Multiplication by Two

If we write the decimal numbers 100 and 200 in binary, we see an
interesting pattern:

100: Z01100100
c00: %Z11001000

To double the number, each bit has moved one position to the left. This
makes sense, since each bit has twice the numeric “weight” of the bit to
its right.

The command to multiply a byte by two is ASL (arithmetic shift left). A
zero bit is pushed into the low (or “right”) side of the byte; all bits move



62

MACHINE LANGUAGE FOR COMMODORE MACHINES

left one position; and the bit that “falié out” of the byte—in this case, a
zero bit—moves into the carry. It can be diagrammed like this:

CARRY LLLLLLL+¢
(C FLAG) ] L1 - ] |
ASL

IN AN ASL (ARITHMETIC SHIFT LEFT), EACH BIT
MOVES ONE POSITION LEFT. A ZERO MOVES INTO THE
LOW-ORDER BIT.

Figure 4.2

That's good for doubling the value of a single byte. If a “one” bit falls into
the carry flag, we can treat that as an overflow. What about multiple bytes?

It would be ideal if we had another instruction that would work just like
ASL. Instead of pushing a zero bit into the right hand side of the byte,
however, it would push the carry bit, that is, the bit that “fell out” of the
last operation. We have such an instruction: ROL.

ROL (rotate left) works exactly like B SL except that the carry bit is pushed
into the next byte. We can diagram it as follows:

CARRY

| | | ] | 1 |
. - - - - - . @ .
| | | | | |

CARRY

IN A ROL (ROTATE LEFT), THE CARRY MOVES INTO
THE LOW ORDER BIT; EACH BIT MOVES LEFT; AND THE
HIGH ORDER BIT BECOMES THE NEW CARRY.

Figure 4.3

Thus, we can hook two or more bytes together. If they hold a single
multibyte number, we can double that number by starting at the low-order
end. We ASL the first value and ROL the remainder. As the bits fall out
of each byte, they will be picked up in the next.

Multiplication

Multiplying by two may not seem too powerful. We can build on this starting
point, however, and arrange to multiply by any number we choose.



NUMBERS, ARITHMETIC, AND SUBROUTINES 63

)
ASL
ROL f—l - —— - +J

HIGH ORDER BYTE

TO MULTIPLY A THREE-BYTE NUMBER BY TWO, WE
SHIFT THE LOW ORDER BYTE WITH ASL; THEN WE USE
ROL TO ALLOW THE C FLAG TO “’LINK’* FROM ONE
BYTE TO THE NEXT.

Figure 4.4

We won't deal with a generalized multiplication routine here, but a couple
of specific examples can be shown.

How can we multiply by four? Multiply by two, twice. How can we multiply
by eight? Multiply by two, three times.

Here’s an important one. We often want to multiply by ten. For example,
if a decimal number is being typed in at the keyboard, the number will
arrive one digit at a time. The user might type 217, for example. The
program must then input the two and put it away; when the one arrives,
the two must be multiplied by ten, giving twenty, and the one added; when
the seven is typed, the twenty-one must be multiplied by ten before the
seven is added. Result: 217 in binary. But we must first know how to
multiply by ten.

To multiply by ten, you first multiply by two; then multiply by two again.
At this point, we have the original number times four. Now, add the original
number, giving the original number times five. Multiply by two one last
time and you've got it. We'll see an example of this in Chapter 7.

Right Shift and Rotate: Dividing by Two

If we can multiply by two by shifting (and rotating) left, we can divide by
two by moving the bits the other way. If we have a multibyte number, we
must start at the high end.

LSR (logical shift right) puts a zero into the left (high-order) bit, moves all
the bits over to the right, and drops the leftover bit into the carry. ROR
(rotate right) puts the carry bit into the left bit, moves everything right, and



64

MACHINE LANGUAGE FOR COMMODORE MACHINES

C FLAG

IN AN LSR, ZERO MOVES INTO THE HIGH BIT, AND ALL
BITS MOVE RIGHT ONE POSITION; THE LOWEST BIT
BECOMES THE CARRY. ROR

T rr
| | | lv

| | | l

IN A ROR, THE CARRY MOVES INTO THE HIGH BIT AND
ALL BITS MOVE RIGHT ONE POSITION; THE LOWEST
BIT BECOMES THE NEW CARRY.

LSR

)
4_’—’_’H ROR

C¢ —— — 0
=

Cc

TO DIVIDE A THREE-BYTE NUMBER BY TWO, WE SHIFT
THE HIGH-ORDER BYTE WITH LSR; THEN WE USE ROR
TO ALLOW THE C FLAG TO “’LINK’* FROM BYTE TO
BYTE.

Figure 4.5
drops the leftover bit into the carry once again. At the end of a right-shifting

sequence, the final carry bit might be considered a remainder after dividing
by two.

Comments on Shift and Rotate

As you might expect of arithmetic instructions, the shift and rotate instruc-
tions normally operate in the B register. But there’s an extra bonus: these
instructions also can operate directly on memory. In other words, the
computer can go to any address in memory and shift the bits at that address
directly, without loading the data into a register.

For this reason, you'll often see the instructions coded with the identity of
the A register coded in the address part of the instruction. We would code




NUMBERS, ARITHMETIC, AND SUBROUTINES 65

LSR A so as to distinguish from LSR $1234, where the contents of
memory is being shifted.

When a rotate or shift is performed directly on a memory location, the Z,
N, and C flags are affected according to the contents of memory. Z will
be set if the contents of the location ends up as zero; N if the high bit is
set; and C performs its standard role of catching the leftover bit.

Some programmers wonder about the terms logical and arithmetic, used
as part of the definition. The distinction is related to the way that signed
numbers are treated. “Logical” means that the sign of a number will prob-
ably be lost if the number was intended to be signed. “Arithmetic” means
that the sign will probably be preserved. It's purely a terminology question:
the bits themselves move exactly as you would expect them to do.

Subroutines

We have written programs that are subroutines called by BASIC. We have
written subroutine calls to built-in operations such as $FFD2 or $FFE4.
Can we also write our own subroutine and arrange to call it?

Of course we can. RTS (return from subroutine) does not mean “return
to BASIC.” It means “return to whoever called this routine.” If BASIC
called up the machine language routine, RTS takes you back to BASIC.
If another machine language program called up the subroutine, RTS will
return to the calling point.

We wrote a useful subroutine in the last chapter. Its purpose was to accept
only numeric keys, echo them to the screen, and convert the ASCII value
to binary. Now we'll use this subroutine to build a more powerful program.
Here it is. Be sure it's entered in your computer.

A 033C JSR $FFEL
033F BEQ $0351
0341 JSR $FFE4
0344 CMP #3%30

0346 BCC $033C
0348 CMP #$3A

034Aa BCS $033C
034C JSR $FFDE
034F AND #30F

0351 RTS

> oD



66 MACHINE LANGUAGE FOR COMMODORE MACHINES

The Project

Here is our mission: using the above subroutine, we wish to build a simple
addition program. Here’s how we want it to work. The user will touch a
numeric key, say " 3". Immediately, "3+ " will appear on the screen.
Now the user will touch another key, say "4", and the program will
complete the addition so that the screen shows "3 +4=7". We will
assume that the total is in the range O to 9 so that we don't have to worry
about printing a two-digit answer—don'’t try 5+ 5 or you'll get a wrong
answer.

C128 note: Remember to check Appendix E, Exercises for the Commo-
dore 128, for the appropriate coding.

Here we go. We must start our coding at address $035¢2 so as not to
disturb our subroutine. We'll need to give SYS 850 to make this one go.

A 0352 JSR $033C

We call our prewritten subroutine, which waits for a numeric key, echos
it to the screen, and converts the value to binary in the A register.

Our next action is to print the plus sign. We know how to do this, once
we look up the ASCII code for this character. Appendix D tells us that it's
$2B, sowe'll need to LDA #%$2B and JSR $FFD2. But wait a minute!
Our binary value is in the B register, and we don't want to lose it. Let's
store the value somewhere:

A 0355 STA $03CO
A 03586 LDAR #$c2B

A 035A JSR $FFD2
A 035D JSR $033C

We picked $03C0, since nobody seems to be using it, and put the binary
number safely away there. Now we print the plus sign, and go back to
ask for another digit.

When the subroutine returns, it has a new binary value in the A register;
the digit has been neatly printed on the screen behind the plus sign. Now
we need to print the equal sign. But again, wait! We must put our binary
value away first.

We could place the value into memory—perhaps $03C1 would do—but
there’'s another way. We don’t seem to be using X or Y for anything at



NUMBERS, ARITHMETIC, AND SUBROUTINES 67

the moment, so let’s slip the value across into one or the other. We have
four “transfer” commands that will move information between A and either
index register:

TAX—Transfer A to X TAY—Transfer Ato Y
TXA—Transfer X to A TYA—Transfer Y to A

Like the load series of commands, these instructions make a copy of the
information. Thus, after TAX, whatever information was in A is now also
in X. Again like the load commands, the Z and N status flags are affected
by the information transferred. It doesn’t matter whether we use X or Y.
Let's pick X:

A 0360 TAX
A 0361 LDA #3%3D
A 0363 JSR $FFDE

We have put our second value into X and printed the equal sign ($3D).
Now we can bring the value back and do our addition. The next two
instructions can come in any order:

A 0366 TXA
A 0367 CLC
A 0364 ADC $03cCO

We have our total in the A register. It's almost ready to print, except for
one thing: it's in binary. We want it in ASCII.

Assuming the total is in the range 0O to 9, we can convert it directly to a
single ASCII digit with an ORA operation. (If it's greater than nine, you're
cheating and the answer won’t make sense.)

A 0O36B ORA #$30
A 0O3ED JSR $FFDC

Are you basically a neat person? Then you'll want to print a RETURN to
start a new line:

A 0370 LDA #$0D
A 0372 JSR $FFD2
A 03?5 RTS

Check it with a disassembly. If you disassemble starting with the subrou-
tine, you'll need more than one screen full of instructions to see it all. No
problem. When the cursor flashes at the bottom of the screen, press the
letter D and RETURN and you'll see a continuation of the listing.



68 MACHINE LANGUAGE FOR COMMODORE MACHINES

Back to BASIC. This time we do not give SYS 828—that’s the subroutine
and we want the main routine, remember?

Give the SYS 850 command. Tap a couple of numeric keys that total
nine or less. Watch the results appear instantly on the screen.

If you like, set up a BASIC loop and call the routine several times.

Project for enthusiasts: You couldn't resist, could you? You had to type
in two digits that totaled over 9 and got a silly result. OK, your project is
to try to expand the above code to allow for two-digit results. It's not that
hard, since the highest possible total is 9+ 9 or 18; so if there are two
digits, the first one must be the digit 1. You'll need to compare for the
result over binary nine, and then arrange for printing the one and sub-
tracting ten if necessary. Sounds like fun.

Things You Have Learned

—We may decide to use a number as a signed value; in this case, the high bit
of the number will be O if the number is positive and 1 if the number is
negative. It's up to us. As far as the computer is concerned, it’s just bits in
either case.

—When a number might have a value that won't fit into an eight-bit byte, we
may use more than one byte to hold the value. We have already done this
to hold addresses in two bytes: there’s a high byte to hold the high part of
the value and a low byte to hold the low part.

—We may add two numbers together using the ADC instruction with the A
register; we should always clear the carry flag before starting an addition.
The carry flag will take care of multibyte numbers for us, providing we re-
member to start the addition at the low end.

—We may subtract two numbers using the SBC instruction with the A register;
we should always set the carry flag before starting a subtraction. The carry—
which is sometimes called an inverted borrow—will take care of multibyte
numbers for us, providing we remember to start the subtraction at the low
end.

—For unsigned numbers, the carry should end up as it started (clear for addition,
set for subtraction); otherwise we have overflow in the result. For signed
numbers, the carry doesn’t matter; the V flag will be set if we have overflow.

—We may multiply a byte by two with the ASL (arithmetic shift left) instruction.
If we have a multiple-byte number, we may carry the multiplication through
to other bytes by using the ROL (rotate left) instruction, starting at the low
byte of the number.

—We may divide a byte by two with the LSR (logical shift right) instruction. If
we have a multiple-byte number, we may carry the division through to other



NUMBERS, ARITHMETIC, AND SUBROUTINES 69

bytes by using the ROR (rotate right) instruction, starting at the high byte of
the number.

—The shift and rotate instructions may be used on the contents of the A register
or directly on memory. The N and Z flags are affected, and the C flag plays
an important role in the shift/rotate action.

—If we wish to multiply by a value other than two, we may need to do more
work but we can get there.

—As we might have expected, we may write subroutines in machine language
and then call them from machine language. It's a good way to organize your
code.

Questions and Projects

Write a program to subtract two single-digit numbers, similar to the one
in the above exercise. You may continue to use the subroutine from the
previous chapter.

Write a program to input a single-digit number. If the number is less than
five, double it and print the result. If the number is five or over, divide it
by two (discarding any remainder) and print the result. Try to produce a
neat output.

Write a program to input a single-digit number. Print the word ODD or
EVEN behind the number, depending on whether it is odd or even. Use
the LSR instruction followed by a BCC or BCS test to check for odd or
even.

If you've been following the logic, you have developed quite a bit of ca-
pability in machine language. You can input, you can output, and you can
do quite a bit of arithmetic in between.

By now, you should have developed skills with the machine language
monitor and feel much more comfortable zipping in and out. These skills
are not difficult, but they are important to the beginner. Without them, you
can never get comfortably into the real meat: how to code machine lan-
guage itself.






‘Address
Modes

This chapter discusses:

® Non-addresses: implied, immediate, register
® Absolute and zero-page

® |ndexing

® The relative address for branches

® |ndirect addressing

® Indirect, indexed

71



72 MACHINE LANGUAGE FOR COMMODORE MACHINES

Addressing Modes

Computer instructions come in two parts: the instruction itself, or op code,
and the address, or operand. The term “address” is a little misleading,
since sometimes the operand does not refer to any memory address.

The term address mode refers to the way in which the instruction obtains
information. Depending on how you count them, there are up to 13 ad-
dress modes used by the 650x microprocessor. They may be summarized
as follows:

No memory address: implied, accumulator.

No address, but a value supplied: immediate.

An address designating a single memory location: absolute; zero-page.

An indexed address designating a range of 25k locations: absolute,x; ab-
solute,y; zero-page,x; zero-page,y.

A location in which the real (two-byte) jump address may be found: indirect.

6. An offset value (e.g., forward 9, back 17) used for branch instructions:
relative.

7. Combination of indirect and indexed addresses, useful for reaching data
anywhere in memory: indirect, indexed; indexed, indirect.

No Address: Implied Mode

Instructions such as INX (increment X), BRK (break), and TAY (transfer
A to Y) need no address; they make no memory reference and are com-
plete in themselves. Such instructions occupy one byte of memory.

H>wh -

o

We might say that such instructions have “no address.” The precise term
is “implied address,” which seems to say that there is in fact an address
but we do not need to state it.

Perhaps the word “implied” is used in this manner: an instruction such as
INX implies the use of the address register; and an instruction such as
BRK implies the address of the machine language monitor. If so, there’s
an instruction that still defies this definition: NOP.

The Do-Nothing Instruction: NOP

NOP (no operation) is an instruction that does nothing. It affects no data
registers or flags. When a NOP instruction is given, nothing happens and
the processor continues to the next instruction. It seems inappropriate to



ADDRESS MODES 73

me that we say that NOP has an implied address. It doesn't do anything;
itdoesn’t have an address at all. On the other hand, | suppose that logicians
might say, “Yes, but it does nothing to the X register.”

The NOP instruction, whose op code is $EA, is surprisingly useful. It's
not simply that if you're a contract programmer getting paid by the byte
you might be tempted to put a large number of NOP instructions into your
program. NOP can serve two important program testing functions: taking
out unwanted instructions, or leaving space for extra instructions.

It's not as easy to change a machine language program as it is to change
a BASIC program. As you have seen, the instructions are placed in specific
locations. If we wish to eliminate an instruction, we must either move all
the following instructions down or fill in the space with NOP instructions.
If we move the instructions, we may need to correct some of the addresses.

Examine the following code:

0350 LDA #$00
03s¢e STA $1234
0355 ORA $3456

If we decide to eliminate the instruction at 0352 (STA $1234), we must
remove all three bytes. So we place code $EA in locations 0352, 0353,
and 0354,

Suppose we are testing a moderately large program. Most programs will
break into distinct “modules,” each of which does a specific job. One
module might clear a portion of memory to zero, another might do a
calculation, and so on. When we are checking out this program, it might
be wise to look at each module as it runs.

In this case, we might deliberately code a BRK (break) command between
each program module. The program will start to run, and then it will break
to the machine language monitor. Within the monitor, we can examine
memory to ensure that this module has done the job as we planned it.
When we are satisfied, we can start the next module using the .G com-
mand. In this way, we can have tight testing control over our program.

That's all very well, but when we have finished testing our program and
are satisfied that it runs correctly, we don’t want the BRK instructions
there. That's easy to fix. We replace the BRK codes ($00) with NOP’s
($ER), and the program will run through to the end.

If we are writing a program and suspect that we may need to insert one
or two extra instructions within a certain area of the code, we can put a



74 MACHINE LANGUAGE FOR COMMODORE MACHINES

number of NOP instructions there. The space will be available for use
when we need it.

No Address: Accumulator Mode

We have observed that the shift and rotate instructions, ASL, ROL,
LSR, and ROR, allow data manipulation in either the A register of directly
in memory. When we want to use the A register, or accumulator, you
should note this fact as you code your program. For example, you would
write ASL A or sometimes just ASL.

Where accumulator mode addressing is used, it has the same character-
istics as implied addressing: the whole instruction fits into one byte.

Where the shift/rotate instruction refers to a memory location, an address
will of course be needed. These address modes will be described later.

Other than the shift and rotate instructions, there is one other set of in-
structions that manipulates memory directly. You may recall INX, INY,
DEX, and DEY increment or decrement an index register.

INC (increment memory) adds one to any memory location. DEC (dec-
rement memory) subtracts one from any memory location. Both instruc-
tions affect the Z and N flags.

When an instruction modifies memory, the address mode is neither implied
nor accumulator. Memory reference addressing will be discussed later.

Not Quite an Address: Immediate Mode

Coding such as LDR #$34 does not reference a memory address. In-
stead, it designates a specific value (in this case, $34). An instruction
with immediate addressing takes up two bytes: one for the op code and
the second for the immediate value.

We have used immediate addressing several times. It has a “natural” feel,
and it's fast and convenient. There is one potential pitfall: immediate ad-
dressing is so easy to use that it may be abused. Each time you code an
immediate address, ask yourself, “Could this value ever change?” By
writing a value into a program, rather than a variable, you may be freezing
that value forever.

An example: a program is written for a VIC-20, which has 22 columns on
the screen. At various places in the program, values are compared to 22
(hex LE), and 22 is added or subtracted to various screen addresses. In




ADDRESS MODES 75

each case, immediate mode addressing is used to provide the value of
cc. Some time later, the programmer decides to convert to the Com-
modore 64, which has 40 columns on the screen. The programmer must
change each immediate mode reference from 22 to 40 (hex 28).

If the value 22 had been stored in a memory location so as to be used
as a variable, all this recoding would not be needed. The moral is clear:
excessive use of immediate mode can call for extra programming work at
a later time.

There are certain instructions for which immediate addressing is not pos-
sible. For example, we can LDA #$00, that is, bring in the actual value
zero rather than the contents of an address, but we cannot STA imme-
diate—we must store the information somewhere in memory.

A Single Address: Absolute Mode

An instruction might specify any address within memory—from $0000
to 3FFFF—and handle information from that address. Giving the full
address is called absolute addressing; if you like, you can deal with in-
formation absolutely anywhere in memory.

MEMORY |
7

Figure 5.1 Absolute Mode Specifies One Address Anywhere Within Memory.

We have used absolute addresses several times. When we exchanged
the contents of memory locations $0380 and $0381, we named these
addresses as we used them. When we stored a value from the keyboard,
we named location $03C0. We have also used absolute addresses for
program control: subroutines at $FFD2 and $033C were called up sim-
ply by giving the address.

The JSR (jump subroutine) instruction calls up a subroutine anywhere in
memory by using absolute addressing. There is also a JMP (jump) in-
struction, which can transfer program execution to any location in memory;
it's similar to the BASIC GOTO statement. JMP can use absolute ad-
dressing—it can go anywhere.

There’s a limitation to absolute addressing, however. Once you have writ-
ten the instruction, you can go only to the address stated. You cannot
reach a range of locations; only one.

One-location addressing can be good for any of several jobs. On the PET/



76

MACHINE LANGUAGE FOR COMMODORE MACHINES

CBM, we might want to switch between text and graphics modes by ma-
nipulating address 5948 (hexadecimal E 8 4C). On the VIC-20, we might
like to set the volume level of the sound generator by placing a value into
location 36878 (hex 900E). On a Commodore 64, the screen’s back-
ground color can be changed by manipulating address 53281 (hex DO21).
In each case, it's one specific address that we want; absolute addressing
will do the job for us. And we will also use absolute addressing to reference
the various RAM locations that we have picked for our own program “var-
iables.”

Zero-Page Mode

$00

A hexadecimal address such as $0381 is sixteen bits long and takes up
two bytes of memory. We call the high byte (in this case, $03), the
“memory page” of the address. We might say (but usually don't) that this
address is in page 3 at position $81.

$FF_$100

I |
N
Figure 5.2 Zero-Page Mode Specifies A Single Address from $00 to $FF.

Addresses such as $004C and $00F7 are in page zero; in fact, page
zero consists of all addresses from $0000 to $00FF. Page-zero lo-
cations are very popular and quite busy. There’s an address mode spe-
cially designed to quickly get to these locations: zero-page addressing.
We may think of it as a short address, and omit the first two digits. Instead
of coding LDA $0090, we may write LDA $90, and the resulting code
will occupy less space and run slightly faster.

Zero-page locations are so popular that we'll have a hard time finding
spare locations for our own programs. As a result, we tend to conserve
zero-page lpcations on Commodore machines. We'll need the few that
are available for a special addressing mode, indirect, indexed, that will
be discussed later.

There are many locations in zero page that are useful to read. For example,
the BASIC system variable ST, which is important in input/output handling,
may be examined there (location $9& in PET/CBM, location $90 in VIC-
20 and Commodore 64). If you need to know whether the user is holding
down a key, there’s an address in zero page that will tell you that (location
$97 in PET/CBM, $CB in VIC and 64, $D4 in C128).

Zero-page addressing, like absolute addressing, references one location



ADDRESS MODES 77

only. It's good for a specific value; but for a range of values we need
something more.

A Range of 25E Addresses: Absolute,
Indexed Mode

Indexing has already been used in Chapter 2. We give an absolute ad-
dress, and then indicate that the contents of X or Y should be added to
this address to give an effective address.

4
]
/
\ /
~~-7INDEX
VALUE
BASE
ADDRESS

Figure 5.3

Indexing is used only for data handling: it's available for such activities as
load and store, but not for branch or jump. Many instructions give you a
choice of X or Y as an index register; a few are limited specifically to X
or Y. Instructions that compare or store X and Y (CPX, CPY, STX, and
STY) do not have absolute, indexed addressing; neither does the BIT
instruction.

An instruction using absolute, indexed addressing can reach up to 256
locations. Registers X and Y may hold values from 0 to 255, so that the
effective address may range from the address given to 255 locations
higher. Indexing always increases the address; there is no such thing as
a negative index when used with an absolute address. If the address given
is above $FFOO, a high value in the index may cause the address to
“wrap around” and generate an effective address in the region of $0000;
otherwise, the effective address is never lower than the instruction ad-
dress.

We've seen the use of indexing. An instruction can reference a certain
address, then, as the program loops or as the need for information changes,
the same instruction can reference the contents of a different address.
The maximum range of 25k locations is an important limitation.



78 MACHINE LANGUAGE FOR COMMODORE MACHINES

The “reach” of an absolute, indexed instruction allows it to handle infor-
mation in buffers (such as the input buffer, keyboard buffer, cassette buffer);
tables (such as the active file table); and short messages (such as HELLO
or error messages). It's not big enough, however, to reach all parts of
screen memory, all parts of a BASIC program, or all of RAM. For that,
we'll use indirect, indexed addressing, which will be described later.

All of Zero Page: Zero-Page, Indexed

Zero-page, indexed addressing seems at first glance to be similar to the
absolute, indexed mode. The address given (this time in zero-page) has
the contents of the selected index added to it. But there’s a difference: in
this case, the effective address can never leave zero page.

This mode usually uses the X register; only two instructions, LDX and
STX, use the Yregister for zero-page, indexed addressing. In either case,
the index is added to the zero-page address; if the total goes beyond zero
page, the address “wraps around.” As an example, if an instruction is
coded LDA $EO, X and the X register contains S0 at the time of exe-
cution, the effective address will be $0030. The total ($E0 + $50 or
$130) will be timmed back into zero page.

$00 $FF
I—’l / x -_:l_ ]
BASE ’
ADDRESS
Figure 5.4

Thus, any zero-page address can be indexed to reach any other place in
zero page; the reach of 25k locations represents the whole of zero page.
This creates a new possibility: with zero-page, indexed addressing, we
can achieve negative indexing. For this address mode only, we can index
in a downward direction by using index register values such as $FF for
—1, $FE for — 2, and so on.

On Commodore machines, zero page is fairly well occupied. There is
limited opportunity to use zero-page, indexed addressing.



ADDRESS MODES 79

Branching: Relative Address Mode

We have written several branch instructions already; the assembler al-
lowed us to enter the actual addresses to which we want to branch. The
assembler translates it to a different form—the relative address.

o

Relative address means, “branch forward or backwards a certain number
of bytes from this point.” The relative address is one byte, making the
whole instruction two bytes long. Its value is taken as a signed number.

Figure 5.5

A branch instruction with a relative address of $05 would mean, “if the
branch is taken, skip the next 5 bytes.” A branch instruction with a relative
address of $F7 would mean, “if the branch is taken, back up 9 bytes
from where you would otherwise be.” As a signed number, $F7? is equal
to a value of —9q.

We can calculate a branch by performing hexadecimal subtraction; the
“target” address is subtracted from the PC address. If we have a branch
at $0341 that should go to $033C, we would work as follows: $033C
(the target) minus $0343 (the location following the branch instruction)
would give a result of $F9, or minus ?. This is tedious to do, and often
results in mistakes; such mistakes in calculating a branch address are
often fatal to the program run. We are much better off using an assembler
to work out the arithmetic for us.

The longest branches are: $?F, or 127 locations ahead; and $80, or
128 locations back. This poses no difficulties with short programs, such
as the ones we are writing here. But in larger programs, the branch may
not be able to reach far enough. The usual solution to this is to place a
JMP (jump) instruction nearby, which is capable of going anywhere in
memory; JMP uses absolute addressing. The appropriate branch instruc-
tion will go to the JMP, which in turn will take the program to the desired
location.

Advocates of programming style make the following argument. All pro-
grams should be written into neat small modules. Logic blocks should be



80

MACHINE LANGUAGE FOR COMMODORE MACHINES

The

broken into subroutines, and the subroutines into even smaller subrou-
tines; this way, everything is neat and testable. If you should find a branch
that won't reach, ask yourself whether it's time to break your program into
smaller chunks before the logic gets too messy. By the liberal use of
subroutines, you can arrange your code so that all branches are short and
easily within reach. If you do break up the program structure, the branches
will then always reach. It's up to you to choose your coding style, but you
might give the question some thought.

An interesting aspect of relative addressing is that code containing branches
is easy to relocate. A piece of code containing a branch to six locations
ahead will work perfectly if the whole code is moved to a different location.
This is not true of jumps and subroutine calls, or any code using absolute
addressing—if the location changes, the address must be changed.

ROM Link—Jumps in Indirect Mode

We have mentioned the JMP instruction that will take the program to any
specified address. JMP has another address mode: indirect addressing.

Indirect addressing is signaled by the use of parentheses around the
address. It works this way. An address is supplied, but it's not the one we
will eventually use. We take this ‘address, and at the location it specifies,
we'll find the effective address, or the indirect address. The indirect ad-
dress is two bytes long, of course, and is stored in the usual 650x manner
of low byte first.

An example will help to make things clear. Suppose that at address $033C
we have the instruction JMP ($1234). The parentheses tell us that in-
direct addressing is involved. The machine code is hex EC 34 12; as
always, the address is “turned around.” Now suppose that at addresses
$1234 and $1235 we have stored values $24 and $E8. The jump
instruction would behave as follows: it would go to $1234 and $1235,
get the contents, and the program would transfer to address $E824.

-,

INDIRECT
ADDRESS

Figure 5.6



ADDRESS MODES 81

The JMP indirect has a somewhat specialized use. Normally, if we want
to transfer control to some location, we just JMP there; no need for the
indirect step. But there’s one quite important case where indirect jumps
serve an important function.

Within ROM, there are a large amount of permanent instructions that the
computer uses to perform its tasks. Since it's in ROM, we can never change
this code. If the various programs were linked only by means of JMP and
JSR statements, they could not be changed, and we would not be able
to modify the behavior of the machine.

Built into the ROM program, there are a series of carefully planned indirect
jumps. Instead of the ROM leaping from one instruction directly to another,
it jumps indirectly via an address stored in RAM. We can change the
contents of RAM; and if we change the address stored in RAM, we can
modify the behavior of the system. The best-known indirect address is
that associated with the interrupt sequence: it's at $0090 in PET/CBM
and $0314 in VIC, 64, PLUS/4, and C128.

You might not code many indirect jumps, but you'll be glad that they are
there in ROM.

Data From Anywhere: Indirect, Indexed

The problems with indexed addressing have been noted: the reach of only
25k bytes limits the data capability of this method.

Indirect addressing seems to offer a total solution. We can write an in-
struction that points at an indirect address. Since we can change the
indirect address at will, or add to or subtract from it, we can cause our
instruction to deal with data anywhere in memory.

In fact, we get a limitation and a bonus. First, the limitation: for indirect,
indexed instructions the indirect address must be in zero-page—two bytes,
of course, organized low byte first, as always. Next, the bonus: after the
indirect address is obtained, it will be indexed with the Y register to form
the final effective address.

Let’s step our way through the mechanism and see how it works. Suppose
I code LDA ($CO). Y with values $11 in address $00C0 and $22 in
address $00C1L. If the Y register contains a value of 3, the instruction
will follow these steps: The address of $00C0O/1 is extracted, giving
-$2211; then the contents of Y are added to give the effective address
of $2214. If the contents of Y changed, the effective address would



82

MACHINE LANGUAGE FOR COMMODORE MACHINES

change slightly. If the indirect address at $CO and $C1 was changed,
the effective address would change radically.

The combination of indirect and indexing may seem like overkill. If you
can designate any location in memory with an indirect address, why bother
with indexing? After all, anywhere plus one is still anywhere.

Indirect addressing plus indexing proves to be an ideal combination for
the manipulation of data. Aimost all data breaks up into logical chunks of
some sort: records, table entries, screen lines, words, and so on. Here’s
the technique. We position the indirect address at the start of a given
logical data chunk, and use the Y register to scan through the information.
When we're ready to move to the next item, we move the indirect address
along, and repeat the same scanning of the Y register through the new
data.

00 FF
1
I A
1
\ /
INDIRECT, ~=~
INDEXED Y
Figure 5.7

One may think of it as a fishing analogy: We anchor the boat in a certain
spot (fix the indirect address) and then use the fishing line (the Y register)
to reach the data we need. When we're ready for the next item, we pull
up the anchor and move along to a new place.

/—DATA IN MEMORY—\\

NAME, ETC. NAME, ETC. NAME, ETC.
) A} )
A B

Figure 5.8

We’ll be working through an elaborate example that uses indirect, indexed
addressing to manipulate the computer screen. First, a brief diversion.




ADDRESS MODES 83

A Rarity: Indexed, Indirect

$00

There is another addressing mode that is little used in Commodore com-
puters: indexed, indirect. It uses the X register rather than the Y, and is
coded as in the following example: LDA ($C0O, X). In this case, indexing
takes place first. The contents of X are added to the indirect address (in
this case, $C0) to make an effective indirect address. If X were equal to
4 in this example, the effective indirect address would be $00C4, and
the contents of $00C4 and $00CS would be used as the effective
address of the data.

[

INDEXED, INDIRECT ALLOWS ONE OF SEVERAL
INDIRECT ADDRESSES TO BE CHOSEN USING
THE X INDEX REGISTER

Figure 5.9

In certain types of control processing, this is a quite useful address mode.
X will contain an even number; since each indirect address is two bytes
long, we will need to skip from one to the other, two bytes at a time.

Let’s take a hypothetical communications system that is connected to four
telecommunications lines and see how indexed, indirect addressing might
be used. Characters are being received from the four lines almost simul-
taneously. As each character arrives, it must be put away into a memory
buffer belonging to that particular line; in that way, traffic received from
the various sources won't get mixed together. Zero-page will contain four
indirect addresses, one for each line; each indirect address points at an
input area for one line. Suppose a character is received into the A register
from one of the lines; the line number (times two) is in the X register. We



84

MACHINE LANGUAGE FOR COMMODORE MACHINES

could then put the character away with the instruction STA ($&0, X).
Thus, if line zero was involved, its indirect address at address $£0/61
would be used:; for line 1, the address at $&2/63 would be used; and
so on. After we had stored the character concerned, we’d need to bump
the indirect pointer so that the next character will go into a new position:
INC $&0, X would do the trick.

The above example is a rather specialized use of the indexed, indirect
address mode. You may never need to use this mode. Indeed, most
programmers lead full, rich lives without ever writing code that uses in-
dexed, indirect addressing.

The Great Zero-Page Hunt

Indirect, indexed addresses are very important. They are your gateway to
reaching any part of memory from a single instruction. But you must have
two bytes available in zero-page for each indirect address you want to
use.

The Commodore ROM system helps itself to liberal amounts of zero-page
memory. You don’t have much empty space left over. How can you find
space for these indirect pointers?

First, look for unused locations. There are only a few of them: on the VIC
and Commodore 64, you'll find four locations at locations $00FC to $00FF.
That's enough for two indirect addresses.

If you need more, look through the memory maps for locations designed
as “work areas” or “utility pointers.” They can usually be put to work for
a temporary job.

Finally, you can take working parts of zero-page and copy them to some
other parts of memory. You can use these locations, carefully putting back
the original contents before returning to BASIC. Don't try this with any
values that are used by the interrupt routines (involved with screen, key-
board, or RS-232); the interrupt can and does strike while your machine
language program is running. And if the interrupt program changes these
zero-page values, your program is going to behave badly.

Project: Screen Manipulation

This project is intended to show how indirect, indexed addressing can be
used effectively. We’'ll change something on the screen—enough so that

we reach more than 25k addresses. Ordinary indexing, therefore, won't
do.




ADDRESS MODES 85

We'll select a number of lines on the screen; within each line, we'll change
a certain group of characters. In other words, we will write the code so as
to manipulate a window on the screen.

To do this, we'll need to code two steps: setting up the start of a screen
line, and later moving on to the next line when needed. Within each line,
we'll work our way through the range of screen columns that we have
selected. In fact, it’s a big loop (for the lines) containing a small loop (for
the columns within that line). We'll use indirect addressing to point to the
start of each line, and indexing (the Y register) to select the portion of that
line to change.

Since there’s a variety of Commodore machines, we have some problems
to resolve. Except for the C128 in 80-column screen mode, all Commodore
screens are “memory mapped,” that is, the information appearing on the
screen is copied directly from some part of memory. We may change the
screen by changing the appropriate memory. But different machines use
different memory addresses; and in VIC and Commodore 64, the screen
may be moved around. Another thing to consider is that the length of line
varies between different machines—it might be 22 or 40 or 80 columns.

C128 note: Remember to check Appendix E, Exercises for the Commo-
dore 128, for the appropriate coding.

No problem. If you have a 40-column machine, 40 equals $28; code

A 033C LDA #%28

For a 22-column machine, change the above to LDA #$1k; and for an
80-column PET, code LDA #$50.

Have you coded the correct value? Let’s proceed with our next decision.
In the PET/CBM, screen memory starts at address $8000; in VIC or
Commodore 64, the screen starts at whatever page is designated in ad-
dress $0288. Let's code as follows:

PET/CBM: A O33E LDX #%$80
A 0340 NOP
VIC/Commodore 64: A O033E LDX $02488

The NOP instruction does nothing, but it makes the coding the same length
so that we may continue with address $0341 in either case. The A
register tells us our line length, and the X register tells us the page number
on which the screen starts. Let's put them away. The line length will be



86

MACHINE LANGUAGE FOR COMMODORE MACHINES

needed for addition later, so we may put it anywhere safe; the screen
address will be part of an indirect address, so it must go into zero-page.

It's hard to find a zero-page address that may be used in all Commodore
machines; we'll choose $00BB and $00BC. $BB contains the low byte
of the address, of course. Let's code

A 0341 STA $03A0
A 0344 STX $BC

Note that we are using the zero-page addressing mode for the instruction
at address $0344. That puts the high byte of the address in place. Now
we'll set the low byte to zero:

A 0346 LDA #$00
A 0348 STA $BB

Our indirect address is now pointing at the start of screen memory. Let's
discuss in more detail what we want to do with the screen. Specifically,
we want to change a number of lines, let's say 14, on the screen. We
will step along our indirect address by adding to the indirect address:
maybe 22, maybe 40, maybe 80; whatever is in address $03A0. And
we won't do the whole line; we'll start in column S and go to column 18.
Let's count the lines in the X register; we'll start X at zero

A 034A LDX #%00

Now we're ready to do a screen line. Later, we’'ll adjust the indirect address
and come back here to do another line. We should make a note to our-
selves: “Come back to $034C for the next screen line.”

The indirect address is pointing at the start of the line. We want to start
work in column 5. That means that Y should start with an offset of 4 (the
start of the line plus 4). Let’s do it:

A 034C LDY #3504
We're going to walk Y up, and loop back to this point for the next character

" on the line. We might note: “Come back to $034E for the next character.”

We're ready to go. Let's dig out the character that's currently on the screen:
A D34E LDA ($BB),Y

This is worth a review. Locations $BB and $BC contain the address of
the start of screen memory; on the PET/CBM, for example, this would be
$8000. To this, we add the contents of Y (value 4) to create an effective
address of $8004; and from location $8004 we get the screen char-
acter.




ADDRESS MODES 87

We decide that we will leave spaces alone. The space character shows
on the screen as a value of decimal 32, hex 20. Let's skip the next
operation if it's a space:

A 0350 CMP #%20
A 0352 BEQ $035k

We have to guess at the address to which we will skip ahead, since we
haven't gotten there yet. Make a note: “This address may need correction.”

A 0354 EOR #%480

This is where we manipulate the character. The EOR is a “flip-over”
command; we're flipping the high bit of the screen value. You may look
up screen codes to see what this does, or you may wait and see what
happens. At this point, our code from $0352 joins up. As it happens, we
were lucky again: the address is exactly right to rejoin at $0356. But if
it were not, you know how to fix it, don’t you? Exit the assembler, then go
back and type over.

Now we put the modified character back to the screen:
A 0356 STA ($BB),Y

We have done one character. Let's move along the line to the next char-
acter, and if we have passed column 18 (Y =17) we should quit and go
to the next line.

A D358 INY
A 0359 CPY #%12
a 035B BCC $034E

Y moves along to the next character position: five, then six the next time
around, and so on. So long as Y is less than 18 (hex 12) we'll go back,
since BCC means “branch less than.” If we get past this point, we have
completed the line and must move to the next one.

We move to the next line by adding to the indirect address. We must add
22, or 40, or 80; the value is in address $03A0 (you may remember
that we stored it with the instruction at $0341). We must remember to
clear the carry flag before starting the addition, and to add starting at the
low byte of the address (at $BB).

A 035D CLC
A 0O3J5E LDA $BB
A 0360 ADC $03A0



88

MACHINE LANGUAGE FOR COMMODORE MACHINES

A 0363 STA $BB
A 0365 LDA $BC
A 0367 ADC #$00
A 0369 STA $BC

The last three instructions seem odd. Why would we add zero to the
contents of $BC? Surely that changes nothing. The answer is obvious
after a little thought: there might be a carry from the previous addition.

Now we’re ready to count the lines: we had decided to use X as a counter.
Let's add one to X, and test to see whether we have done the 14 lines:

A 03B INX
A 036C CPX #$0E
A O3GE BNE $034C

If we've done the required number of lines, we have nothing more to do
other than return to BASIC:

A 0370 RTS

Disassemble and check it. Again, you'll find that the code occupies more
than one full screen. Return to BASIC.

This time, we’ll write a small BASIC program to exercise the machine
language code. Type NEW to clear out any old BASIC code, and enter

100 FORJ =1 to 10
110 SYS 828

120 FORK = 1 to 200
130 NEXTK,Jd

The extra loop is to slow things down. Machine language runs so fast that
the effect might not be properly visible if run at full speed.

Project for enthusiasts: Can you change the program to do a different
set of columns? Could you change it so that it affected only the letter "' S"
wherever it appeared on the screen?

Comment for VIC-20 and
Commodore 64

This exercise will work as intended. Other types of screen work might call
for you to set the color nybble memory values before you can successfully
work directly with screen memory. The rules for machine language are no
different from those for BASIC: if you wish to POKE to the screen, you
may need to take the color nybble area into account.




ADDRESS MODES 89

Things You Have Learned

—Three address modes are not addresses at all. Implied addressing means
no address at all; accumulator addressing uses the A register and means
the same thing; and immediate addressing uses a value, not an address.

—Absolute addresses reference one location only, somewhere in memory.
Zero-page addresses reference a single address in the range $0000 to
$00FF—the high byte of the address (00) is the memory page. These
address modes are used for fixed locations containing work values or system
interfaces.

—Absolute, indexed and zero-page, indexed allows the named address to be
adjusted by the contents of an index register—X or Y. These instructions can
reach a range of up to 25k addresses. They are commonly used for tables
of data or temporary storage areas.

—Relative addresses are used exclusively with branch instructions. They have
a limited “reach” of about 1,27 locations forward or backward. It takes a little
arithmetic to calculate the proper values, but the computer usually works this
out for us.

—iIndirect addressing is used only for jumps, most often to allow a fixed ROM
program to take a variable jump. The average machine language programmer
will seldom need these, but the principle of indirect addressing is worth learning.

—lIndirect, indexed addressing is the most important way to deal with data
anywhere in memory. We may reach anywhere by setting the indirect address,
then we may “fine adjust” that address by indexing it with the contents of Y.

-—Indirect, indexed addressing requires the indirect address to be in zero-page.
We need to conserve zero-page locations for this use.

—An addressing mode called indexed, indirect is rarely used when program-

ming Commodore computers, but it's there if you want it.

Questions and Projects

Write a program to clear the screen of your computer—check Appendix
C for the location of screen memory if you've forgotten. Don't just print
the clear screen character ($93); do it another way. Can you write the
entire program without using indirect, indexed addressing?

Write the program again using indirect, indexed addressing. The program
may be a little shorter. Can you think of any other advantages of writing
this way?

A user wishes to type in a line of text on the keyboard, ending witha RETURN.
He then wants to have the program repeat the line ten times on the screen.
What addressing mode or modes would you use to handle the user's text?
Why? You may try your hand at writing the program if you wish.

Take one of the previous exercises and try to write it again without using
immediate addressing. Is it hard to do? Can you see any reason to want
to code without using immediate addressing at all?






Linking
BASIC and
Machine
Language

This chapter discusses:

® Where to put a machine language program
® BASIC memory layout

® Loading and the SOV pointer

® BASIC variables: fixed, floating and string
® Exchanging data with BASIC

91



92

MACHINE LANGUAGE FOR COMMODORE MACHINES

Siting the Program

Up to this point, we have been placing all programs in the cassette buffer.
This is a good place for short test programs, but we need to examine
alternatives that are often more attractive.

BASIC Memory Layout

C128 and B-128 note: These two machines keep variables in a separate
memory bank from that in which the BASIC program is held. Some of the
considerations described below—especially regarding dangers with the
Start-of-Variables pointer—don’t apply. For C128 details, check Appendix
E, under Exercises for the Commodore 128.

BASIC RAM is organized according to the diagram below. The following
locations are of particular interest:

1.

2.

Below the BASIC area, we have the cassette buffer area. This is available
to us, providing we are not engaged in input/output activity.

Start-of-BASIC (SOB) is usually a fixed address within the machine. In PET/
CBM, it's at $0401 (decimal 1025). In Commodore 64, it's at $080L
(decimal 2049). In the PLUS/4 series, it's at $1001 (decimal 4097). In
the VIC-20, it may be at one of several places: $0401, $1001,0r $1201.
A pointer marks this location. The pointer is located at $28/$29 (decimal
40 and 41) in PET/CBM, and at $2B/$2C (decimal 43 and 44), in VIC-
20, Commodore 64, and PLUS/4.

You should inspect the pointer and confirm that it contains an appropriate
address. You may notice that it's much easier to do this using the machine
language monitor, since the address is split between the two bytes (low order
first, as always).

. End-of-BASIC is signaled by three zero bytes somewhere after the SOB. If

you command NEW in BASIC, you'll find the three bytes right at the start of
BASIC; there is no program, so start and end are together. There is no
pointer that indicates end-of-BASIC, just the three zeros; but the next location
(SOV) will often be directly behind the end-of-BASIC

BASIC RAM

A
[ A

CASSETTE 0 BASIC |0 0 BASIC BASIC DYNAMIC
BUFFER

PROGRAM | @ 5| vARIABLES | ARRAYS |FREE| STRINGS

i oo b

soB Sov SOA EOA BOS TOM

Figure 6.1



LINKING BASIC AND MACHINE LANGUAGE 93

The BASIC program that you type in will occupy memory space from start-
of-BASIC to end-of-BASIC. If you add lines to a program, end-of-BASIC will
move up as extra memory is taken up by your programs. If you delete lines,
end-of-BASIC will move down.

4. Start-of-variables (SOV) is often positioned directly behind the end-of-BASIC.
When the BASIC program runs, the variables will be written into memory
starting at this point; each variable is exactly seven bytes long. A pointer
marks this location. The pointer is located at $2A/$2B (decimal 42 and
43) in PET/CBM, and at $2D/$2E (decimal 45 and 4E) in VIC-20, Com-
modore 64, and PLUS/4.

The SOV pointer is extremely important during BASIC load and save activ-
ities. If we give the BASIC command SAVE in direct mode, the computer
will automatically save all memory from SOB to just before the SOV. Thus,
it saves the whole BASIC program, including the end-of-BASIC marker of
three zero bytes, but does not save any variables. If we give the BASIC
command LOAD in direct mode, the computer will automatically load the
program, and thien place the SOV pointer to just behind the last byte loaded.
In this way, variables will never be stored over the BASIC program; they will
be written above the end-of-BASIC. More on this later.

If the BASIC program is changed, the SOV may move up or down as needed.

5. Start-of-arrays (SOA) also represents one location beyond the end-of-BASIC
variables, and thus could be named end-of-variables. Arrays created by the
BASIC program, either by use of a DI M statement or by default dimensioning,
will occupy memory starting at this point. A pointer marks this location. The
pointer is located at $2C/$2D (decimal 44 and 45S) in PET/CBM, and at
$2F/$30 (decimal 47 and 48) in VIC-20, Commodore 64, and PLUS/4.
If the BASIC program is changed, the SOA pointer is set to match the SOV.
Thus, all BASIC variables are wiped out the moment a change is made to
the program.

6. End-of-arrays (EOR) is set one location beyond the last array location in
BASIC. Above this point is seemingly “free” memory—but it's not really free,
as we'll see soon. A pointer marks this location. The pointer is located at
$E/$2F (decimal 4k and 47) in PET/CBM, and at $31/$32 (decimal
49 and 50) in VIC-20, Commodore 64, and PLUS/4.

If the BASIC program is changed, the EOA pointer is set to match the SOA
and SOV. Thus, all BASIC arrays are wiped out the moment a change is
made to the BASIC program.

Let's change direction and start to work our way down from the top of BASIC
memory.

7. Top-of-memory (TOM ) is set one location beyond the last byte available to
BASIC. On the PET/CBM and VIC-20, its location depends on the amount
of memory fitted; a 32K PET would locate TOM at $8000. On the Com-



94

MACHINE LANGUAGE FOR COMMODORE MACHINES

modore 64, the TOM will normally be located at $A000. A pointer marks
this location. The pointer is located at $34/$35 (decimal 52 and
53) in PET/CBM, and at $37/$38 (decimal 55 and 5E) in VIC-20, Com-
modore 64, and PLUS/4.

If you examine the TOM pointer, you may find that it does not point at the
expected position. That may be because of the machine language monitor,
which has taken up residence at the top of memory and stolen away some
memory.

8. Bottom-of-strings, (BOS) is set to the last “dynamic” string that has been
created. If there are no BASIC strings, the BOS will be set to the same
address as TOM. As new dynamic strings are created, this pointer moves
down from the top-of-memory towards the EOR address. A pointer marks
this location. The pointer is located at $30/$31 (decimal 48 and 49) in
PET/CBM, and at $33/$34 (decimal 51 and 52) in VIC-20, Commodore
64, and PLUS/4.

A dynamic string is one that cannot be used directly from the program
where it is defined; you might like to think of it as a manufactured string.
If, within a BASIC program, | type: 100 X$="HAPPY NEW YEAR",
the BASIC interpreter will not need to store the string in upper memory;
it will use the string directly from where it lies within the program. On the
other hand, if | define strings with commands such as R =R$ + "' *" or
INPUT N$, the strings must be built into some spare part of memory.
That's where the BOS pointer comes in: the computed string is placed
high in memory, and the BOS moved down to mark the next free place.

If the BASIC program is changed, the BOS pointer is set to match the
TOM. Thus, all strings are wiped out the moment a change is made to
the BASIC program.

Free Memory: The Dangerous Place

It seems to beginners that there is a great deal of free memory available
above the end-of-arrays and below the bottom-of-strings, and that this
would be an ideal place to put a machine language program. This is a
pitfall: it usually won’t work.

Here’s the danger. As more and more dynamic strings are created, the
bottom-of-strings location keeps moving down. Even when strings are no
longer needed, they are abandoned and left dead in memory, taking up
space.

The BOS keeps moving down. Only when it touches the EOR will the
dead strings be cleaned up and the good ones repacked, an action called
garbage collection. It's important for BASIC programmers to know about



LINKING BASIC AND MACHINE LANGUAGE 95

garbage collection: except on BASIC 4.0 and Commodore PLUS/4 sys-
tems, it can be a cause of serious program slowdown.

It's evident that the space between EOA and BOS is not safe. If you put

a program there, the strings will eventually destroy it. We must look else-
where.

Where to Put Your ML Program

First, you may put your program in the cassette buffer. Providing you are
not performing input/output activity, your program will be safe. Your space
here is limited to 190 characters or so.

SOB Sov SOA EOA BOS TOM

CASSETTE / .
BUFFER / BAS'C ..... VAR ARH e STR

—

Figure 6.2

Second, move down the top-of-memory pointer and place the program in
the space that has been freed. Your spdce here is unlimited. Programs
placed here will take up permanent residence until the power is turned
off. Many monitors, such as Supermon, live here.

SOB sov SOA EOA BOS NEW OLD
| | | | | TomTom
cB. 7/
Figure 6.3
SOB OLD NEW SOA EOA BOS TOM
SOV Ssov ]
1 |
C.B. ¢¢¢7//
Figure 6.4

Third, move up the start-of-variables pointer, and place the program after
the end of BASIC and before the new start-of-variables. Your space here



96

MACHINE LANGUAGE FOR COMMODORE MACHINES

is unlimited. Programs placed here will tend to “join company” with the
BASIC program; the two will save and load together.

After moving a pointer—as was done in the last two methods—it's a good
idea to return to BASIC and command CLR, so that all other variable
pointers will align correctly with the ones that have moved.

These three areas will be discussed more in a few moments. First, there
are one or two extra locations available to VIC-20 and Commodore 64.

Extras for VIC and Commodore 64

The Commodore 64 has a free block of RAM at locations $C0O00 to
$CFFF (decimal 49152 to 53247). That's 4K of RAM not being used;
you may write your programs there. Before you do so, check to make sure
that the memory is not being used by any other programs. It's a popular
place in the Commodore 64, and many utilities and commercial programs
zero in on this available memory.

If you intend to write programs entirely in machine language, with no BASIC
content at all, you may completely remove BASIC from the Commodore
64 system and claim the space as available RAM. This gives you the
whole block from $0801 up to $CFFF for programs and data—a whop-
ping 50K—and even more could be liberated if necessary. BASIC may
be made to disappear from the Commodore 64 with the equivalent of
POKE 1,54 (LDA #%$3k, STA $01). It may be reinstated with the
equivalent of POKE 1, 55 (LDA #%$37, STA$0L). Be very careful.
With BASIC gone, the computer doesn’t even know how to say READY.

On all Commodore machines it's possible to move up the start-of-BASIC
pointer and use the space freed below. To do so, it's essential to store a
value of zero into the location immediately before the new start-of-BASIC,
and to align all other pointers, usually by going to BASIC and commanding
NEW.

This works, and will make as much space available as is needed. BASIC
programs will relocate as they load. But since the computer needs to be
reconfigured before the main program is loaded, and often needs to be
restored to its original configuration after the program is run, the method
is not popular in most Commodore machines. It's used fairly often in the
VIC-20, however.

The video chip in the VIC-20 can “see” RAM memory only in the memory
space $0000 to $LFFF (decimal O to 8191). Whatever variable in-
formation appears on the screen must be taken from this memory area.



LINKING BASIC AND MACHINE LANGUAGE 97

The VIC-20 can also get information from $8000 to $9FFF, but there's
no RAM there; we can’'t manipulate this memory area.

If we want to perform special visual effects on the VIC-20, we must ma-
nipulate datainthe area $00001to $LFFF. Let's look at what is available.
$0000 to $D3FF is used by the “system;” other than the cassette
buffer, we must leave it alone. $0400 to $OFFF contains no memory
unless a 3K RAM expansion is added. $1000 to $1DFF contains the
BASIC program, and $1EQ00 to $1LFFF is screen memory. Details may
vary, but the answer always comes out the same: there’s no space to do
our video effects.

A popular VIC-20 solution, especially where 8K or more of RAM expansion
has been added, is to increase the start-of-BASIC pointer, thus liberating
space in low memory. This may now be used for visual effects and for
machine language programming, too, if any space is left over. In the VIC-
20, this approach is necessary, but it's still a bit clumsy.

The Wicked SOV

The start-of-variables pointer can be the cause of many troubles, if it's not
understood. The rules covering it are as follows:

1. Variables are written starting at the SOV.

2. BASIC SAVEs will save from memory beginning at start-of-BASIC and stop-
ping at SOV.

3. Direct command BASIC LOADs will bring a program into memory, relocating
if appropriate, and then set the SOV pointer to the location following the last
byte loaded.

4. Changes to BASIC programs cause memory to be moved—up or down—
starting from the point where the change is made and stopping at the SOV.
The SOV will then be moved the appropriate distance up or down.

These seem to be innocent rules. Rule 1 defines the purpose of the SOV.
Rule 2 shows how the SOV controls the SAVE command so that the
entire BASIC program is saved, but not the variables. Rule 3 arranges
that short programs will have a large amount of variable space available;
long ones will have less. Rule 4 ensures that a BASIC change makes
extra room in memory or reclaims memory space.

But if the SOV gets the wrong address, we're in trouble. The rules work
against us. Variables may be written into disastrous places. SAVEs will
cause too much or too little to be saved. LOADs may fix things, since
SOV will be changed by the load action. An attempt to change a program
with a bad SOV may cause too little or far too much memory to be moved
around. We must get the SOV right.



98

MACHINE LANGUAGE FOR COMMODORE MACHINES

How can the SOV go bad onus? Let's take three examples, corresponding
to the three major places that we might put machine language programs:

We have a program in the cassette buffer, and a BASIC program that
goes with it. We enter or load the BASIC program (the SOV is all right so
far), and then we LOAD the machine language program; the SOV ends
up disastrously somewhere in the cassette buffer area.

We're in trouble. The program seems to list correctly, but it's sick. If we
RUN, variables will start to be placed in the cassette buffer area; as more
variables are created, they are placed in progressively higher memory
locations. Eventually, the variables start to write over the BASIC program.
Everything stops. The poor programmer says LIST to see what’s hap-
pened; his BASIC program is gone, and all that’s left is gibberish.

We're in more trouble. Alternatively, the programmer decides to save his
BASIC program and commands SAVE. BASIC starts to save memory
beginning at start-of-BASIC . . . and keeps saving, and saving, and saving.
It won’t stop until it reaches the SOV, but that's below where we started.
We won't get there until the address “wraps around” and comes back up
through zero. The poor programmer—if he or she waits long enough—
discovers that the tiny five-line BASIC program has been saved as over
250 blocks on disk, or fifteen minutes worth of tape. And the saved
program is useless.

We're in still more trouble. Alternatively, the programmer lists the program,
and decides to delete one character from a line of BASIC. BASIC im-
mediately starts to move memory, starting at the change point. It won't
stop moving memory until it reaches SOV, but that, again, is below where
we started. It will move everything that can be moved. RRM will be moved
along, which may not hurt anything; then the IA chips will be moved,
which may scramble colors or make the display go crazy; then it will try
to move ROM, which won’t work because ROM can’t be changed; then it
will wrap around to zero-page and move everything there, which is fatal
to the system. Eventually, it will collapse before reaching SOV since it
destroys its own working pointers.

All this could have been avoided if the programmer had loaded the machine
language program first, and then loaded the BASIC program. The SOV
would be placed behind the BASIC program, which is where it belongs in
this case.

Quiet Interlude

It's easy to see how the problem occurs, once you understand about the
SOV and its role. But if you don’t understand the SOV, the results can



LINKING BASIC AND MACHINE LANGUAGE 99

shake your self-confidence. Many programmers have given up on machine
language because of a bad experience with SOV .

It works this way. The student writes a perfect program into the cassette
buffer and saves it using the machine language monitor. Later, with a
BASIC program in place, the student recalls the program and inadvertently
moves SOV to an impossible location. When BASIC runs, the variables
will start to be written behind the machine language program, ahead of
the BASIC program. As more and more variables come into play, they
creep relentlessly toward the BASIC coding.

Our eager student—with a perfect machine language program and a per-
fect BASIC program—now decides to say RUN. The BASIC program runs
for a while, and then grinds to a halt, usually with a crazy screen or reporting
an error in a nonexistent line. We know what's happened, of course: the
variables have started to write over the BASIC program. But our unfor-
tunate student doesn’t know that. The command LIST is entered, and
out comes nonsense.

What goes through the programmer’s mind at this time? “I was so sure
that the program is correct [in fact, it is]; but it's so bad that it's destroyed
memory! | suppose that machine language is much more difficult than |
thought.”

And the student loses hope and gives up, not knowing that there’s only
one small piece of information needed to fix everything up. This is only
one of the things that might go wrong when the SOV pointer is improperly
placed; even an attempt to change or save a BASIC program can cause
system failure.

Such experiences destroy confidence. They are responsible for the myth
that machine language is hard and only super-clever programmers can
cope with it.

The Machine Language Monitor SAVE

Now that we’re becoming aware of the SOV pitfall, we're ready to discuss
how to save a program in machine language. You probably understand
why I've been delaying this command until this time. The MLM save com-
mand typically goes

S "PROGRAM",01,033C,0361

This would be the tape format. The command is S and is followed 'by
the program name. The device is tape, so we type 01—be sure to give
two digits. Next comes the beginning address (in the example $033C)



100

MACHINE LANGUAGE FOR COMMODORE MACHINES

followed by the end address plus one. In the example, the last location
saved will be $03&0. For disk saves, we might want to add the drive
number:

S"0:PROGRAM", 08, 033C, 03bY

These programs, once saved, may be loaded directly from BASIC, but
watch the SOV carefully. VIC-20 and Commodore 64 BASIC LOAD com-
mands should contain the extra field to defeat relocation: LOAD "PRO-
GRAM", 8, 1 will insist that the program load back into the same memory
locations from which it was saved.

More on LOAD

There is a machine language L command to do a program load without
changing any pointer (especially SOV). There are a number of different
machine language monitors around, and the L command does not work
the same way on all of them. You might check out the one you are using:
ideally, the L. command (format: L "PROGRAM", 01) should bring back
the program without relocation.

The L command is of limited value. A program user often cannot be
expected to load up a machine language monitor and use it to go through
a L load sequence. The program should take care of things for the user.

We have been careful to say that the BASIC LOAD command changes
the SOV when given as a direct command. If a LOAD command is given
from within a program, SOV is not changed; but there’s a new item to be
taken care of.

Programmed LOAD has been carefully designed to perform a function
called “chaining.” That's a BASIC technique, and not within the scope of
this book. Chaining, however, has two important characteristics:

1. No pointers are affected. The program will not lose any variables when it
performs a LOAD. That's good: we will not lose any of our computations.

2. Once a LOAD is complete, the BASIC program will resume execution at the
first statement. It will not continue from where it left off; it will go back to the

beginning. For our application, that's bad; we seem to have lost our place
in BASIC.

If we understand the problem that item 2 creates, we can easily fix it by
using item 1. Here's an example to illustrate the problem: we have a
program on disk written for the cassette buffer called "ML", and we want
to have a BASIC program bring it in. We could code as a first line: 100
LOAD "ML" , 8&—but we'd have a problem. First, the program would load




LINKING BASIC AND MACHINE LANGUAGE 101

ML. Then it would go back to the beginning and load ML. Then it would
go back to the beginning . . . and so on. This is not satisfactory. Let's use
rule 1 to fix everything:

100 IFA=1 GOTO 130
110 A=1

120 LOAD "ML",8,1
130 ... continues

When we say RUN, the first line is executed. B is not equal to one, so
we continue on line 110. A is set to one, and line 120 causes a load
of the desired program. BASIC goes back to the beginning, but all variables
are preserved, so A is still equal to 1. Line 100 tests A and goes to line
130, the next statement beyond the load. Everything works as required.
If there are multiple LOADSs, line 1,00 might be changed to 100 ON A
GOTO 130,150,170 . . . as necessary.

Caution: we are discussing the programmed LOAD command only in the
context of loading machine language modules. If you want to have a
program load in another BASIC program (chaining or loading) the above
rules still apply but may need to be used differently.

Other SOV Blunders

We have discussed the horrible results of loading a machine language
program into the cassette buffer (using a direct command) after BASIC
has been loaded. By now, we should have learned to avoid making this
mistake. What about programs stored in other areas, such as high memory
or after BASIC?

Suppose we want to place a program into high memory, either by moving
the top-of-memory pointer down to make room, or by using the spare RAM
at $C000 to $CFFF of the Commodore 64. We also have a BASIC
program to load. Will loading in the wrong order harm SOV ?

The answer is yes, although the problem is not so severe. You can see
that after loading a program to high memory using a direct command,
SOV will be positioned immediately above it. But that's too high—there’s
no room for variables and we’ll get an OUT OF MEMORY error for almost
anything we do.

Obviously, we can't leave SOV in the upper stratosphere. We must load
the high memory first, and then the BASIC program. The second load will
straighten out the SOV pointer. If you try this, you'll find that it is necessary
to fix up the top-of-memory pointer and command NEW between the two



102 MACHINE LANGUAGE FOR COMMODORE MACHINES

loads; you cannot even give the next LOAD command if you're apparently
totally out of memory.

Review: Fixing Pointers

If in doubt, examine the pointers by displaying them with a M command.
For VIC/64/PLUS/4, the command would be M 002B 0O03A; with
PET/CBM, use M 0028 0037; in either case, be sure that the start-
of-variables pointer is set to a “sound” value.

As always, you can change an incorrect memory value—in this case, an
incorrect vector—by moving the cursor back, typing over the values to be
changed, and pressing RETURN.

After End-of-BASIC—Harmony

Suppose we place the machine language program behind the end-of-
BASIC—that's the three zeros in memory—and move up the SOV so that
variables won't disturb this program. How will everything work now?

Things will work very well indeed. This time, we need to load our BASIC
program first; the SOV will go immediately behind BASIC. Then we may
load our machine language program, and the SOV moves right behind it.
The SOV is in exactly the right place, assuming we load in the right order.
(If we don't, the variables will destroy our machine language program.)

Once our two programs are together, and we say SAVE, the combination
program—BASIC and machine language together—will be saved. A little
thought will reveal that memory from start-of-BASIC to just before start-
of-variables contains everything we need. A subsequent load will bring
everything back in, and position SOV to exactly the right place. We now
have a “unit” program—BASIC and machine language working together,
loading and saving as one program.

There’s one small problem in this arrangement. Once we have married
the BASIC and machine language programs, we must not change the
BASIC program. If we added to or subtracted from this program, the
machine language program would move up or down—the relocation of
memory goes right up to SOV. The program might not be able to work in
the new place, and, of course, our SYS commands would be wrong.

BASIC Variables

There are four types of entry in the BASIC variable table. All variables,
regardless of type, occupy seven bytes; the first two bytes are the name,




LINKING BASIC AND MACHINE LANGUAGE 103

and the remaining five bytes (not always fully used) contain the value or
definition. The variable type is signaled as part of the name: high bits are
set over one or both letters of the name to signal a specific type.

SOV SOA

EACH VARIABLE IS EXACTLY 7 BYTES LONG.
VARIABLES APPEAR IN THE ORDER IN
WHICH THEY ARE USED.

Figure 6.5

For example, if a floating point variable had a name AB, the name would
be stored in the two bytes as $41, $42—the ASCII codes for A and B.
The same would be true if the variable were named ABACUS, since only
the first two letters of the name are kept. In contrast, if the variable were
named AB%, meaning that it was an integer variable, the name would be
stored as $C1, $C2. The ASCII codes are the same, but the high bit
has been set over them. To complete the picture, a string variable named
ABS$ would be coded with the name $41, $Cc2—the high bit is set over
the second character only.

HIGH BIT SET FOR INTEGER VARIABLES AND FUNCTIONS
rHIGH BIT SET FOR INTEGER AND STRING VARIABLES

NAME VALUE
2 BYTES 5 BYTES
1 1 | 1 1
Figure 6.6

There’s a fourth type of entry that can go into the variable table, but it's
not a variable: it's a function definition. If we give the variable command
DEF FNA (... anentry will be made in this table. It will be distinguished
by the high bit being set over the first character only.

String variables use only three of the five bytes provided; the first byte
signals the length of the string, and the next two bytes give the string’s
address. This group of three bytes is called a descriptor.



104

MACHINE LANGUAGE FOR COMMODORE MACHINES

There are two types of numeric variables: floating point and integer. Float-
ing point variables use all five bytes; integer variables use the first two
bytes only. It's possible to extract the value from a floating point variable
and put it to work, but it's not a simple procedure. A description of how
to do this is given in Appendix F. In contrast, it's quite easy to take the
value from an integer variable and use it.

Let's try an example. Type NEW, followed by A=5= :B%Z =5. This cre-
ates two different variables: A and BZ. Now go to the machine language
monitor. The variables should be near the start-of-BASIC, but if you wish
you can find their exact address by examining the SOV pointer ($2A8/
$2B on PET/CBM, or $2D/$2E on VIC, Commodore 64 or PLUS/4). On
the Commodore 64, we might find that the variables start at $0803; to
display both of them, we type M 0803 0810. We see the floating
point variable, A:

41 00 63 20 00 OO GO

The first two bytes are the name—$41 is ASCIl for A, and the zero
signifies no second letter—but where’s the 5? Embedded within the 83
20 00 00 00, that's where; and it's a good deal of work to extract the
S for further processing.

Behind this variable, we see the integer variable, B:
c2 800005000000

Hex C2 is the ASCII for the letter B ( $42 ) with the high bit set. $80 is
zero with the high bit set—again, there’s no second letter. The value is
in the next two bytes, and it's easy to read. The last three bytes are not
used.

Which is easier for machine language to interface with? Obviously, the
integer variable. It's often quite suitable for the program work at hand:
counting characters, setting pointers, and similar tasks.

Exchanging Data: BASIC and Machine
Language

If BASIC and machine language wish to pass data back and forth, there
are several approaches. Perhaps the simplest is to have BASIC POKE
the values into a given location, and machine language load them as
needed; in the opposite direction, machine language will store the values
and BASIC will PEEK them.

Another method is more sophisticated. BASIC variables are stored in




LINKING BASIC AND MACHINE LANGUAGE 105

memory: why can’t a machine language program go after the variables
exactly where they lie and extract their value or change them? It sounds
like a good idea.

By now, we know how to ask machine language to search for a specific
BASIC variable. Given the name, we can get the address of the first
variable from the SOV pointer and store it as an indirect address. Using
indirect, indexed addressing and stepping the Y register from 0 to 1 we
can see if the name matches. If not, we add seven to the indirect address
to take us to the next variable. If it does match, our indirect address is set
up at the start of the variable; we canset Yto2, 3, 4, 5, and & and
extract the whole value. If the variable is type integer, we need only extract
the first two bytes (Y = 2 and 3). If the variable is not in the variable table,
we'll step our indirect address until it matches the start-of-arrays; at that
point, we know that we have missed the variable.

For a small number of variables, there’s a short cut. Variables are placed
into the variable table in the order in which they are defined: whichever
variable is defined first in the BASIC program will be first in the variable
table. So if we arrange for our variables to be defined in a certain order,
we can streamline our machine language search to “first variable,” “sec-
ond variable,” and so on, with no need to examine the names.

Let’s take this one step further. If we want to use the first variable, all we
need to have is the address of the first variable somewhere in zero-page
so that we may use it as an indirect address. We already have that ad-
dress—it's the SOV, the start-of-variables, and it's there pointing helpfully
at the first variable for us. By increasing the value of Y appropriately, we
can reach beyond the first variable and into the second or, for that matter,
the third or the thirty-sixth.

Project: We plan to place the machine language program behind the end-
of-BASIC. This will vary, depending on the machine being used. The
following code shows the correct addresses for the Commodore 64. Refer
to Appendix E for other machines.

C128 note: Remember to check Appendix E, under Exercises for the
Commodore 128, for the appropriate coding. There's a lot here on how
to dig out information from another memory bank.

First, let's do our BASIC coding to estimate its size. We need to guess at
the location of the end-of-BASIC so as to place our machine language
program. This program will ask machine language to take a value, V%,
and multiply it by ten. Remember to say NEW. We write the BASIC program
as follows:



106

MACHINE LANGUAGE FOR COMMODORE MACHINES

- 100 vZ=0

110 FOR J=1 TO §

120 INPUT "VALUE";VZ

130 SYS ++++

140 PRINT "TIMES TEN =";VZ%
150 NEXT J

It seems likely that our BASIC program will occupy less than 127 bytes.
We may check this later, but it seems safe to plan to start our machine
language program at around 2049+ 127,0r 21 7E (hexadecimal 680).
On that basis, we may change line 130 to SYS 217k. Do not try to run
the program yet.

At this point, we could save the BASIC program to tape or disk and develop
the machine language program. This would allow us to refine each of the
two parts independently. For the sake of brevity—and because our ex-
ample is an easy one and won't need touching up—we’ll write the machine
code directly into memory.

Switch into the machine language monitor. Assemble the following code:

0880 LDY #$02
08Aa2 LDA ($2D), Y
0884 STA $033C
0a&? STA $03I3E
088A LDY #$03
088C LDA ($2D), Y
08BE STA $033D
0891 STA $033F

Lo 2

We have now extracted two bytes from the first variable, V%. The high
byte has been stored at both $033C and $033E; we'll see why in a
moment. The low byte of the value has gone to $033D and $033F.

Project for enthusiasts: You might be able to code the above more com-
pactly by more effective use of indexing.

A 0894 ASL $033D
A 0897 ROL $033C
A 069A ASL $033D
A 089D ROL $033C

We have multiplied the contents of $033D/$033C by two, and then we
have multiplied it by two again. These locations now contain the original
value times four. Note that we ASL the low byte and then ROL the high




LINKING BASIC AND MACHINE LANGUAGE 107

byte. Perhaps we should be checking for overflow; but let'’s trust the num-
ber to be within range for now.

Since we have the original number times four in $033D/$033C, we can
add it to the original number in $033F/$033E to get the original number

times five:

A 08A0 CLC

A D0A8A1 LDA $033D
A 08AR4 ADC $033F
A 08A7 STA $033D
A 08AA LDA $033C
A 08AD ADC $O033E
A 08BO STA $033C

Now locations $033C/$033D contain the original number times five. If
we double the number one last time, we'll have the value times ten:

A 08B3 ASL $033D
A 08BE ROL $033C

\
We have multiplied the number by ten. Now let’s put it back into the variéble

08B9 LDY #$02
08BB LDA $033C
O08BE STA ($2D),Y
0acO LDY #$03
O0ac2 LDA $033D
08CS STA ($2D),Y
0AC? RTS

o

The numbers go back exactly the same way we drew them out. We must
be careful to keep the high and low bytes correct. Integer variables have
the high-order byte first, followed by the low-order byte; this is exactly the
reverse of the way we use 650x addresses.

We must perform one more task before wrapping up the program. We
must change the start-of-variables pointer to a location above the machine
language program. That would be $08C8, and so we display the SOV
pointer with M 002D 0OOZ2E and change the pointer to

:002bCalid .. .. 0. e ...

Check . .. disassemble . .. and then back to BASIC. List, and you'l
see your BASIC program again. There’s no sign of the machine language
program, of course, but SAVE will now save everything together.



108

MACHINE LANGUAGE FOR COMMODORE MACHINES

RUN the BASIC program. Enter numbers as requested. Confirm that they
are multiplied by ten.

You may recall that our machine language program does not check for
overflow. RUN the program again, and see if you can find the highest
number that can be multiplied by ten without error. What happens at time
of overflow? Is it what you expected?

Project for enthusiasts: Can you add checks for overflow to the above
program? You must decide what to do if overflow occurs: print a message;
set the value to zero; or whatever you decide. But you shouldn’t stop the
program or break to the monitor. Such a thing would upset the program
user. Your program will be longer. Don't forget, therefore, to change the
SOV pointer at $2D/$2E so that your program is safe from variables

Things You Have Learned

—Small machine language programs can be conveniently written and checked
-out in the cassette buffer. We have been doing this during the exercises. This
area is not satisfactory for large programs, or programs we want to save on
tape.

—Programs can take up semi-permanent residence near the top-of-BASIC
memory; the top-of-memory pointer needs to be moved down to protect it.
These programs often need a separate “setup” to place them.

—Programs can be placed behind the end-of-BASIC, which is marked by three
consecutive zero bytes in memory. The start-of-variables pointer must be
increased so that variables don’t write over the program. Care must be taken
not to change the BASIC program after this is done.

—The VIC-20 frequently has the start-of-BASIC moved up to make room for
video information in lower memory. As long as we’re moving this pointer, we
might move it a little further and make room for some machine code.

—The Commodore 64 has an unused block of RAM at addresses $C000 to
$CFFF; check to see that no other programs are using this area.

—The start-of-variables pointer is intimately tied in with BASIC’'s SAVE and
LOAD commands. It is extremely important to ensure that any LOAD se-
quence leaves this pointer in a safe place, so that variables cannot write over
program code and thus cause program destruction.

—Machine language monitor S (save) and L (load) commands can be used
for staging programs in various parts of memory. Again, great care should
be taken to ensure that the pointers are sound after the use of such instruc-
tions.

—A BASIC program may contain LORD commands that will bring in any of the
following: a different BASIC program, a machine language program, or data.
Again, careful handling is needed.



LINKING BASIC AND MACHINE LANGUAGE 109

—BASIC variables are of three major types: integer, real (floating point), and
string. Machine language programs are capable of reading and using any of
them; in particular, integer variables are quite straightforward.

—If we want, we can simplify the task of searching for BASIC variables by
deliberately creating them in a certain sequence.

Questions and Projects

Write a simple BASIC and machine language program set that allows
BASIC to input a number less than 25k; POKE it somewhere in memory;
call machine language that will divide the number by two; PEEK it back
and print it.

A program that brings in other programs is called a “boot,” or, more
accurately, a bootstrap program. Write a simple BASIC boot program to
bring in a previous program exercise that was located in a cassette buffer
(say, the program from Chapter 2 that printed HELLO), and then call it
with a SYS.

Bootstrap programs are especially popular with VIC, Commodore 64, and
PLUS/4 for bringing in chunks of data such as sprites, new character sets,
or whole display screens of information. You might like to try your hand
at setting up such a system.

Try your hand at this. | have a BASIC program that reads

100 X=5
110SYS ...
L120PRINTA

Write the machine language to be called by the SYS so that it changes
the name of the variable X to A. Caution: this may be fun, but it's dangerous
in real programs since you may end up with two variables that have the
same name.






Stack, USR,
Interrupt,
and Wedge

This chapter discusses:

® The stack for temporary storage
® USR: an alternative to SYS

® Interrupts: IRQ, NMI, and BRK
® The IA chips: PIA and VIA

® Infiltrating BASIC: the wedge

111



112 MACHINE LANGUAGE FOR COMMODORE MACHINES

A Brief Intermission

If you have been following along and performing the various projects, you
should know a great deal about the principles of machine language. You
should be capable of trying your hand at a number of small projects, and
investigating areas that may be of special interest.

This is a good time to stop and take stock. The remaining chapters are
“icing on the cake” . .. they give extra detail and fine tuning on aspects
of machine Ianguage If you feel uncertain about any material covered so
far, go back. Fix the fundamentals firmly in focus before you proceed and
plunge into ponderous points of interest.

Temporary Storage: The Stack

The stack is a convenient place to put temporary information. It works like
a stack of documents: you may drop (or “push”) an item onto the stack;
when you take an item back again (or “pull”), you'll get the last one that

_ you put there. Formally, it's called a last-in, first-out (LIFO) discipline; it's
natural and easy to understand.

The important rule to keep in mind about the stack is: “Leave these prem-
ises as clean as when you found them.” In other words, if you push three
items onto the stack, be sure you pull those three items back off again.
Don’t ever branch away and leave the stack littered.

The stack is in memory at page 1. The stack pointer (SP) is one of the
items displayed in the register. To look for the information on the stack,
you must add $0100 to the value to get the next available stack position.
As an example, if the SP shows a value of $F 8, the next item to go on
the stack will go into address $01F 8; the moment we put an item onto
the stack, the pointer will move down so that it becomes $F7.

As the stack is filled, the stack pointer goes down. As the items are brought
back out of the stack, the stack pointer goes up. A low value in the stack
pointer means a full stack: a value below $40 signals trouble.

The 650x chip itself doesn’'t give the stack any special treatment. If a
machine language program—probably because of a coding error—wanted
to push one thousand items onto the stack, that would be OK as far as
the microprocessor was concerned. The stack would never leave page 1:

as the stack pointer went down beyond zero, it would wrap around to $FF
and keep going. You'd never get those thousand distinct items back, of
course. Similarly, if a program wanted to pull a thousand items from the




STACK, USR, INTERRUPT, AND WEDGE 113

SP USED | O1FF

USED | O1FE

USED | 01FD
USED | 01FC
USED | 01FB
USED | O1FA
USED | 01F9
~—————1 FREE | O1F8

NEXT ITEM
PUSHED WILL GO
TO ADDRESS $01F8

NEXT ITEM
PULLED WILL COME
FROM ADDRESS $01F9

Figure 7.1

stack—whether or not they had been put there before—the processor
would happily move the stack pointer round and round page 1, delivering
bytes. There would only be 25k different values delivered, of course, but
the processor doesn't care.

Within the BASIC environment, the stack pointer starts around $FA (the
first item will go into the stack at address $01FA), and goes down from
there. When the stack pointer goes below about $4 0, BASIC will signal
OUT OF MEMORY. That's over 10 available locations on the stack,
plenty of room for most applications

PHA (push B) and PLA (pull B)

How may we use the stack? Suppose we have a value in the A register
and in a moment we will want to use it. First we need to print something,
and the character to be printed must be loaded into the A register. How
can we put away the value in R and bring it back later? We could slip it
into another register with a transfer instruction (TAX or TARY) and bring
it back from there; or, we could store it into memory and load it back.
Alternatively, we could PUSH the A register (PHA) to the stack and PULL
(PLA) the value back later.

Again, let's do an example. Suppose the A register contains 5, and the



114

MACHINE LANGUAGE FOR COMMODORE MACHINES

stack pointer is at $F 3. If the program says PHA, the value S is stored
at address $01F3, and the stack pointer changes to $F2. Later in the
program, we encounter the instruction PLA: the stack pointer moves back
to $F3 and the value 5 is read from address $0LF3 and placed into
the A register.

It's a handy way to put away a value in A for a moment.

PHP (push processor status) and PLP

Sometimes when we are writing a program, we want to test for a condition
now but act on the result of that test later. We can arrange to do this by
putting the flags away for the time being, and then bringing them back
when we want to test the flags. We use the instruction PHP (push the
processor status word) to place all the flags on the stack, and PLP (pull
the processor status word) to restore the flags to the status register (SR).

Why would we need to do this? Perhaps an example will illustrate. Suppose
we are reading a file of customer purchases, and as we input a data item,
we discover that this is the last one—it's the end of the file. That means
that we want to close the file and summarize the customer’s activity—
though not just yet. First, we must handle the item of information that we
have input. So we can “stack” our end-of-file information, handle the last
record in the same way as previous records, then bring back the status
to see whether it's time to close the file and print the totals. We'll be using
PHP and PLP for exactly this kind of task in the next chapter.

PHA and PHP both put exactly one item onto the stack; PLA and PLP
pull one item. There are other commands that handle more than one stack
location.

JSR and RTS

We know these commands. What are they doing here?

When a JSR command is executed, the return address is placed onto
the stack. When an RTS command is executed, the return address is
picked from the stack, and that's where the program returns to.

More precisely, when a JSR occurs, the processor places onto the stack
the return address minus one as two bytes; the high-order part of the
address goes to the stack first. When an RTS is encountered, the pro-
cessor takes the two bytes from the stack, adds one, and then proceeds
from the address so formed.

Example: If address $035¢2 contains the command JSR $033C, the



STACK, USR, INTERRUPT, AND WEDGE 115

following events occur. The return address would be $03585, the instruc-
tion directly behind the JSR; but an address of $0354 is calculated—
the 03 goes to the stack first, and the 54 below it. The subroutine at
$033C now starts to run. Eventually, it encounters an RTS. The values
54 and 03 are pulled from the stack and formed into address $0354;
one is added, and the processor resumes execution at address $0355.

You hardly need to know this. We have been using subroutines for some
time without knowing that all this happened. But sometimes, it's useful to
be able to examine the stack, asking, “Who called this subroutine?” The
answer is there.

Interruptsand RT I

There are three types of interrupt: IRQ, NMI, and the BRK instruction.
IRQ (interrupt request) and NMI (non-maskable interrupt) are pins on
the 650x. A suitable signal applied to the appropriate pin will cause the
processor to stop what it's doing and run an interrupt routine. The BRK
instruction might be thought of as a fake interrupt—it behaves in a similar
manner to IRQ.

When an interrupt signal occurs, the processor completes the instruction
itis currently working on. Then it takes the PC (the program counter, which
contains the address of the next instruction) and pushes it onto the stack,
high byte first. Finally, it pushes the status register to the stack. That's a
total of three bytes that go to the stack.

The processor then takes its execution address from one of the following
locations:

IRQ or BRK—from $FFFE and $FFFF
NMI —from $FFFA and $FFFB

Whatever value is found in these pointers becomes the interrupt execution
address: the processor starts to run at this address. Eventually, the pro-
cessor encounters an RTI instruction. The status register and the PC
address are taken from the stack, and the interrupted program resumes
where it left off.

Note that the address on the stack is the return address. This differs from
JSR/RTS, where the return address minus one is stored.

On all Commodore machines, the IRQ strikes about sixty times a second.
The NMI is unused (but available) on PET/CBM; it isn’t available in the



116 MACHINE LANGUAGE FOR COMMODORE MACHINES

Plus-4 series; and on VIC-20, Commodore 64, and Commodore 128, it is
used for the RESTORE key and for RS-232 communications.

The BRK command can be distinguished from the IRQ signal by means
of a bit in the status register. Bit 4 is the B, or break flag; if it's set, the
last interrupt was caused by a BRK and not by an IRQ.

Later, we will discuss using the interrupt routines for our own programming.
By the time we can “catch” the interrupt, several more things will have
been pushed to the stack: the A, X, and Y registers. This is done by a
ROM program, not the processor; but it will prove handy since we can use
these registers, safe in the knowledge that they will be restored at the end
of the interrupt.

Mixing and Matching

The processor uses the stack mechanically. If we know how to manipulate
the stack, we can use it for surprising things. For example, an RTS can
be given even though there was no subroutine call; all we have to do is
prepare the stack with the proper address. Try to figure out what the
following code will do:

LDA #%$24
PHA
LDA #3568
PHA
RTS

This coding is identical to JMP $24E9. We have placed a “false return
address” onto the stack, and RTS has removed it and used it. This may
not seem very useful, since we could easily have coded the JMP $24E9
directly. But look at the following code:

LDA TABLEL, X
PHA
LDA TABLEZ, X
PHA
RTS

The principle of coding is the same, but now we can “fan out” to any of
several different addresses, depending on the value contained in X.

USR:ABrotherto SYS

We have used SYS a number of times. It means, “Go to the address
supplied and execute machine code there as a subroutine.” USR is similar



STACK, USR, INTERRUPT, AND WEDGE 117

in many respects: it means, “Go to a fixed address and execute machine
code there as a subroutine.” The fixed address may be POKEd into the
USR vector. On most Commodore machines this is at addresses 1 and
2; on the Commodore 64, it's at addresses 785 and 786 (hex 0311
and 0312).

There’s another difference that seems important at first. SYS is a com-
mand; USR is a function. You cannot type the command USR ( 0 ) —all
you'll get is SYNTAX ERROR. You must say something like PRINT
USR(O0) or X=USR(0O), where USR is used as a function. It seems
as if SYS was meant to connect to action programs, and USR was meant
to link to evaluation programs. In reality, the difference in usage is not that
great.

Whatever value is within the parentheses—the argument of the USR func-
tion—is computed and placed into the floating accumulator before the
USR function is called. The floating accumulator is located at $5E to $63
in most PET/CBM computers, and at $&1 to $&E in VIC-20, Commodore
64, and PLUS/4. Floating-point representation is complex, as we have
hinted in Chapter 6. Most beginning programmers prefer to leave this area
alone and pass values through memory POKEs or integer variables.

When the USR function returns control to BASIC, the function value will
be whatever is in the floating accumulator. If we have not modified it, this
will be the same as the argument, so that in many cases PRINT USR(S)
would print a value of 5.

Interrupts: NMI, TRQ, and BRK

We have mentioned the mechanical aspects of interrupt. Now let's look
at how to use the interrupt for simple jobs.

The IRQ connects through a vector in RAM; if we change the address
within the vector, we will change the address to which the interrupt goes.
The interrupt vector is located as follows:

Most PET/CBM: 0090-0091 (decimal 144-145)
VIC/Commodore 64: 0314-0315 (decimal 788-789)

Before we change this vector, we should realize something quite important:
the interrupt does a lot of work sixty times a second. It updates the clock,
checks the RUN/STOP key, gives service to the cassette motors, flashes
the cursor, and handles keyboard input. If you thoughtlessly change the
IRQ vector, it will stop doing these things; and it's hard to handle a



118

MACHINE LANGUAGE FOR COMMODORE MACHINES

computer when it has a dead keyboard. You could try to program all these
functions yourself; but there’s an easier way.

Suppose we use the vector to temporarily divert to our own program, and
at the end of our program we allow the interrupt to continue with whatever
it was going to do anyway. That way, our program would get service sixty
times a second, and the usually interrupted jobs would still get done.

it's not hard to do, and we can achieve many interesting effects by diverting
the interrupt. Remember that the interrupt runs all the time, even when
no BASIC program is running. By playing with the interrupt, we can make
a permanent computer system change that is in effect even when no
programs are in place.

Care must be taken in changing an interrupt vector. Suppose we are
beginning to change the two-byte address; we have changed the first byte,
and suddenly, the interrupt strikes. It will use an address that's neither
fish nor fowl: half is the old address, and half is the new. In such a case,
it's likely that the interrupt will become confused; and if the interrupt is
confused, the whole computer is in trouble. We must find a way to prevent
interrupt from striking when we change the vector.

We could do this in machine language: before a routine to change the
IRQ vector, we could give the instruction SET (set interrupt disable). After
this instruction is given, the IRQ cannot interrupt us. We may set the
vector and then re-enable the interrupt with the instruction CLI (clear
interrupt disable). Be sure that you do this, since the interrupt routine
performs many vital functions. We may say that we have masked off the
interrupt in the time period between execution of SEI and CLI. The NMI
interrupt, however, is non-maskable, and SEI will have no effect on it.

There’s a second way of turning off the interrupt—that is, by shutting off
the interrupt source. Something makes an interrupt happen—it might be
a timer, it might be an external signal, or it might even be a screen event.
Whatever it is, we can get to the source of the interrupt and disconnect
it.

Almost all interrupt signals are delivered through an I A (interface adaptor)
chip; and these chips invariably allow the path of the interrupt signal to
be blocked temporarily. We'll discuss the IA chips later; for the moment,
the normal interrupt signals can be blocked with the following actions:

Commaodore 64: Store $ 7 F into address $DCOD (POKE 56333,127)
to disable; store $81 into the same address (POKE 56333,129) to
re-enable.



STACK, USR, INTERRUPT, AND WEDGE 119

VIC-20: Store $7F into address $912E (POKE 3?1kE, 127) to dis-
able; store $CO into the same address (POKE 371kL,192) to re-
enable.

PET/CBM: Store $3C into address $E813 (POKE 59411, L0) to dis-
able; store $ 3D into the same address (POKE 59411, L1) to re-enable.

It goes without saying that the above POKEs should not normally be given
as direct commands; the first POKE in each case will disable the keyboard
(among other things), and you won't be able to type the restoring POKE.

A warning about interrupt programs: changing the TRQ vector is likely to
make it difficult to load and save programs. You may need to put the vector
back to its original state before you attempt any of these activities.

An Interrupt Project

The following project is written for the Commodore 64 only. The equivalent
coding for PET/CBM and VIC-20 may be found in Appendix E. Appendix
E, under Exercises for the Commodore 128, also contains appropriate
coding for the C128.

Let's write the coding for the interrupt itself. Sixty times a second, we'd
like to copy the contents of address $91 to the top of the screen. Here
goes:

A 033C LDA $491
A 033E STA $0400
A 0341 -JMp ($03AD0)

Why the indirect jump? We want to “pick up” the regular interrupt routine,
but we don’t know where it is yet. When we find the address, we'll put it
into locations $03A0/$03A1 so that the indirect | jump will link things up
for us.

Now let’s write the routine to enable the above interrupt coding. First, let's
copy the interrupt address from $0314 into the indirect address at $03AD:

A 0344 LDA $0314
A 0347 STA $03R0
A 034A LDA $0315
A 034D STA $03R1

Now we are ready to put the address of our own interrupt routine (at
$033C) into the TRQ vector:

A 0350 SEI



120 MACHINE LANGUAGE FOR COMMODORE MACHINES

A 0351 LDA #%$3C

A 0353 STA $0314
A 035t LDA #$03

A 0358 STA $0315
A 035B CLI

A 035C RTS

We will enable the new interrupt procedure by a SYS to $0344, above
(SYS 83k). Before we give that command, let's write the coding to put
everything back:

A 035D SEI

A 03SE LDA $03A0
A 0361 STA $0314
A D3k4 LDA $03RL
A 0367 STAR $0315
A 036R CLI

a

0D3EB RTS

As you can see, we put the original address back, copying it from the
indirect address area where it was saved.

Once this code is in place, disassembled, and checked, you may return
to BASIC. SYS 83k will invoke the new interrupt code; SYS 861 will
turn it off. Note that the character (a copy of the contents of address $91)
appears at the top left of the screen. The character seems to be affected
by pressing some keys; can you establish how many keys are involved?

Some models of Commodore 64 may print blue-on-blue when screen
memory is POKEd, as we are doing now. If so, the character may not
always appear in the left-hand corner. Project for enthusiasts: Fix this
problem by storing a value into the color nybble table at address $D800.

The IA Chips: PIA, VIA,and CIA

The interface adaptor (IA) chips are richly detailed. To understand them
fully, you'll need to read the specifications in some detail. Here, we’'ll give
their main functions.

PIA stands for peripheral interface adaptor, VIA for versatile interface
adaptor, and CIA for complex interface adaptor. There is speculation
among Commodore owners that the next interface chip will be called “FBI.”

The functions performed by an interface adaptor are:



STACK, USR, INTERRUPT, AND WEDGE 121

1. Event latching and interrupt control. We have noted that these chips can be
manipulated to block the interrupt signal. In fact, they do more than “gating”
the signal—allowing it through to the processor’s IRQ trigger or alternatively
blocking it. They also often /atch a signal into an event flag, sometimes called
an interrupt flag.

Latching is important. A triggering event may be brief; so short, in fact, that
the original signal causing interrupt might go away before the processor can
look at it. An IA event flag locks in the signal and holds it until the program

turns it off.
ON OFF
INTERRUPTING LATCH
EVENT I
J’ COMPUTER
EVENT ACKNOWLEDGEMENT
FLAG
Figure 7.2

If an event has time importance—that is, if the event's timing must be ac-
curately measured, or if the event flag must be cleared quickly so as to allow
for the detection of a new event—we may link the event flag to the interrupt
line. If we do so, the occurrence of the event will cause the processor to be
interrupted. We must write coding linked to the interrupt routines to detect
this event, clear the flag, and do whatever processing is needed. We set up
this link to the interrupt line by means of a register usually called the interrupt
enable register.

On the other hand, the event might not be particularly time critical. In this
case, you can simply check the appropriate event flag from time to time.
When the event occurs, you may then clear the flag and handle it. No interrupt
is needed. Even when an event flag is not connected to the interrupt, it may
be called an interrupt flag; don't let the terminology confuse you.

Whether or not you handle these events through interrupt sequences, it's
important to know that it's your job to turn the event flag off. The flag will
hold the signal until it's turned off—and it usually won't turn off unless your
program takes some action to do this.

The various flags are triggered by timers or external signals. You can read
a flag's state by checking the interrupt flag register. Several flags will be
packed together in this register; as always, you will use the logical operators—
AND, ORA, or EOR—to extract or modify the particular flags in which you
are interested. You may also use the IFR (interrupt flag register) to clear
the flags.



122

MACHINE LANGUAGE FOR COMMODORE MACHINES

2. Timing. Certain addresses within the I A chip are often assigned as “timers.”
These timers count down; in other words, if we place a value of $97 into a
timer and look at the value immediately, we might find that it has gone down
to $93. Timers come in many shapes and sizes—again, check the chip
reference for details—but most of them toggle an interrupt flag when they
have counted down to zero. As discussed, you may choose whether or not
this flag will really cause an interrupt signal.

3. Input/output. Certain addresses within the T A chip are connected to “ports,”
which extend outside the computer. Thus, the computer can detect external
events or control external devices. Output signals are usually latching in
nature: in other words, a store command might be taken to mean, “turn on
port 5 and leave it on.”

Tips on I A Chips

Many addresses within an IA chip have a different meaning, depending
on whether they are being written to (stored) or read (loaded). Watch for
this when you are reading the chip specifications.

Often, the action required to turn an interrupt flag off is odd. It looks like
the kind of thing you should do to turn the flag on. Keep in mind that a
flag may be turned on only by the external activity to which it is linked.
So, although it may seem odd to turn the flag in bit zero off by storing a
value of 1 (which would seem to want to turn bit zero on), don’t worry.
You'll get used to it.

The IER (interrupt enable register) is often a source of problems. In many
cases, the high bit of a value we are storing has a special meaning: if it's
set, the other bits will cause the appropriate interrupt connections to turn
on; if it's clear, the other bits will cause the appropriate interrupt connec-
tions to be turned off. You may recall that we shut off the Commodore 64
interrupt by storing $ 7 F into address $DCOD. This may seem odd: we're
storing a binary value of $01111111, which might seem to be turning
bits on. In fact, the high bit of zero signals that all the remaining bits
are“turn off” signals; so the value causes all interrupts to be blocked.

Infiltrating BASIC: The Wedge

In zero-page, there’s a subroutine that the BASIC interpreter uses fre-
quently to obtain information from your BASIC program. It's used to get
a character from your BASIC program, and to check it for type (numeric,
end-of-command, or other). :

The routine is normally entered at either of two points: CHRGET, to get



STACK, USR, INTERRUPT, AND WEDGE 123

the next character from your BASIC program; and CHRGOT, to recheck
the last character. The subroutine is located at $007 0 to $0087 in most
PET/CBM computers, and at $007 3 to $008A in VIC-20 or Commodore
64. You may disassemble it there if you wish. The coding is described
below.

Since CHRGET is in different locations, depending on the machine, the
following coding is shown with symbolic addresses. That is, instead of
showing the hex address value, the address is given a name, or symbol.
Thus, CHRGOT might represent address $0079, CHRGOT + 1 would
represent address $007 A, and so on.

CHRGET INC CHRGOT+1
BNE CHRGOT
INC CHRGOT+2

CHRGOT LDA xxXX

This subroutine is self-modifying, that is, it changes part of itself as it runs.
That's not always a good programming technique, but it works well here.

The first part of the subroutine adds one to the address used by instruction
CHRGOT. This is a standard way of coding an address increment: add
one to the low byte of the address; if that makes it zero, the low byte must
have gone from $FF to $00, in which case, add one to the high byte.

The address loaded by CHRGOT is within your BASIC program, or within
the input buffer if you have just typed a direct command. Before we follow
the next piece of code, let’s look at our objectives:

1. If we find a space, go back and get the next character.

2. If we find a zero (BASIC end of line) or a colon (hex $3A, BASIC end-of-
statement), we wish to set the Z flag and exit.

3. If we find a numeric, we wish the C flag to be clear; if we do not find a
numeric, we wish the C flag to be set.

CHRGOT LDA xXXX
CMP #$3A
BCS EXIT

If the character is a colon ($3B), we'll leave the subroutine with the Z
flag set. That's one of our objectives. Here’s part of another one: if the
character is $3R or higher, it can't possibly be an ASCIl numeric—
numerics are in the range of $30 to $39.

CMP #%20
BEQ CHRGET



124

MACHINE LANGUAGE FOR COMMODORE MACHINES

If the character is a space, we go back and get another character.

The following coding looks rather strange, but it's correct. After the two
subtractions, the A register will be back where it started:

SEC
SBC #$30
SEC
SBC #$D0O

After this, the B register is not changed; but the C flag will be set if the
number is less than $30, which means that it is not an ASCII numeric.
Additionally, the Z flag will bet set if A contains a binary zero. We have
met all our objectives and may now return:

EXIT RTS

Breaking Into BASIC

Since BASIC comes to this subroutine often, we can infiltrate BASIC by
changing this subroutine. Extra coding in this area is often called a “wedge”
program. We must be very careful:

e We must leave A, X, and Y unchanged; either we must not use them or we
must save them away and bring them back.

o We must not interfere with the flags.
e We must be careful not to slow BASIC down too much.

This is a tall order. The last requirement is often helped by two techniques:
use the wedge to implement extra commands in direct mode only; and
make use of a special character to identify our special commands.

In PET/CBM, we may choose to modify this subroutine in either of two
places: near the beginning, in CHRGET; or after the LDA, in CHRGOT.
Each location has its advantages. In the CHRGET area, we don’t need
to preserve the A register or status flags, since CHRGOT will fix them up
for us. In the area following CHRGOT, we have the character we wish to
examine in the R register.

But in either case, it's an exacting job.

VIC-20 and Commodore 64 have made the job much more easy by pro-
viding a vector at address $0308/$03049 that will give us control of the
computer, if we wish, immediately before each BASIC command is exe-
cuted. We still need to use due care, but we have much more latitude.




STACK, USR, INTERRUPT, AND WEDGE 125

The address of the instruction at CHRGOT is often referredtoas TXTPTR,
the text pointer. This address always points to the BASIC command being
executed at the moment. If we want to participate in reading BASIC, we
must learn to use TXTPTR to get the information—usually by means of
indirect, indexed addressing—and to leave this address pointing at a suit-
able place when we return control back to the normal BASIC handling
programs.

Project: Adding a Command

Let's add a simple command to the VIC and Commodore 64 by using the
$0308 vector. The ampersand (&) character isn’'t used in most BASIC
programs, so we’ll make it mean this: whenever you see the code "&",
print ten asterisk (*) characters to the computer screen, followed by a
carriage return.

C128 note: Remember to check Appendix E, under Exercises for the
Commodore 128, for the appropriate coding.

As with our interrupt program, we’ll copy the old address from $0308/
0309 into an indirect address location, so that we can link up with the
normal computer routines as necessary.

An important point: the vector will give us control, if we want it, with
TXTPTR positioned immediately before the next instruction. When we
return control to BASIC, we must be sure that TXTPTR is similarly po-
sitioned.

Here’s our instruction “intercept”:
A 033C LDY #%01

We're going to use indirect, indexed addressing to “look ahead” at the
instruction. Let’s look, using TXTPTR as an indirect address:

A O33E LDA ($7RA),Y
Since Y equals one, we'll look just beyond the address to which TXTPTR
is pointing:

A 0340 CMP #%$2&
A 0342 BEQ $0347
A 0344 JMP ($03A0)

If the character is an ampersand, we’'ll branch ahead to $0347. If not,
we'll connect through the indirect vector to the regular BASIC interpreter
code:



126

MACHINE LANGUAGE FOR COMMODORE MACHINES

A 0347 JSR $0073

We may call CHRGET to move the pointer along. Now TXTPTR points
squarely at the ampersand character. We are ready to print ten asterisks:

034 LDY #$00
034C LDA #$2A
D34E JSR $FFD2
0351 INY

0352 CPY #$OA
0354 BCC $034E
035t LDA #$0D
0358 JSR $FFD2
035B JMP $0344

The above code prints an asterisk ($2A) ten times and then prints a -
RETURN ($0D). It then goes to the regular BASIC interpreter, which will
look behind the ampersand character for a new BASIC command.

Lol g

Now we need to set up the link to our program. We'll write the code to do
this starting at $035E, so that SYS 8E<2 will put the new command
(ampersand) into effect:

035E LDA $0308
0361 STA $03A0
0364 LDA $0304
0367 STA $03AL
036A LDA #$3C
036C STA $0308
036F LDA #5303
0371 STA $0304d
0374 RTS

When you have completed and checked the code (remember this is for
VIC and Commaodore 64 only), return to BASIC. Type NEW and write the
following program:

100 PRINT 3 4:&:PRINT 5+6
110 &
120 PRINT "THAT'S ALL"

If you type RUN, you will geta SYNTAX ERROR in line 100. We have
not yetimplemented our “ampersand” command. Type the command SYS
862. Now type RUN again. The ampersand command obediently prints
ten asterisks each time it is invoked.

oD

Infiltrating BASIC isn’t an easy job. But it can be done.




STACK, USR, INTERRUPT, AND WEDGE 127

Things You Have Learned

—The stack is located in page 1, from $0LFF moving down to $0100. ltis
used for holding temporary information. A program may push information to
the stack, and then pull it back later. The last item that has been pushed onto
the stack will be the first item to be pulled back off.

—Great care must be taken to ensure that your program pulls exactly the same

number of items back from the stack as it pushed. In particular, be sure that

. abranch or jump does not inadvertently omit a needed stack activity. A badly
handled stack is often fatal to the program run.

—PHA pushes the contents of A to the stack; PLA pulls from the stack into
the A register. These two commands are often used to temporarily save A.
PHP pushes the status register (SR); PL A pulls it back. These two commands
are often used for “deferred decisions.”

—JSR pushes a return address (minus 1) to the stack; RTS recalls this ad-
dress. We may use JSR and RTS without needing to know the role the stack
plays, since the two commands take care of the details for us.

—Interrupts, including the BRK instruction, push three items to the stack; RTI
brings them back so that the interrupted program may resume.

—USR is a function, as opposed to SYS, which is a command. USR goes to
a preset address, takes a numeric argument, and can return a value. In
practice, USR and SYS are used in quite similar ways.

—Commodore ROM systems contain coding for the interrupt sequences that
cause the data registers—A, X, and Y—to be pushed to the stack, and a
branch to be taken through an indirect address that the user can modify.
Since interrupt is active virtually all the time, it may be used to create activities
that are active even when no BASIC program is running.

—The various IA chips—PIB, VIA, and CIRA—perform many different func-
tions, including: recording events in latching flags and controlling interrupts;
timing; and connecting input/output ports. The detailed specification sheets
must be studied for these rather complex details.

—A subroutine called CHRGET is used frequently by the BASIC interpreter
when a BASIC program is running. We may modify or add to this subroutine
in order to add to or modify the BASIC language itself.

Questions and Projects

If you redirect the interrupt vector to your own machine language program,
you can copy all of zero page to the screen. Use indexing; start X at zero;
and walk through the whole of zero page, loading the memory contents
and storing (indexed again, of course) to the screen. Don't forget to connect
up your code to the regular interrupt entry address.



128

MACHINE LANGUAGE FOR COMMODORE MACHINES

You'll get a fascinating screen. There will be timers going, and as you
type on the keyboard you’ll see various inner values changing around.
Enjoy the view.

It's sometimes suggested that a good way to pass information to a sub-
routine is to push the information onto the stack and call the subroutine.
The subroutine can pull the information from the stack. What's wrong with
this suggestion?

The above suggestion can be implemented, but it takes a lot of careful
stack work. You might like to work through the logic needed to do this.

There are some utility programs which, when placed in the computer,
allow a listing to be “scrolled.” In other words, if the screen shows BASIC
lines 250 to 460, the user can take the cursor to the bottom of the screen
and continue to press the cursor-down key. New BASIC lines (following
4b60) will then appear. This is not an easy thing to code, but here’s the
question: do you think that this feature is done with a SYS command, a
wedge, or an interrupt technique? Why?

A SYS command from BASIC is like a subroutine call; so it must place
an address on the stack to allow RTS to return to BASIC. Take a look at
the stack and see if you can determine what address is used to return to
BASIC on your machine.










Timing,
Input/Output,
and
Conclusion

This chapter discusses:

® How to estimate the speed of your program
® [nput and output from tape, disk, and printer
® Review of instructions

® Debugging

® Symbolic assemblers

® Where to go from here

131



132 MACHINE LANGUAGE FOR COMMODORE MACHINES

Timing
For many applications, machine language programs seem to run instan-
taneously. The speed of the 650x is much greater than that of other
devices, including the human user. The machine language program usually
ends up waiting for something: waiting for the keyboard, waiting for the
printer, waiting for the disk, or waiting for the human to read and react to
information presented on the screen.

Occasionally, it may be important to get fairly precise timing for a machine
language program. If so, the following rules of thumb may be kept in mind:

—AIl timing estimates are crude if the interrupt routines are still active. The
effect of interrupt on timing can be crudely estimated by adding 10 percent
to the running time.

—Remember to allow for loops. If an instruction within a loop is repeated ten
times, its timing will need to be counted ten times.

—The “clock speed,” or memory cycle speed, of most Commodore machines
is roughly 1 microsecond—one millionth of a second. The precise number
varies from one machine to another, and also varies between North America
and other regions.

—Most instructions run at the fastest imaginable speed. Count the memory
cycles, and that's how fast the instruction will execute. For example,
LDA #%0D will need two memory cycles just to get the instruction—and
that's how fast it runs. LDA $0500, X will usually take four memory cycles:
three to get the instruction, and one to fetch the data from page 5. Exceptions:
no instruction runs in less than two cycles; and shift/rotate instructions, INC/
DEC, and JSR/RTS take longer than you might expect by this rule.

—Branches time differently, depending on whether the branch is taken (three
cycles) or not taken (two cycles).

—When a page boundary is crossed, the computer needs an extra cycle to do
the arithmetic. If the program branches from $O0FE4 to $1023, there will
be an extra cycle; if we LDR $24E?, Y, there will be an extra cycle if Y
contains a value of $19 or greater.

Detailed timing values can be obtained from most tables of instructions.

Let's take a simple routine and estimate its timing. The following program
logically ANDs the contents of 100 locations from $17EQ0 to $1844:

033C LDX #%$00
033E LDA #3$00
0340 AND $17EO0,X
0343 INX



TIMING, INPUT/OUTPUT, AND CONCLUSION 133

0345 CPX #3b4
0347 BCC $0340

0349 RTS
We may work out timing as follows:

LDX #$00—executed once: ' 2
LDA #$00—executed once: 2
AND $17EQ, X: 32 times at 4 cycles: 128
68 times at 5 cycles (page cross): 340
INX—100 times at 2 cycles: 200
CPX #3$L4—100 times at 2 cycles: 200
BCC—99 times at 3 cycles: . 297
1 time at 2 cycles (no branch): 2
RTS—®6 cycles: 6

Total time: 1171 cycles, or slightly over one thousandth of a second. We
might add 10 percent to allow for the effects of interrupt; and since this is
a subroutine, we could also add the extra six cycles needed to perform
the JSR.

Where timing is critical, the interrupt could be locked out with SEI. Be
careful: it's seldom necessary, and is potentially dangerous.

Input and Output

We know that calling the kernal routine CHROUT at $FFD2 will send an
ASCII character to the screen. We may also redirect output to any logical
file.

We have seen that we may obtain input from the keyboard buffer into the
A register by calling kernal routine GETIN at $FFE4. We may also
redirect the input so that we draw information from any logical file.

The same commands—$FFD2 and $FFE4—still perform the input and
output. But we “switch” either of them to connect to a chosen device—or
more accurately, a chosen logical file. The file must be open; we may
switch to the file, and then switch back to normal 1/0 as we wish.

Switching Output

We use subroutine CHKOUT at address $FFC9 to switch output to a
logical file. When we want to restore output to the screen, we call sub-
routine CLRCHN at $FFCC. This is not the same as an OPEN and



134 MACHINE LANGUAGE FOR COMMODORE MACHINES

KEYBOARD

INPUT
[ Jo——o——{ ProcRam

i

OUTPUT

SCREEN

3

INPUT OUTPUT
DEVICES DEVICES
CHKIN ($FFC6) CHKOUT ($FFC9)
SETS THE SETS THE
INPUT SWITCH OUTPUT SWITCH

CLRCHN ($FFCC)
RESTORES BOTH
SWITCHES TO “NORMAL"

Figure 8.1

CLOSE—we simply connect to the file and disconnect, and we can do
this as many times as we want.

Subroutine: CHKOUT
Address: $FFCA
Action: Switches the output path (used by CHROUT, $FFD2)

so that output is directed to the logical file specified in the
X register. The logical file must previously have been
opened.

The character subsequently sent by $FFDZ2 is usually ASCII (or PET
ASCII). When sent to the printer, special characters—text/graphics,
width—will be honored in the usual way. Similarly, disk commands can
be transmitted over secondary address 15 if desired; a logical “com-
mand channel” file must be previously opened.

Registers: Registers A and X will be changed during the CHKOUT
call. Be sure to save any sensitive data in these registers before calling
CHKOUT.

Status: Status flags may be changed. In most recent Commodore
machines, the C (carry) flag indicates some type of problem with con-
necting to the output channel.

To switch output to logical file 1, we would need to follow these steps:



TIMING, INPUT/OUTPUT, AND CONCLUSION 135

1. Load a value of 1 into X (LDX #$01).
2. JSR to address $FFCA.

Once the output is switched, we may send as many characters as we
wish using subroutine $FFD<E. Eventually, we must disconnect from the
logical file and return to our default output, the screen. We do this by
calling subroutine CLRCHN at address $FFCC.

Subroutine: CLRCHN
Address: SFFCC
Action: Disconnects input and output from any logical files and

restores them to the “default” input and output channels,
keyboard and screen. The logical files are not closed, and
may be reconnected at a later time.

Registers: Registers A and X will be changed during the CLRCHN
call. Be sure to save any sensitive data in these registers.

Status: Status flags may be changed. In most recent Commodore
machines the C (carry) flag indicates some type of problem with output.

The logical file concept is important. | may send to any destination—
cassette, printer, disk, or screen—without knowing which device is in-
volved. | send the characters on their way and the operating system sees
that they are delivered wherever they need to go.

This simplifies the machine language programmer’s job. It's a simple task
to send the characters to some logical channel; the programmer does not
need to take special coding action depending on which device is involved.

Output Example

If we wanted to print the message HI on the printer, we might code as
follows.

C128 note: Remember to check Appendix E, under Exercises for the
Commodore 128, for the appropriate coding.

First, we’ll open the printer channel in BASIC. Let's use logical file num-
ber 1:

100 OPEN 1,4
110 SYS 828
120 CLOSE 1

If you don’t have a printer, you may open the file to cassette (OPEN



136

MACHINE LANGUAGE FOR COMMODORE MACHINES

1,1,2)ortodisk (OPEN L,8,3, "O:DEMO, S, W'"). The machine
language program won't care: it will send to logical file number 1 no matter
what it is; it might even be the screen (OPEN 1, 3). Let’s write the coding:

A 033C LDX #3501
A 033E JSR §$FFCH

Now the output is connected to logical file 1. Let's say HI:

0341 LDR #$48
0343 JSR $FFDC
0346 LDA #%$49
0348 JSR §$FFDC
034B LDA #$0OD
034D JSR $FFDC
0350 JSR $FFCC
0353 RTS

Don't forget to send the RET URN—the printer needs it. After the machine
language program says HI, the program will return to BASIC and close
the file. Notice that the machine language program doesn’t care what it's
saying HI to ... it sends the data to logical file 1.

g e

Switching Input

We use subroutine CHKIN at address $FFCE to switch input so as to
draw data from a logical file. When we want to restore input from the
keyboard, we call subroutine CLRCHN at $FFCC. Again, this is not the
same as an OPEN and CLOSE—we simply connect to the file and dis-
connect, and we can do this as many times as we want.

Subroutine: CHKIN
Address: $FFCE
Action: Switches the input path (used by GET, $FFE4) so that input is

taken from the logical file specified in the X register. The logical
file must previously have been opened.

The character subsequently obtained by $FFE4 into the A register is usually
ASCII (or PET ASCII). A binary zero received from a file usually represents exactly
that: an input character whose value is CHR $(0); this is different from keyboard
GET where a binary zero means “no key pressed.” When accessing a file, ST
(address $90 for VIC and Commodore 64, $9E for most PET/CBM) is used
for its usual functions of signalling end-of-file or error. Similarly, disk status in-
formation can be received over secondary address 15 if desired; a logical “com-
mand channel” file must be previously opened.

Registers: Registers A and X will be changed during the CHKIN call. Be sure
to save any sensitive data in these registers before calling CHKIN.

Status: Status flags may be changed. In VIC and Commodore 64, the C (carry)
flag indicates some type of problem with connecting to the input channel.




TIMING, INPUT/OUTPUT, AND CONCLUSION 137

To switch input to logical file 1, we would need to follow these steps:

—Load a value of 1 into X (LDX #$01)
—JSR to address $FFCE.

Once the input is switched, we may obtain as many characters as we wish
using subroutine $ FFE 4. Eventually, we must disconnect from the logical
file and return to our default input—the keyboard. We do this by calling
subroutine CLRCHN at address $FFCC. This is the same subroutine that
disconnects output from a logical file.

Input Example

We can write a program to read an input file from disk or cassette. First,
let's write the file. We open the file according to its type:

Disk: OPEN1,8,3,"0:DEMO,S,W"

Cassette: OPEN1,1,1

C128 note: Remember to check Appendix E, in the section, Exercises for
the Commodore 128, for the appropriate coding.

This may be done with a direct statement. Now let's write a few things to
the file:

PRINT#1, "HELLO THIS IS A TEST"
PRINT#1,"THIS IS THE LAST LINE"
CLOSE 1
If we have typed in the above statements correctly, we should have a
completed sequential file written on cassette or disk. Before writing the
machine language input program, let's examine how we might read the
file back in BASIC:
Disk: 100 OPEN 1,8,3,"DEMO"
Cassette: 100 OPEN 1
110 INPUT #1,X$%
120 PRINT X$
130 IF ST=0GOTO 110
140 CLOSE 1

We might alternatively have written lines 110 and 120 as

110 GET #1,X$
120 PRINT X$§;

This more closely approximates the logic flow of our machine language
program, since it will get the characters one at a time. If you are unsure



138

MACHINE LANGUAGE FOR COMMODORE MACHINES

about the role of ST, read up on it. We will use the same variable (at its
address of $90 or $9k) to do exactly the same thing in machine language.

Type NEW and enter the following program:

Disk: 100 OPEN 1,68,3,"DEMO"
Cassette: 100 OPEN 1

110 SYS a:28

120 CLOSE 1

We will read the file and copy it to the screen entirely in machine language.
Let's start coding at $033C:

A 033C LDX #3%01
A 033E JSR $FFCE

Now the input is connected to logical file 1. Let's get information from it
and put it on the screen:

A 0341 JSR $FFE4
A 0344 JSR $FFDE

We must check ST as we would in BASIC. ST might be at either of two
addresses, depending on the system:

VIC, Commodore 64: A 0347 LDA $90
CBM/PET: R 0347 LDA $96

If ST is zero, there is more to come from the file; we may go back. If ST
is nonzero, there could be an error or we may be at the end of the file. In
either case, we don’t want to read more from the file.

A 0349 BEQ $0341
A D034B JSR $FFCC
A O34E RTS

Check it and try it. The file is delivered to the screen quickly.

A File Transfer Program

Let’s write a program to transfer a sequential file from any common device
to any other. BASIC will sort out which files to handle; once the files are
opened, machine language will take from and deliver to the appropriate
logical devices as desired.

C128 note: Remember to check Appendix E, in the section, Exercises for
the Commodore 128, for the appropriate coding, both BASIC and machine
language.

Y




TIMING, INPUT/OUTPUT, AND CONCLUSION 139

It's not a good idea to switch input and output at the same time—in other
words, to call both $FFCE and $FFCA without canceling either via $FFCC.
The kernal doesn’t mind, but it confuses the peripheral devices, which
expect to have exclusive occupancy of the data bus to the computer. So
we'll follow the pattern: switching on, sending or receiving, switching off,
and then going to the other device.

One more thing. ST tells us the status of the /ast device handled. Consider:
if we input a character, then output a character, and then check the value
of ST, we have a problem. ST will not tell us about the input, since the
last device handled was output; thus, we won't know if we are at the end
of the file or not. In machine language, as in BASIC, we must code carefully
to solve this problem.

Here comes BASIC:

100 PRINT "FILE TRANSFER"

110 INPUT "INPUT FROM (DISK, TAPE)";A$

120 IF LEFT$(A$,1)="T" THEN OPEN 1:GOTO 1&0
130 IF LEFT$(A$,1)<>"D" GOTO 110

140 INPUT "DISK FILE NAME";N$

150 OPEN 1,8,3,N$

L6E0 INPUT "TO (DISK, TAPE, SCREEN)";B$

17?0 IF LEFT$(B$,1)="S" THEN OPEN 2,3:G0TO 240
180 IF LEFT$(B$,1)="D" GOTO 210 :

190 IF LEFT$(B%,1) <> "T" GOTO 1LO

200 IF LEFT$(A$,1)="T" GOTO 1ED

210 INPUT "OUTPUT FILE NAME";F$

220 IF LEFT$(B$,1)="D"

THEN OPEN2,8,4,"0:"+F$+",S,W"

¢30 IF LEFT$(B$,1)="T" THEN OPENZ,1,1,F$
240 SYS xxxX

250 CLOSE 2:CLOSE 1

We'll work this out for the Commodore 64 computer; you can adjust it for
PET/CBM or VIC-20. The above BASIC program should not take up more
than 511 bytes; on a standard Commodore 64, that means that we’'ll have
clear space for our machine language program starting at $0A00 (dec-
imal 2560). We'll move the start-of-variables along, of course, so that
our machine language program won't be disturbed by them.

When we first type line 240, we won't know what SYS address to use.
After the program is typed in (with SYS xxxx atline 240), we can easily
confirm that the machine language can start at $0A00 by checking the



140 MACHINE LANGUAGE FOR COMMODORE MACHINES

start-of-variables pointer. We go back and change 240 to SYS 25&0;
now we're ready to put in the machine language code:

A O0OADO0 LDX #3501
A 0OAD2 JSR $FFCE
A DOAODS JSR $FFE4

By this time, we have a character in the A register from the input source.
We also have a value in ST, telling us if this is the last character. Let's
examine the ST problem: we must check its value now, since ST will be
changed after we do the output. But we don’t want to take any action
based on ST yet; we must first send the character we have received. Let's
check ST, and put the results of the check onto the stack:

A DAOD8 LDX $490
A OADA PHP

If ST is zero, the Z flag will be set; we’'ll preserve this flag along with the
others until we call it back from the stack. If you are adapting this program
for the PET/CBM, don't forget that ST is at address $9E for your machine.

The next thing we want to do is to disconnect the input by calling $FFCC;
but this will destroy the A register. How can we preserve this value? By
transferring to another register, or by pushing A to the stack. Let’s do that.
There will now be two things on the stack.

AR OAOB PHA

We are now free to disconnect from the input channel and connect to the
output. Here we go:

A 0AOC JSR §$FFCC
A O0OAOF LDX #30¢
A 0Al11 JSR $FFCAH
A D0OAl4 PLA

The A register gets back the last thing saved to the stack, and that, of
course, is our input character. We're ready to send it to the output device:

A 0Al1S JSR $FFDE
A 0Al18 JSR §$FFCC

Now we may pick up on the condition of ST that we stacked away earlier.
Here come the flags that we stored:

A OA1B PLP




TIMING, INPUT/OUTPUT, AND CONCLUSION 141

If the Z flag is set, we want to go back and get another character. If not,
we're finished and can return to BASIC, allowing BASIC to close the files
for us:

A 0ALC BEQ $O0AODO
A 0OALE RTS

Important: Before running this program, be sure to move the start-of-
variables pointer ($002D/$002E) so that it points at address $0AL1F;
otherwise, the BASIC variables will destroy this program.

Review: The Instruction Set

We started with the load, save and compare for the three data registers:

LDA LDX LDY
STA STX STY
CMP CPX CPY

The instructions are almost identical in action, although only the A register
has indirect, indexed addressing modes. We continued with the logical
and arithmetic routines that apply only to A:

AND ORAR EOR ADC SBC

Arithmetic also includes the shift and rotate instructions, which may be
used on the A register or directly upon memory:

ASL ROL LSR ROR

Memory may also be directly modified by the increment and decrement
instructions, which have related instructions that operate on X and Y:

INC DEC
INX DEX
INY DEY

We may transfer control by means of branch instructions, which are all
conditional:

BEQ BCS BMI BVS
BNE BCC BPL BVC

. The branch instructions can make only short “hops”; the jump instruction
is unconditional:

JMP



142

MACHINE LANGUAGE FOR COMMODORE MACHINES

Subroutines are called with the jump-subroutine, and returned with return-
from-subroutine; we may also return from interrupts:

JSR RTS RTI

We may modify any of several flags with the appropriate set or clear
command. Some of the flags control internal processor operation: for ex-
ample, the I (interrupt disable) flag locks out the interrupt; the D (decimal
mode) affects the way the ADC and SBC work with numbers.

SEC SEI SED
CLC CLV CLI CLD

We may transfer information between the A register and X or Y; and for
checking or setting the stack location, we may move the stack pointer to
X, or X to the stack pointer. The latter is a powerful command, so use it
with care.

TAX TAY TSX
TXA TYA TXS

We may push or pull information from the stack:

PHA PHP
PLA PLP

There’s a special test, used mostly for checking IA chips:
BIT

The BIT test is used only for specific locations: no indexing is allowed.
The high bit from the location being tested is transferred straight to the N
flag. The next highest bit (bit &) goes straight to the V flag. Finally, the 2
flag is set according to whether the location has any bits set that match
bits set in the A register. Thus, we can check a location with BIT $. . . .
followed by BMI to test the high bit, or BV S to test bit &, or BNE to test
any selected bit or group of bits. It's a rather specialized instruction, but
useful for testing input/output ports.

Finally, the instruction that does nothing, and the BRK instruction that
causes a “false interrupt,” usually taking us to the monitor:

NOP BRK

That's the whole set. With these instructions, you can write programs to
make the computer do whatever you choose.




TIMING, INPUT/OUTPUT, AND CONCLUSION 143

Debugging

When a program has been written, the next step is to look for any possible
errors, or bugs. The process of searching for and systematically elimi-
nating these bugs is called debugging.

Most programs are made up of sections, each of which has a clear task
to perform. When a program misbehaves, it may be easy to go to the area
of the bug, since you can-see which parts of the program are working and
where things start to go wrong.

In case of doubt, you may insert breakpoints into your program. Replace
selected instructions with the instruction BRK; this may be done by re-
placing the instructions’ op codes with the value 00. Run the program;
when it reaches the first breakpoint, it will stop and the machine language
monitor will bécome active. Examine the registers carefully to see whether
they contain the values expected. Display memory locations that the pro-
gram should have written; the contents will tell you whether the program
has been doing its job correctly.

When you have confirmed that the program is behaving correctly up to
the breakpdint, replace the BRK command at that point with the original
op code. Command . G to that address, and the program will continue to
the next breakpoint. If it helps your investigation, you may even change
memory or registers before continuing program execution.

If you carried this procedure to the extreme, you might stop your program
after every instruction. It would take time, but you would certainly track
down everything the program did.

The best debugging takes place at the time you write the program. Write
sensibly, not “super cleverly.” If you fear getting caught in an endless
loop, insert a stop key test (JSR $FFE1) so that you'll still have control
of the computer.

Get to know your machine language monitor. The monitor uses a number
of locations in memory; you'll have trouble debugging a program if it uses
the same storage addresses as does your program. Every time you try to
check the contents of a memory location to see what your program has
done, you'll see the monitor working values instead—and that would be
misleading and annoying.

Symbolic Assemblers

Throughout these exercises, we have used small, “nonsymbolic” assem-
blers such as would be found within a machine language monitor. These



144

MACHINE LANGUAGE FOR COMMODORE MACHINES

are good for beginners; they parallel the machine code quite closely and
allow you to keep the working machine clearly in focus.

As you write bigger and better programs, these small assemblers will be
less convenient. Forward branches and subroutines we have not yet writ-
ten make it necessary for us to “guess” at the address and fix up our
guess later. There is the possible danger that an address will be typed in
wrongly ($0345 instead of $0354), causing the program to fail.

To help us write more ambitious programs, we may wish to turn to com-
mercially available assembler systems that allow /abels or symbolic ad-
dresses. If we wish to write code to call a subroutine to input numbers—
we might not have written this subroutine yet—we can code JSR  NUMIN.
When we write the subroutine, we'll put the identifying label NUMIN at the
start. As your program is assembled, the proper address of NUMIN is de-
termined, and this address will be inserted as needed.

It saves work and helps guard against errors. But symbolic assemblers
allow a more powerful capability: they help documentation and allow pro-
gram updating.

Your assembly may be listed to the printer. This allows you to examine
and annotate the program, and file the details away for later reference.
The assembler allows you to include comments, which improve the read-
ability of the listing but don’t affect the machine language program.

The source program you have written may be saved and used again later.
If you find it is necessary to change the program, bring back the source
code from cassette or disk, make the changes, and reassemble. In this
way, programs can be easily corrected or updated.

Where To Go From Here

Almost anywhere. Up to this point, we've been building confidence: trying
to give you a feel as to how the pieces work. Now, the real fun—the
creative programming—is up to you.

Users have varying objectives. You may want to do mathematical oper-
ations. You may want to interact upon BASIC programs—analyzing,
searching, renumbering. Whatever suits you. Your interest area may be
music, graphics, or animation. Machine language will open the door to all
of these; its amazing speed makes spectacular effects possible. You may
plan to go into hardware and interface new devices to your computer; an
understanding of machine language, and IA chips in particular, will be
useful. The possibilities are endless.



TIMING, INPUT/OUTPUT, AND CONCLUSION 145

Even if you have no immediate plans to write new programs in machine
language, you will have gained an insight into the workings of your ma-
chine. Everything that the machine does—BASIC, kernal, everything—is
either hardware or machine language.

With the elementary concepts we have introduced here, you will be able
to go deeper into more advanced texts. Many programming books deal
with the abstract 650x chip. That’s hard for the beginner; it's difficult to
see how the instructions fit within the architecture of a real machine, or
how the programs can actually be placed within the computer. By now,
you should be able to take a piece of abstract coding and fit it into your
system.

Many things start to happen at once when you take your first steps in
machine language programming. You must learn how to use the monitor.
You must learn a good deal about how your machine is designed. And
you must learn how to fit the pieces together. It takes a while to adapt to
the “information shock”—but things start to fit together. Eventually, you'll
have a stronger and sounder view of the whole computer: hardware, soft-
ware, languages, and usage.

What You Have Learned

—Machine language programs can have run times estimated fairly accurately.
In many cases, however, machine language is so fast that detailed speed
calculations are not needed.

—We can handle input from devices other than the keyboard by switching the
identity of the designated input device. If an input channel has been opened
as a file, we may connect to it with JSR $FFCE and disconnect with JSR
$FFCC.

—We can handle output to devices other than the screen by switching the
identity of the designated output device. If an output channel has been opened
as a file, we may connect to it with ISR $FFCH and disconnect with JSR
$FFCC.

—Once input or output has been switched, we may receive in the usual way
with the subroutine at $FFE4, or send in the usual way with the subroutine
at $FFDC.

—Be careful not to confuse connecting to a channel with opening a file. In a
typical program, we open a file only once, but we may connect to it and
disconnect from it hundreds of times as we read or write data.

—You have met all the instructions of the 650x microprocessor. There are
enough for versatility, but not so many that you can'’t keep track of them all.



146 MACHINE LANGUAGE FOR COMMODORE MACHINES

You have made a worthwhile start in the art and science of machine language
programming.

Questions and Projects

Write a program to read a sequential file and count the number of times
the letter "A" (hex 41) appears in the file. Use a BASIC PEEK to print
the value. You may assume that "A" will not appear more than 255
times.

Rewrite the above to count the number of occurrences of the RETURN
character ($0D) in a sequential file. Allow for up to 65535 appearances.
Can you attach a meaning to this count?

Write a program to print HAPPY NEW YEAR to the printer ten times.

If you own a disk system, you know that you can scratch a program named
JUNK by using the sequence:

OPEN 15,8,15:PRINT#15,"S0:JUNK". Convertthe PRINT#
statement to machine language and write a program to scratch JUNK.
Careful: don't scratch a program that you will need.

Write a “typewriter” program to read a line of text from the keyboard and
then transfer it to the printer. It will be a more useful program if you show
what is being typed on the screen and if you write extra code to honor
the DELETE key.



The 6502/
6510/6509/
7501/8500
Instruction

Set

The four chips differ only in their use of addresses 0 and 1:

On the 6502, the addresses are normal memory.

On the 6510 and 7501, address 0 is a directional register and address 1 is an
input/output register, used for such things as cassette tape and memory control.

On the 6509, address O is used to switch program execution to a new memory
bank; address 1 is used to switch the memory bank accessed by the two
instructions LDA (..), Yand STA (..), Y.

147



148 MACHINE LANGUAGE FOR COMMODORE MACHINES

Addressing Modes

Accumulator Addressing—This form of addressing is represented with a
one byte instruction, implying an operation on the accumulator.

Immediate Addressing—In immediate addressing, the operand is con-
tained in the second byte of the instruction, with no further memory ad-
dressing required.

Absolute Addressing—In absolute addressing, the second byte of the
instruction specifies the eight low order bits of the effective address while
the third byte specifies the eight high order bits. Thus, the absolute ad-
dressing mode allows access to the entire 64K bytes of addressable mem-
ory. '

Zero Page Addressing—The zero page instructions allow for shorter code
and execution times by only fetching the second byte of the instruction
and assuming a zero high address byte. Careful use of the zero page can
result in significant increase in code efficiency.

Indexed Zero Page Addressing—(X, Y indexing)—This form of address-
ing is used in conjunction with the index register and is referred to as
“Zero Page, X" or “Zero Page, Y.” The effective address is calculated by
adding the second byte to the contents of the index register. Since this is
a form of “Zero Page” addressing, the content of the second byte refer-
ences a location in page zero. Additionally, due to the “Zero Page” ad-
dressing nature of this mode, no carry is added to the high order eight
bits of memory and crossing of page boundaries does not occur.

Indexed Absolute Addressing—(X, Y indexing)—This form of addressing
is used in conjunction with X and Y index register and is referred to as
“Absolute, X,” and “Absolute, Y.” The effective address is formed by
adding the contents of X and Y to the address contained in the second
and third bytes of the instruction. This mode allows the index register to
contain the index or count value and the instruction to contain the base
address. This type of indexing allows any location referencing and the
index to modify multiple fields resulting in reduced coding and execution
time.

Implied Addressing—In the implied addressing mode, the address con-
taining the operand is implicitly stated in the operation code of the instruc-
tion.

Relative Addressing—Relative addressing is used only with branch in-
structions and establishes a destination for the conditional branch.

The second byte of the instruction becomes the operand which is an
“Offset” added to the contents of the lower eight bits of the program counter



APPENDIX A 149

when the counter is set at the next instruction. The range of the offset is
—128 to +1.27 bytes from the next instruction.

Indexed Indirect Addressing—In indexed indirect addressing (referred to
as [Indirect, X]), the second byte of the instruction is added to the contents
of the X index register, discarding the carry. The result of this addition
points to a memory location on page zero whose contents are the low
order eight bits of the effective address. The next memory location in page
zero contains the high order eight bits of the effective address. Both mem-
ory locations specifying the high and low order bytes of the effective ad-
dress must be in page zero.

Indirect Indexed Addressing—In indirect indexed addressing (referred to
as [Indirect, Y]), the second byte of the instruction points to a memory
location in page zero. The contents of this memory location are added to
the contents of the Y index register, the result being the low order eight
bits of the effective address. The carry from this addition is added to the
contents of the next page zero memory location, the result being the high
order eight bits of the effective address.

Absolute Indirect—The second byte of the instruction contains the low
order eight bits of a memory location. The high order eight bits of that
memory location is contained in the third byte of the instruction. The con-
tents of the fully specified memory location are the low order byte of the
effective address. The next memory location contains the high order byte
of the effective address which is loaded into the sixteen bits of the program
counter.

Instruction Set—Alphabetic Sequence

ADC Add Memory to Accumulator with Carry
AND “AND” Memory with Accumulator

ASL Shift Left One Bit (Memory or Accumulator)
BCC Branch on Carry Clear

BCS Branch on Carry Set

BEQ Branch on Result Zero

BIT Test Bits in Memory with Accumulator
BMI Branch on Result Minus

BNE Branch on Result not Zero

BPL Branch on Result Plus

BRK Force Break



150

MACHINE LANGUAGE FOR COMMODORE MACHINES

BVC
BVS

CLC
CLD
CLI
CLV
CMP
CPX
CPY

DEC
DEX
DEY

EOR

INC
INX
INY

JMP
JSR

LDA
LDX
LDY
LSR

NOP

ORA

PHA
PHP
PLA
PLP

ROL
ROR
RTI

Branch on Overflow Clear
Branch on Overflow Set

Clear Carry Flag

Clear Decimal Mode

Clear Interrupt Disable Bit

Clear Overflow Flag

Compare Memory and Accumulator
Compare Memory and Index X
Compare Memory and Index Y

Decrement Memory by One
Decrement Index X by One
Decrement Index Y by One

“Exclusive-OR” Memory with Accumulator

Increment Memory by One
Increment Index X by One
Increment Index Y by One

Jump to New Location
Jump to New Location Saving Return Address

Load Accumulator with Memory

Load Index X with Memory

Load Index Y with Memory

Shift One Bit Right (Memory or Accumulator)

No Operation
“OR” Memory with Accumulator

Push Accumulator on Stack
Push Processor Status on Stack
Pull Accumulator from Stack
Pull Processor Status from Stack

Rotate One Bit Left (Memory or Accumulator)
Rotate One Bit Right (Memory or Accumulator)
Return from Interrupt




APPENDIX A 151

RTS Return from Subroutine

SBC Subtract Memory from Accumulator with Borrow
SEC Set Carry Flag

SED Set Decimal Mode

SEI Set Ihterrupt Disable Status

STA Store Accumulator in Memory
STX Store Index X in Memory

STY Store Index Y in Memory

TAX Transfer Accumulator to Index X
TAY Transfer Accumulator to Index Y
TSX Transfer Stack Pointer to Index X
TXA Transfer Index X to Accumulator
TXS Transfer Index X to Stack Register
TYA Transfer Index Y to Accumulator

Programming Model

7 0
[ A |  AccumuLaToR A
7 0
| Y | INDEX REGISTER Y
[ X ] iNDEX REGISTER X
15 7 0
[ PcH | PCL | ProaRaM counTeR “pC
8 7 0
[ 1] s | stack PoINTER “g”
7 0
INJv] Te[p][1]z]c] Processor sTATUS REG “pr
|—> CARRY 1 = TRUE
ZERO = RESULT ZERO
L— » RaDISABLE 1 = DISABLE
———— % DECIMAL MODE 1 = TRUE
L BRKCOMMAND

TRUE
NEG

OVERFLOW 1
NEGATIVE 1

Yy

Figure A.1



MACHINE LANGUAGE FOR COMMODORE MACHINES

152

V- ‘8- ‘0— sepo) dQ @iAg-sibuls

Z'v ainbiy4

dON X3a XS1I XVl SXL VXL V-404 V-4S1 Vv-104 VISV | V-
a3s XNI d1D ANl A1D AVL VAL A3 @S Vid 11O VHd 23S d1d O10 dHd 8-
_Si" [NR] NHg 0o-
3 -3 -da -0 -9 -V -6 -8 —-L -9 —-§ —¥ -—¢€ -z —-L -0
J— 'v— '0— "ISIN
a3 3 03 | XdO
20 3 00| AdD sdwnp 0 — sayoueig
o8. OV V¥8 +vv OV | AQ]
8 v6 8 ALS 29 OF |dAr o4 o03g |oa ang
JC L 44 lig 0C | dsr o9 S04 | 06 208
€ € z Z z oL SAd | 0S JAg
X'V S8V X'Z 9Vdz WWI (an) - sav oc wagloL  1d8
3— 10 ‘Q— 'Z— Ul Spus apo) do Q- 1o‘g— ‘G— ‘L — uispus apo) do
EEREE | 94 93 ONI 64 ad a3 14 13 64 &3 63 | 08S
ia 3D 9a 90 J3a 6a aa 4> 14 12 sa S92 6D |dND
E:| v 94 gv 2V | XAl 6d a8 av L9 Lv 68 &V 6V | vai
38 96 98 X1S 66 a6 ads 16 18 G6 G8 vis
L 39 9L 99 HOH 6L 4L a9 1L 19 SL S99 69 | oav
s 3 9 9V Hs1 66 ds av IS ¥ S5 Sv 61 | HO3
€ 3¢ 9 9¢ 04 6 Q¢ ac lE L2 G€ S¢ 6C |ANV
3L 30 91 90 asv 6L dlL ao IL 10 SL SO 60 | YHO
€ € € Z T [4 [4 € € € 4 4 C 4 [4
AV X'V S8V A'Z X'Z Dvdz WNI AV X'V osav Al) (X)) X'Z 9DvdZ WWI




153

€'V ainbi4

APPENDIX A

- elvieate|v|aa|e|v|safe|s|a|z]af v egle|sv|elv|av|z|e|ev | L] val
€|9] 0z ans dwnr dsr
|||||| (2-v ainbiy 8ag)
...... €|s| o9 elefov "001 M3N OL dWnP dWr
[ vlz]eo Al + A AN)
[ 12|83 X<t + X XNI
- -AA €ls]3d (2|94 ¢|s|93 (ef9]33 Wel + N ONI
- - elv|es|elv|as|2|v|ss|2|s]is|[z]a] ele|sy [elv|av|2|e|er |1 VWAV HO3
[ 1]2] sg A=l - A A3a
-, Ll2|vo X<t - X X3a
- - - €|.l3az|9]sa HEEAH B ES Wl - W 030
- ——AAA ezle|vofe|v]oo]z|z]| 00 W-A AdD
- - —AAA eleflva|e|v|oalz|z]|0a W-X XdO
- —AAA e|lv|eale|v|aa|e|v|sa|z]|s|[ta|z]9a| 0 2lelsofe]lv|ao(|e]e|ea (V) W-v dWO
0~--~-—- - 1|2] 88 A0 A0
—_o0--2 11 z] s 1<-0 o
-0 -- - - Lle|ea a<0 a1
-=-=-0- - SEIED 2+0 o710
...... HEIEN (@  1=ANO HONVHE sng
...... z]lz]os 2)  0=A NO HONVHE ong
- - --- t[z]| 00 (1-v ainbi4 @0g) ndg
...... 2(z|ok 2)  0=N NO HONvHE 148
...... zlz|oa (@) 0=Z NO HONVYE ang
|||||| HEE (2)  1=NNO HONVHE wa
N~ - - AN zle|ve |e|v|oe WW us
...... zlz]oa () 1=2 NO HONVHE o038
|||||| 2lz|os (@) =0 NO HONVHE so8
|||||| zlz] o6 (2)  0=2 NO HONVHE 008
- - AN HAAERHEIED tlelvole|s|so[e]|9]30 o—~[0___7I-o sy
- —AA elviee|e|v|ae|e|v|se[2]|s]ie|e]a] iz zle|se|e|v|az|e|2|62 (1) VevY aNY
A--AnA e(v|ecle|vias|elv|sz|a]ls]z|z]a] 1o gle|so|e|v|ag|e|z|e69 () V—O+W+V oav
>o.u~znzno*zmo*zmo*zaoazuo*zmoﬁzno*zmo*zmo*zmouzmo*zmo‘»zao uoyerado Sjuowaup
's3002 A‘efed Z| oanpu) | eansoy | A'sav | x'sav |x‘eBea z| A (PuD | x (Pu) | pendws | -wnooy |ebea ©019Z | oInjosqy |ajeipeww)| SNOILLONYLSNI

NOLLIGNOD



MACHINE LANGUAGE FOR COMMODORE MACHINES

154

v’y 2anbi4

S3LAS ON #
S310A0 ON N

HO 3AISNTOX3 A

HILNIOd MOVLS HId AHOWIW SW

"1INS3H OY3Z HOJ A3XOIHD 38 LSNIN HOLYVINWNIOOV

QIVANI S| DV1d4 Z 300N TVIIO3A Ni J1 (¥)

9 118 AHOW3W W HO N $53HAQY IAILOIIS3 HId AHOWIN W "MOBHOS = LON AHHYD (€)
£ 119 AHOW3IN ZW anv v HOLVINWNOOY ¥ '39Vd LN3H34410 OL SHNOD0 HONVHE di .N., OL 2 aav

Q314IGON 10N — 10oVH1ENS - AX3ONI A '39Vd INVS OL SHNODO HONVHS i .N. OL | aav (2)
Q3HIGON aav + X X3aNI X *g3SSOHD S AHYANNOS 39Vvd 41 .N. OL ¢ aav (1)
- 1]z es VA VAL
...... 1lz| ve SX SXL
] NEIEZ veX VXL
- —an 1|elva XS XSL
- 1]e|sv AeY AVL
T - an v]g|w XV XVL
...... AGE zle|t8 |e]v]|o8 WeA ALS
...... z|v| %8 zle| o8 |e|v|38 WeX XS
...... cls|es|c|s|as|z|v|s6|2|o|16|2]|9]18 zle|ss|e|v]|ae Wev [753
[rE— NEIED -1 13s
R L|e}sd a-t a3s
R - v]2|ee ol 03§
PR clv|ed]elv]aa|e|v|sa|e]s|d|c|o|}a zle|saje|v|aalz]|z|6a|w) VD -W-V 08s
aNns Nu1Y sid

|||||| L|9] 09 (1-v 2unfii4 098)
ANI NHLY i)

(a36oLS3Y) t|9]ov (1-v eunbBiy a0g)
. NEAHEIES 1|z|va|2|S| % |E|9|39 rle=g-5l4| wuod
A elelae|z]o]ee v|z|ve|2)8| % |e|9] 3 rR-E 24 J0H
(a3do1s3k) L|v| & dSN Sl +s§ d1d
e A Liv| 89 VS Sl +8 vid
|||||| t|e] 80 St -8 SW—d dHd
...... 1|ef ey St - § SNV VHd
- clv|et]e|v|ar]|e]v|st |s|s]| |2]9] 0 z|e|so|e|vfao|z|z|e0 VNAY vHO
...... Liz|va NOILYH3dO ON dON
- —AAD AESR LI vle|wle|s|ov |e]9|av o-f0__7]-0 us1
T —an elv|oale|v|va zle|w |e|v]ov]e]|zlov (1) AN AGT
- ——-—AA|2|V]|098 elv|38 Zlefov|efv|av|e v | (1) XN xan
ANO10zZN|#|Nldo|#|n|do [#]N[do [#|N]do]#|N|do|#[n|do[#]|n]|dO|#|N|dO|#|N|dO|#]|N]dO|#|N|dO |#[N|dO |#|N]|dO uopesedg sjuoweul

$3009 A ‘eBeg Z| 1eapu) | eansied | A-sav | X'sav |x‘oBed ‘z| ACpu) | x(pu) | pouduy | ‘wnosy oy 0107 SNOLLONUYLSNI




B

Some
Characteristics
of Commodore

Machines

155



156 MACHINE LANGUAGE FOR COMMODORE MACHINES

PET—Original ROM

The first PET. It can be recognized by the message seen at power up:
**x*% COMMODORE BASIC **x*
using asterisks but with no identifying number after the word BASIC.

The original machine may be upgraded to Upgrade ROM by fitting a new
set of ROM chips. This is a good idea, since the original logic cannot
handle disk, does a poor job on cassette data files, has no built-in machine
language monitor, and has a zero page architecture that differs significantly
from all later PET/CBM'’s. The BASIC language on this unit is also limited;
arrays may not contain over 256 elements, for example.

This early machine is becoming rare.

PET/CBM—Upgrade ROM

The first PET that can handle disk. It can be recognized by the message
seen at power up:

### COMMODORE BASIC ###
using the numbers sign (or octothorpe, if you like).

This is much cleaner logic than the previous machine. Its internal structure
is similar to that of later PET/CBM units (the 4.0 machines), so that it has
much in common with them.

It does not have specialized disk commands such as CATALOG,
SCRATCH, or DLOAD (the 4.0 disk commands); but these are “conve-
nience” commands and the Upgrade ROM unit can do everything that the
later units do.

Upgrade ROM machines have a BASIC annoyance: under some circum-
stances, string variables need to be tidied up using a technique called
“garbage collection.” This takes place automatically when needed; but
when it does, the machine will freeze and seemingly will be dead for a
period that may last from a few seconds to as long as a half hour or more.

PET/CBM—4.0 ROM and 80 Characters

This class of machine has been a mainstay of the Commodore line for
years. It may be recognized by the message seen at power up:

***% COMMODORE BASIC 4.0 **x*
For the first time, a number appears in the message.



APPENDIX B 157

These machines are characterized by new BASIC disk commands
(CATALOG, etc.) and elimination of garbage-collection delays. Their in-
ternal architecture, especially zero page, is quite similar to the previous
Upgrade ROM computers. .

Some time after the initial production of 40-column machines, 80-column
machines were introduced, as well as a new 40-column version called the
“fat 40.” The later machines are distinguished by new screen/keyboard
features, most noticeable of which is that the cursor movement keys repeat
automatically.

Subsequently, two memory-expanded machines became available. The
8096 came fitted with 96K of RAM; the extra 64K was “bank switched”
into memory as needed in blocks of 16K. The SuperPET, too, had an
extra 64K of RAM that was bank switched in 4K blocks; it also came with
an additional microprocessor (the 6809) used primarily for implementing
high-level languages. Both the 8096 and the SuperPET may be used as
conventional CBM 8032 computers; the extra memory may be ignored.

VIC-20

The VIC-20 was a new design concept for Commodore. Color, graphics,
and sound were built into the computer. The memory architecture changed
radically. Zero-page locations were shifted significantly as compared to
previous PET/CBM computers.

BASIC reverted to Upgrade ROM style—no special disk commands and
potentially slow garbage collection. Other than that, BASIC was not trimmed.
All the functions and features remained, and some attractive new screen
editing features were added, such as automatic repeating keys.

The VIC comes with no machine language monitor; it's necessary to load
one. The SYS command has a new attractive feature that allows registers
A, X, and Y to be “preloaded” by POKEing values into addresses 780,
781, and 782. Location 783 could also be used to set the status register,
but that's dangerous; unless it's done carefully, the decimal mode or in-
terrupt disable flags might be set inadvertently.

The VIC-20 is somewhat vexing for machine language programming work.
Depending on the amount of extra memory fitted (none, 3K, or 8K and
over), the location of start-of-BASIC and of screen memory will vary.

Commodore 64

The Commodore 64 has much in common with the VIC-20. In particular,
its zero page organization is almost identical to that of VIC. The Com-



158

MACHINE LANGUAGE FOR COMMODORE MACHINES

modore 64 comes with a 6510 microprocessor; addresses 0 and 1 are
reserved for “bank switching” of memory.

BASIC is identical to that of the VIC—no special disk commands and
potentially slow garbage collection. There’s no built-in machine language
monitor, so one must be loaded. The SYS command, as with the VIC,
allows preloading of registers A, X, and Y if desired.

The Commodore 64 has a more stable architecture than the VIC. BASIC
starts in a consistent place, and the screen is always at hex 0400 unless
you move it. There’s a bank of memory at $C000 to $CFFF thatis not
used by the computer system; it's useful for staging machine language
coding.

The Commodore 64 is the first Commodore machine in which it is some-
times desirable to write totally in machine language, with no BASIC at all.
BASIC can be swapped out to release extra RAM, and large applications
(word processors, spread sheets, and so on) are likely to do this.

Commodore PLUS/4

Similar to the Commodore 64 in many ways. The processor is a 7501,
which has the same instruction set as the 6502. Screen memory and
BASIC RAM have been moved a little higher. BASIC itself is greatly ex-
panded.

Color and sound are implemented differently to the Commodore 64.

There’s a built-in machine language monitor with expanded features, such
as assemble and disassemble. This one is convenient for machine lan-
guage programmers.

The memory arrangement is more sophisticated than on previous ma-
chines; large implementations may require insight into the machine’s de-
tailed architecture.

B Series

The B-128, B-256, CBM-128, and CBM-256 were designed as successors
to the 80-column PET/CBM units. Architecture has been radically changed:
the processor is a 6509, memory is bank switched, and zero page is
significantly different from that of other models.

The cassette buffer is no longer at $0330, so that the examples given
in this book will need to be moved to a new part of RAM (addresses
$0400 to $07FF are available). Bank switching is more complex than
on other models. Beginners will find that there are more things to be kept




APPENDIX B 159

track of in this machine. If possible, beginners should try to find a simpler
computer on which to take their first steps.

Implementation of large-scale programs require setting up a “transfer se-
quence” program to link the program’s memory bank to that of the kernal.
Usually, a bootstrap program will be needed to set everything up.

A machine language monitor is built into this line of machines. A few new
commands have been made available: . V to switch banks, . @ to test
disk status.



160 MACHINE LANGUAGE FOR COMMODORE MACHINES

Commodore 128

The Commodore 128 is three machines in one.

1. In C64 mode, it is identical in almost all aspects to the Commodore 64. As
such, the machine in this mode has access to only 64K of memory, and
normally uses only standard Commodore 64 peripherals and screen formats.

2. In C128 mode, it is an extended version of the 64 with extra features: 128K
of memory (arranged in two banks of 64K per bank); the possibility of using
an 80-column screen,; the possibility of interfacing a disk unit that will operate
at a much higher speed than that of the Commodore 64.

The C128 has extensive hardware compatibility with the Commodore 64.
The 64's standard disk and printer can be hooked up in the usual way, but
with no speed improvement. Sound and 40-column graphics may be achieved
with POKEs to the same memory locations as for the 64.

The processor used for the C64 and C128 is the 8500, which has the same
instruction set as other machines such as the Commodore 64. Machine
language software is not generally upwardly compatible with the Commodore
64 because of differing RAM usage between the two machines.

3. CP/M mode uses the Z80-A microprocessor, whose machine language in-
struction set is completely different from that of the 650x. These are outside
the scope of this book.

Introduction (128)

The Commodore 128 may be used as if it were a Commodore 64 or in
CP/M mode. The following material deals with its use in C128 mode.

The Commodore 128 comes with a 8501 microprocessor. As in the Com-
modore 64, addresses 0 and 1 are reserved for control ports.

BASIC is rich with extra commands, and there’s a good built-in machine
language monitor, which will be useful for us. The SYS command allows
preloading of registers A, X, and Y if desired, and reading the contents
of these registers after a return to BASIC.

‘The Commodore 128 has a large amount of memory, and this calls for
an elaborate architecture. There is 128K of RAM, 44K of ROM, the input/
output chips, and the potential for much more ROM and RAM to be added
internally or through a cartridge. The processor can reach only 64K of
memory at a time, so that a sophisticated system of “memory banking”
must be used to get access to everything.

The term “bank” is misleading; the word “configuration” might be more
appropriate. For example, when a programmer calls for BANK 13 the



APPENDIX B — COMMODORE 128 161

computer supplies a configuration which is partly RAM and partly ROM. A
call for BANK 15 would invoke a different configuration of RAM and ROM.
Some of the RAM and ROM are the same as in the previous configuration.
The details are not important at this stage, but a drawing of some of the
popular “bank” configurations might be helpful.

In this book, we will be using Bank 15 almost exclusively. That will allow
us to put our own programs into RAM at a low address in memory, and
call upon the built-in programs that are stored in ROM at high memory
addresses.

Since the Commodore 128 contains a “built-in” Commodore 64, it will not
be surprising to learn that many of the interface chips—for video, sound,
and other purposes—are almost identical to those of the Commodore 64.

Do not worry if all this sounds technical. You will learn about many of
these features as you go.

Here’s the important thing to remember: when you reach the exercises
that are found in each chapter, check Appendix E, under Exercises for
the Commodore 128, to get the C128 version. The principles are the
same—we're doing the same thing using the same techniques—but small
adjustments are needed for the special characteristics of the Commodore
128.

If you have not read the main part of the book, stop here and return to
Chapter 1. When you're ready to dig for more technical information, you
will find it here, and in Appendix E and Appendix C and Appendix H. But
first: read, learn, and enjoy.

Choosing a Bank for Your Program (128)

You can move from one bank to another, but it takes extra work. It's best,
when you can, to pick an initial bank configuration that you can live with
during the running of your program. A quick rundown of the most popular
configurations follows. Choose Bank 15 if you can.

First, a general rule: Addresses O and 1 are reserved, and so are ad-
dresses hexadecimal FFOO to FFO4. These addresses don’t “bank” and
are always there. The 251 addresses above $FF04 are bank switched,
but are seldom useful to the average programmer. In a standard C128,
addresses from $3 to $03FF always refer to RAM Bank 0 regardless of
the bank selected.

Banks 0, 1, 2, and 3 are pure RAM—no ROM to help you do things, no
I/0 chips to help you input and output data. Banks 2 and 3 are reserved



162 MACHINE LANGUAGE FOR COMMODORE MACHINES

FEFF
$000<‘

“Bank 0"—Almost 64K of RAM. This is where BASIC programs are stored. RAM exists
above $FF04, but is not normally used.

A 0 BASIO)

“Bank 1"—Addresses from $0400 up are RAM 1, where BASIC variables, arrays, and strings
are stored. Below $0400, RAM 0 is used.

$D000 $E000

seogg\ $°°92\\ \' ’//

K—Kernal

K(I/O)—Kernal (Input/Output)

“Bank 13"—Below $8000, addresses RAM 0. Cartridge ROM (if present) occupies addresses
$8000 to $BFFF. From $000 to $FFFF, we have Kernal ROM, except for the area from
$D000 to $DFFF, which holds input/output chips.




APPENDIX B — COMMODORE 128 163

$D0Q0 $E000

C—Character generator ROM

“Bank 14" —Memory below $4000 is RAM 0. From $4000 up, we have ROM for BASIC and
Kernal, except for a slot from $D000 to $DFFF, which contains the character generator ROM.

$D000 $E000

1/O—Input/Output

“Bank 15"—Memory below $4000 is RAM 0. From $4000 up, we have ROM for BASIC and
Kernal except for a slot from $D000 to $DFFF, which contains input/output chips.



164

MACHINE LANGUAGE FOR COMMODORE MACHINES

for the addition of extra RAM. None of these are good configurations for
programs—you will always want to do input and output—but they are
often called in briefly to get or store data. Bank 0 uses the RAM that
normally holds BASIC programs; Bank 1 uses the RAM that holds BASIC
variables, arrays, and strings.

Banks 4, 5, 6, and 7 are similar to Banks 0-3 below address $8000. A
set of ROM lies over the RAM at addresses $8000 to $FFFF, except
for addresses $D000 to $DFFF which contain I/0 chip registers. This
ROM is internal, which means that it can be plugged into spare sockets
within the C128. Unless you plan to make your own ROM-like chips, in-
cluding your own Kernal program, stay away from these.

Banks 8, 9, 10, and 11 are similar to Banks 0-3 below address $8000.
A set of ROM lies over the RAM at addresses $8000 to $FFFF, except
for addresses $D000 to $DFFF which contain I/0 chip registers. This
ROM is external, which means that it is plugged into the cartridge port.
Again, stay away; using these configurations calls for you to supply the
entire logic of the machine.

Banks 12 and 13 are similar to Bank 0 below address $8000. A set of
ROM (internal for Bank 12, external for Bank 13) lies over the RAM at
addresses $8000 to $BFFF, and the standard Kernal ROM lies over
the RAM at addresses $C000 to $FFFF, except for addresses $D000
to $DFFF which contain I/0 chip registers. These look good for the
average application if you don’t need BASIC. You'll get lots of RAM memory
to play with, yet the I/0 chips and Kernal are there and available to you.

Banks 14 and 15 are similar to Bank 0 below address $4000. System
ROM (Basic and Kernal) lies over the RAM at addresses $4000 to $FFFF,
except for addresses $D000 to $DFFF which contain the character
generator ROM (Bank 14) or I/0 chip registers (Bank 15). These are the
easiest to use, especially Bank 15 with free access to I/0. The only
limitation is the more limited access to RAM for your program. Since you
still have over 12K of RRM to play with, that shouldn’t be a major problem.

On rare occasions you may find a need to tuck a program into high RAM.
That makes the job harder. You will certainly be located beneath ROMN,
and that means you need to call to make bank transfers as your program
calls the Kernal and returns. It can be done. But it is messier, and if you
can relocate your program to eliminate the problem, do so.



APPENDIX B — COMMODORE 128 165

Data in Other Banks (128)

Wherever your program ends up, you may find a need to reference data
in other banks—to load it, store it, or compare it. Three Kernal subroutines
are available to help you do these actions. They are:

Action Name Address
Load INDFET $FF74
Store INDSTA $FF?7?
Compare INDCMP $FF?A

All these use indirect, indexed addressing to reference the desired data.
Thus, you must set up the indirect address in zero page as usual and load
Y with the index value desired. You must give these subroutines two extra
pieces of information: where the indirect address is located, and what data
bank is desired.

The indirect address information is passed to the subroutine in one of
several ways:

For INDFET, load the address to register A;
For INDSTA, put the address into location $02B9;
For INDCMP, put the address into location $02C8.

Indicate the desired bank (0 to 15) by loading its value into register X.

Itis wise to lock out interrupts with SEI before starting any of the above
calling sequences; do not forget to release the interrupt with CLI after
the call. Chapter 6 has an example of these routines.

Jumping to Other Banks (C128)

A JMP is slightly easier than a J SR, but neither is hard. The call addresses

are:
Action Name Address Alternate
JMP JMPFAR $FF?1 $02E3
JSR JSRFAR $FFLE $02CD

You must place the address of your desired destination into addresses 2,
3, and 4. Oddly, the address is not “backwards” like most 650x addresses.
The bank number goes into address 2, the high address byte into 3, and
the low byte into address 4. Address S is a “status register” image, if you
want it; usually it is best to leave this value as zero. If you want to pass
information via the processor’s registers, the values must be stored in



166

MACHINE LANGUAGE FOR COMMODORE MACHINES

memory: A atk, X at 7, and Y at 8. Remember, you must set up addresses
2 to 4 before making the call.

The same setup applies to both JMPFAR and JSRFAR. About the al-
ternate address: you cannot JMP or JSR to $FF71 or $FFEE if the
ROM isn’t there—in which case you must use the alternate address in
low memory which is never switched. When you have everything set up,
you may JMP to JMPFAR, since you will not need to come back. You
must JSR to JSRFAR, and it's worth noting that this call will normally
return to Bank 15 only. If you want to look at registers after the return,
they will be saved in the locations noted above.

The Screen (C128)

The 40-column screen is mapped in the “usual” way. That is, whatever
characters are stored in screen memory (usually $0400 to $07E7) will
be seen on the screen, and whatever appears on the nongraphics screen
may be inspected at the corresponding point within memory. Material
dealing with how to use the 64’s video chip will normally be valid for the
128.

The 80-column screen is driven in an entirely different manner. The char-
acters on screen are mapped from memory—but not the computer's main
memory. Instead, the video controller uses a “private” memory. We have
to do a moderate amount of work to inspect or change this memory; a
minimum of six commands are usually needed to reference a screen
memory byte. For an illustration of the cumbersome method needed to
do this, look at the character stored in the second position of the top row
of the 80-column screen. The internal memory address of this character
is 0001 (high byte O, low byte 1); here we go. POKE 54784,18 : POKE
§4784,0 to set the high address byte. POKE 54784,19:POKE
64784,1 to set the low address byte. Finally, POKE
64784,31:PRINT PEEK(S47485). We'll finally get the character
(in screen code, not ASCII) ... but that's a lot of work compared to a
single PEEK on 40 columns.

This system is not all bad. For one thing, blocks of “private” memory can
be moved internally to provide for fast scrolling. For another, the 80-column
controller has no need to dip into main memory to keep its screen alive;
with the result that the 80-column machine can be much faster than the
40-column one, which needs to reference memory almost continuously.



Memory
Maps

A word about memory maps: they are always too big or too small for the
use you have in mind.

The beginner may feel swamped by the wealth of detail. There's no threat,
however. The information is there when you're ready for it. Browse through
the information; it may be thought-provoking. Try reading or changing
locations to see what happens.

The advanced programmer may want more: lengthy details on how each
location is used, which parts of the system use these locations, and so
on. Time and space don’t permit such detail.

The maps are intended to be fairly complete. Those who want more detail
may find them cryptic; but at least each location will be associated with a
type of activity. Different machines may be compared by checking their
respective maps. In some cases, programs may be converted with their
use, since they will help to find the corresponding memory location in the
target machine.

When you see a reference to a POKE or PEEK location—in this book or
from other sources—check it in these maps. They will help add perspec-
tive.

167



168 MACHINE LANGUAGE FOR COMMODORE MACHINES

“Original ROM” PET
The Great Zero-Page Hunt

Most users help themselves to the high part of the input buffer ($0040
to $0059, which is not used except when long lines of data are inputted.

Most zero-page locations may be copied to another part of memory so
that their original contents can be restored after use. However, the pro-
grammer should take great care in modifying the following locations, which
are critical within the operating system or BASIC: $03, $05, $E4 to
$L7,$7Ato $87, $89, $A2to $A3, $B?, $C2to $D9, $EO to $E2,

$FS.
Memory Map

Hex Decimal Description

pooo-b002 0-2 USR jump

ooao3 3 Current /O—prompt
suppress

ooaos 5 Cursor control position

poosa-0008 8-9 Integer value (for SYS, GOTO,
and so on)

000A-0059 10-849 Input buffer

pOSA qo Search character

00SB 91 Scan-between-quotes flag

posc qc Input buffer pointer; number of
subscripts

0asb 93 Default DIM flag

OOSE Q4 Type: FF = string;
00 =numeric

00SF qs Type: 80 =integer; 00 =floating
point

00&0 9k Flag: DATA scan; LIST quote;
memory

0061 q7? Subscript flag; FNX flag

00ke 98 0=INPUT; $40=GET;
$98=READ

00&3 99 ATN sign/comparison
evaluation flag

00OE4 100 Input flag (suppress output)

0065-0067 101-103 Pointers for descriptor stack



APPENDIX C — “ORIGINAL ROM” PET

169

Hex Decimal Description

00&&8-0070 104-112 Descriptor stack (temporary
strings)

0071-0074 113-116 Utility pointer area

00v?s-0074a 117-120 Product area for multiplication

007?A-007B l2e-1e23 Pointer: start-of-BASIC

oorCc-007D 124-125 Pointer: start-of-variables

DO?E-OO07F 126-12? Pointer: start-of-arrays

0oa0-0081 126-129 Pointer: end-of-arrays

0oace-00a3 130-1312 Pointer: string-storage (moving
down)

00a4-0085 132-133 Utility string pointer

0oaec-00av 134-135 Pointer: limit-of-memory

pgoaa-00a9 136-137 Current BASIC line number

0D08RA-00A8B 138-139 Previous BASIC line number

goac-00ap 140-141 Pointer:BASIC statement for
CONT

O0O0BE-DDAF 142-1413 Current DATA line number

0090-0091 144-145 Current DATA address

00g92-00493 146-147 Input vector

0094-0019s 148-149 Current variable name

009&-0097? 150-151 Current variable address

00[a-0099 152-1513 Variable pointer for FOR/NEXT

009A-0049B 154-15% Y-save; op-save; BASIC
pointer save

ooac 156 Comparison symbol
accumulator

009D-00AC2 157-1E2 Miscellaneous work area,
pointers, and so on

0O0A3-00AS 163-1E5 Jump vector for functions

O0AG-OO0AF 166-175 Miscellaneous numeric work
area

‘00BO 176 Accum#1: exponent

00B1-00B4 177?-14a0 Accum#1: mantissa

0O0BS 181 Accum#1:sign

0O0BE 1ae Series evaluation constant
pointer

00B? 143 Accum#1 hi-order (overflow)

00BA-00BD 184-189 Accum#2: exponent, and so on

OOBE 190 Sign comparison, Acc#1 versus
#2

OO0BF 191 Accum#1 lo-order (rounding)



170

MACHINE LANGUAGE FOR COMMODORE MACHINES

Hex Decimal Description

0oco-0o0cy 192-193 Cassette buffer length/series
pointer

ooce-00bA{ 194-217 CHRGET subroutine; get
BASIC character

ooca-00Cca 201-20¢2 BASIC pointer (within
subroutine)

O0ODA-OO0ODE clé-2ec Random number seed

ODEO-OOEL 224-225 Pointer to screen line

O0E2 2cb Position of cursor on above line

O0E3-00E4 2e’-22éb Utility pointer: tape, scroll

O0ES-00EG 229-230 Tape end address/end of
current program

OOE?-OOEA c3dl-232 Tape timing constants

ODEAQ ¢33 Tape buffer character

OOEA 234 Direct/programmed cursor:
0 =direct

OO0EB 235 Tape read timer 1 enabled

OO0EC 236 EOT received from tape

DOED 237 Read character error

ODEE 238 Number of characters in file
name

ODEF c39 Current file logical address

00FO 240 Current file secondary address

00F1 24l Current file device number

00Fe 24c Line margin

DOF3-00F4 243-244 Pointer: start of tape buffer

O0FS 245 Line where cursor lives

O0FE 24b Last key/checksum/
miscellaneous

O0OF?-00F8 247-248 Tape start address

O0OF9-00FA 249-250 File name pointer

O0OFB 251 Number of INSERTs
outstanding

00OFC c5¢e Write shift word/read character
in

OOFD 253 Tape blocks remaining to write/
read

OOFE 254 Serial word buffer

0100-010A 256-2kk STR$ work area

0100-013E 256-318 Tape read error log

0100-01FF 256-511 Processor stack




APPENDIX C — “ORIGINAL ROM” PET

171

Hex Decimal Description

0200-0202 512-513 Jiffy clock for TT and TI$

0203 515 Which key down: 255 =no key

0204 516 Shift key: 1 if depressed

0205-0206 517-518 Correction clock

0207-0208 519-520 Cassette status, #1 and #2

0209 521 Keyswitch PIA: STOP and
RVS flags

020A 522 Timing constant for tape

0c20B 523 Load = 0; verify =1

020cC 524 Status word ST

020D 525 Number of characters in
keyboard buffer

020E 52k Screen reverse flag

020F-0218 527-536 Keyboard input buffer

0219-021A 537-538 IRQ vector

021B-021C 539-540 BRK interrupt vector

021D 541 IEEE output: 255 =character
pending

021E 542 End-of-line-for-input pointer

0220-0221 544-545 Cursor log (row, column)

0222 5S4k IEEE output buffer

0223 547 Key image

0224 548 0 =flash cursor

0225 549 Cursor timing countdown

0226 550 Character under cursor

02e? 551 Cursor in blink phase

0c2ca 55¢ EOT received from tape

0229-0241 553-577 Screen line wrap table

0242-024B 578-5487° File logical address table

024C-0255S 588-597 File device number table

0256-025F 598-607 File secondary address table

0260 E06 Input from screen/from
keyboard

0261 6049 X save

02ke E10 How many open files

0263 E11 Input device, normally O

0264 El2 Output CMD device, normally 3

02E5S E13 Tape character parity

02kE E14 Byte-received flag

0268-02k9 BE15-E16 File name pointer; counter



172 MACHINE LANGUAGE FOR COMMODORE MACHINES

Hex Decimal Description

02&6C &20 Serial bit count

02kF E23 Cycle counter

0cv0 BE24 Tape writer countdown

02v1-0272 L25-k2k Tape buffer pointers, #1 and
#c

0273 BEe? Write leader count; read pass
1/2

pev4 &2 Write new byte; read error flag

0e27vs 29 Write start bit; read bit
sequence error

p276-0277 6£30-631 Error log pointers, pass 1/2

02ré E3d 0=scan/L—15 = count/
$40=Iload/$80=end

0279 £33 Write leader length; read
checksum

027?A-0339 B34-825 Tape#1 input buffer

033A-03F9 826-1017 Tape#¢2 input buffer

03FA-03FB 1018-1019 Monitor extension vector

0400-7FFF 1024-327L7 Available RAM including
expansion

A000-83E? 32?B-337?E7  Screen RAM memory

COO0-E7F8 49152-59384 BASIC ROMN; part of kernal
ROM

E810-E813 59408-59411 PIA 1 (6520)-keyboard
interface

E820-E823 59424-59427 PIA 2 (6520)-IEEE interface

EB40-EB84F 5945L-59471  VIA (6522)-Miscellaneous
interface, timers

FOOO-FFFF 61440-65535 Kernal ROM routines.

PIA and VIA charts are the same as shown for Upgrade/4.0 units.

UPGRADE and BASIC 4.0 Systems
The Great Zero-Page Hunt

Zero-page locations are tough to find in these areas. Locations $1F to
$27, $4B to $50, and $54 to $5D are work areas available for tem-

porary use. If tape is not being read or written, addresses $B1 to $C3
are available.



APPENDIX C — UPGRADE AND BASIC 4.0 SYSTEMS 173

Most zero-page locations may be copied to another part of memory so
that their original contents can be restored after use. The programmer
should take great care, however, in modifying the following locations, which
are critical within the operating system of BASIC: $10, $13 to $15,
$2810 $35,$37, $50t0 $51, $65, $70to $87, $8D to $BO, $C4

to $FA.

Memory Map

Where Upgrade ROM differs from 4.0, an asterisk (*) is shown and the 4.0
value is given. There are some differences in usage between the 40- and

80-column machines.

Hex Decimal Description

oDooo-pooe 0-2 USR jump

ooo3 3 Search character

0004 4 Scan-between-quotes flag

00oos 5 Input buffer pointer; number of
subscripts

000& b Default DI M flag

ooovw ? Type: FF =string; 00 =numeric

ooosa 8 Type: 80 =integer;
00 =floating point

0oao9q 9 Flag: DATA scan; LIST quote;
memory

oooa 10 Subscript flag; FNX flag

oooB 11 0=INPUT; $40=GET;
$98=READ

goaoc 12 ATN sign/comparison
evaluation flag

0oop-000F 13-15 *Disk status DS $ descriptor

0010 16 *Current 1/O device for prompt-
suppress

0011-0012 17-18 Integer value (for SYS, GOTO,
and so on)

0013-0015 19-21 Pointers for descriptor stack

001&6-DO1E 22-30 Descriptor stack (temporary
strings)

001F-002¢8 31-34 Utility pointer area

0023-00e? 35-39 Product area for multiplication

002a-00e29 40-41 Pointer: start-of-BASIC

002A-00CB 42-413 Pointer: start-of-variables

002C-00eD 44-45 Pointer: start-of-arrays



174 MACHINE LANGUAGE FOR COMMODORE MACHINES

Hex Decimal Description

O0C2E-DOCF 46-47 Pointer: end-of-arrays

0030-0031 48-49 Pointer: string-storage (moving
down)

0032-0033 50-51 Utility string pointer

0034-0035 52-53 Pointer: limit-of-memory

0036-0037 54-55 Current BASIC line number

0034-0039 SE-57 Previous BASIC line number

003R-003B 58-59 Pointer: BASIC statement for
CONT

003C-003D E0-E1 Current DATA line number

003E-003F E2-63 Current DATA address

0040-0041 BE4-E5S Input vector

0042-00413 BEE-E7 Current variable name

0046-0047 70-71 Variable pointer for FOR/NEXT

0048-00449 72-73 Y-save; op-save; BASIC
pointer save

004A 74 Comparison symbol
accumulator

0D04B-0050 ?75-40 Miscellaneous work area,
pointers, and so on

0051-0053 81-483 Jump vector for functions

0054-005D 84-93 Miscellaneous numeric work
area

OO0SE 94 Accum#1: exponent

O0SF-00&2 95-94 Accum#1: mantissa

D0O&3 99 Accum#1: sign

D0B4 100 Series evaluation constant
pointer

00ES 101 Accum#1 hi-order (overflow)

00t&-00EB 102-107 Accum#2: exponent, and so on

006C 108 Sign comparison, Acc#1 versus
#2

00ED 106 Accum#1 lo-order (rounding)

O0GE-DOEF 110-111 Cassette buffer length/series
pointer

0oovD-004a7 112-135 CHRGET subroutine; get
BASIC character

oor?-0078 119-1<20 BASIC pointer (within
subroutine)

posaa-00ac 136-140 Random number seed

goap-00aF 141-1413 Jiffy clock for TI and TI$




APPENDIX C — UPGRADE AND BASIC 4.0 SYSTEMS 175

Hex Decimal Description

0090-0091 144-145 IRQ vector

0092-00493 146-147 BRK interrupt vector

0094-0095s 148-1419 NMI interrupt vector

0096 150 Status word ST

ooq? 151 Which key down: 255 =no key

oo4qa 152 Shift key: 1 if depressed

0099-0049A 153-154 Correction clock

0049B 155 Keyswitch PIA: STOP and
RVS flags

oo4ac 156 Timing constant for tape

009D 157 Load = 0; verify=1

O09E 158 Number of characters in
keyboard buffer

009F 159 Screen reverse flag

DOAOD 160 IEEE output: 255 =character
pending

00Al 161 End-of-line-for-input pointer

O0A3-00A4 163-1k4 Cursor log (row, column)

00AS 165 IEEE output buffer

00AE 166 Key image

OO0Av 167 0 =flash cursor

00A8 168 Cursor timing countdown

00AA9 169 Character under cursor

OOAA 170 Cursor in blink phase

OO0AB 171 EOT received from tape

00AcC 17 Input from screen/from

h keyboard

DOAD 173 X save

OOARE 174 How many open files

OO0AF 175 Input device, normally O

ooBO 176 Output CMD device, normally 3

00BY1 1707 Tape character parity

0oBe 178 Byte-received flag

00B3 179 Logical address temporary save

00B4 140 Tape buffer character; MLM
command

00BS 181 File name pointer; MLM flag;
counter

00B?Y 183 Serial bit count

00BA9 185 Cycle counter

DOBA 186

Tape writer countdown



176 MACHINE LANGUAGE FOR COMMODORE MACHINES

Hex Decimal Description

00BB-DOBC 187-1868 Tape buffer pointers, #1 and
#2

00OBD 149 Write leader count; read pass
1/2

OOBE 190 Write new byte; read error flag

O0BF 191 Write start bit; read bit
sequence error

00CcO-00CY 192-193 Error log pointers, pass 1/2

poce 194 0=scan/L-15 =count/
$40=Iload/$80=end

oac3 195 Write leader length; read
checksum

0o0c4-00Cs 196-197 Pointer to screen line

0D0CE 1948 Position of cursor on above line

pocr-00ocs 199-200 Utility pointer: tape, scroll

ooca-00cCa 201-202 Tape end address/end of
current program

pocB-00CC 203-204 Tape timing constants

0ocd 205 0 =direct cursor; else
programmed

OO0CE c06 Tape read timer 1 enabled

0OCF c07? EOT received from tape

ooDOo 208 Read character error

00Dl 209 Number of characters in file
name

pobDe 210 Current file logical address

00D3 21l Current file secondary address

00D4 cle Current file device number

pODS 213 Right-hand window or line
margin

00D&-DOD? cl4-215 Pointer: start of tape buffer

oopa 216 Line'where cursor lives

0obAQ 217 Last key/checksum/
miscellaneous

O00ODA-0ODODB 218-219 File name pointer

gobc cc0 Number of INSERTs
outstanding

00DD 22l Write shift word/read character
in

OODE 2cd Tape blocks remaining to write/

read




APPENDIX C — UPGRADE AND BASIC 4.0 SYSTEMS 177

Hex Decimal Description
O0ODF 223 Serial word buffer
O0ED-DOF8 cc4-248 (40-column) Screen line wrap
table
O0EO-00EL 224-225 *(80-column) Top, bottom of
window
O0E2 226 *(80-column) Left window
margin
OO0E3 2ev *(80-column) Limit of keyboard
buffer
O0E4 228 *(80-column) Key repeat flag
DOES 229 *(80-column) Repeat countdown
O0EGL 230 *(80-column) New key marker
OO0E? 231 *(80-column) Chime time
O0EA& 232 *(80-column) HOME count
O0ES-00EA 233-234 *(80-column) Input vector
OO0EB-OOEC ¢35-236 *(80-column) Output vector
0OF9-00FA 249-250 Cassette status, #1 and #2
O0FB-00FC 251-252 MLM pointer/tape start address
ODFD-OO0FE 253-254 MLM, DOS pointer,
miscellaneous
0100-010A 256-2b6k STR$ work area, MLM work
0100-013E 256-3148 Tape read error log
0100-01FF 256-511 Processor stack
0200-0250 51e2-549c2 MLM work area; input buffer
0251-025A 593-602 File logical address table
025B-02k4 £E03-E61¢ File device number table
0265-02kE El3-Ee2e File secondary address table
02EF-0278 E23-63e Keyboard input buffer
027?A-0339 £34-625 Tape#1 input buffer
0D33A-03F9 826-1017 Tape#2 input buffer
0332-0380 826-89k "DOS work area
03EAqQ 1001 (Fat 40) New key marker
03EA 1002 (Fat 40) Key repeat countdown
03JEB 1003 (Fat 40) Keyboard buffer limit
D3EC 1004 (Fat 40) Chime time
D3ED 1005 (Fat 40) Decisecond timer
03EE 1006 (Fat 40) Key repeat flag
03JEE-03F? 1006-1015 (80-column) Tab stop table
D3EF 1007 (Fat 40) Tab work value
03F0-9 1008-1017 (Fat 40) Tab stops
03FA-03FB 1018-1019 Monitor extension vector



178

MACHINE LANGUAGE FOR COMMODORE MACHINES

Hex Decimal Description
03FC 1020 *|EEE timeout defeat
0400-?FFF 1024-32767 Available RAM including
expansion
8000-83E? 327k8-33767  (40-column) Video RAM
8000-87CF 327LA-34767  “(80-column) Video RAM
qOo00-aFFF 368L4-45055  Available ROM expansion area
BOOO-E?FF 45056-59391 BASIC ROMN, part of kernal
E810-EA13 59408-59411 PIA l-keyboard I/O
EA820-EA23 59424-59427 PIA 2-IEEE-488 1/10
EB840-E84F 59456-59471  VIA-I/O and timers
EAA0D-EAAL 59520-59521  (80-column and Fat 40) CRT
controller
FOOO-FFFF b1440-65535 Kernal ROM
6520
E810 Dﬁg;i’:‘s’ EOl in T;’;e Switch se;;" Keyboard Row Select 50408
Tape#1 In (Screen Blank—Orig DDRA Tape#1 Input L
B8 | Latch ROM) EOI Out | Access Control 59409
E812 Keyboard Input for selected row 59410
Retrace Cassette#1 Motor DDRB Retrace Interrupt
E813 Latch Output Access Control Se4mt
Figure C.1
PIA 1 chart
6520
E820 |EEE-488 Input 59424
Es21 | ATN Int NDAG Out DDRA | 27N Int Control | 59425
Access
E822 |EEE-488 Output 59426
E823 | SRQ Int DAV Out DDRB | S8R int Control | 59427
Access
Figure C.2

PIA 2 chart



APPENDIX C — CBM 8032 AND FAT-40

179

6522
—_— ——— | Retrace | Tape#2 | Tape |—= NRFD |o—=
E840 | DAV In |NRFD In In Motor | Output ATN Out out NDAC In
E841 Unused (See E84F)
E842 Data Direction Register B (for E840)
E843 Data Direction Register A (for E84F)
E844 | Timer 1
E845 |
E846 Timer 1 Latch
E847
E848 ‘ Timer 2
E849
E84A Shift Register (unused)
E84B | TiContol |T2Cont| Shift Register Contol | oo oMo
CA1
CB1 Cntl CA2 Control
E84C CB2 (PUP) Control Tape#2 Graphics/Text Mode (PUP)
Control
E84D Irqg Stats| Timer | Timer | CB1 CB2 SR CA1 CA2
ES4E - 1 2 Tape#2 | (PUB) Unused (PUP) | G/T Mode
Int Enabl Int Int Int Int Int unused. .
E846F Parallel User Port Data Register PA
Figure C.3
VIA chart

CBM 8032 and FAT-40
6545 CRT Controller

NOTES: 1.
2.

3.

Registers are write-only.
Avoid extreme changes in Register 0. CRT damage could
result.
Register 0 will adjust scan to allow interfacing to external
monitor.
Register 12, Bit 4, will “invert” the video signal.
Register 12, Bit 5, switches to an alternate character set. The
character set is not implemented on most machines except
Super-PET.

59456

59457
59458
59459

59460
59461
59462
59463
59464
59465
59466

59467

59468

59469

59470

59471



180 MACHINE LANGUAGE FOR COMMODORE MACHINES

$E880 $E881 TYPICAL VALUES
59520 59521 (DECIMAL)
i { TEXT GRAPHICS
0 HORIZONTAL TOTAL 49 49
1 HOR. CHAR. DISPLAYED 40 40
2 H. SYNC POSITION 41 41
3 v  SYNC V\LIDTH H 15 15
4 VERTICAL TOTAL 32 40
5 VERT. TOT. ADJUST 3 5
6 VERTICAL DISPLAYED 25 25
7 VERT. SYNC POSITION 29 33
8 MODE 0 o
9 SCAN LINES 9 7
10| 0 0
1 CURSOR START (UNUSED)— 0 0
12 CIR| pispay__ | 16 16
13 ADDRESS 0 0

NOTES: 1. REGISTERS ARE WRITE-ONLY

2. AVOID EXTREME CHANGES IN
REGISTER, OR CRT DAMAGE
COULD RESULT

3. REGISTER O WILL ADJUST SCAN
TO ALLOW INTERFACING TO
EXTERNAL MONITOR

4. REGISTER 12, BIT 4, WILL “INVERT"
THE VIDEO SIGNAL.

5. REGISTER 12, BIT 5, SWITCHES TO
AN ALTERNATE CHARACTER SET.
THE CHARACTER SET IS NOT
IMPLEMENTED ON MOST MACHINES
EXCEPT SUPER-PET.

Figure C.4




APPENDIX C — VIC 20 181

VIC-20
The Great Zero-Page Hunt

Locations $FC to $FF are available. Locations $22 to $2A, $4E to
$53, and $57 to $&0 are work areas available for temporary use.

Most zero-page locations may be copied to another part of memory so
that their original contents can be restored after use. However, the pro-
grammer should take great care in modifying the following locations, which
are critical within the operating system or BASIC: $13, $1E to $18,
$2Bto $38, $3R, $53to $54, $L48, $73to $8A, $90to $9A, $A0
to $Ac, $BA to $BA, $CS to $F4.

Memory Map

Hex Decimal Description

pooo-000e 0-2 USR jump

0003-0004 3-4 Float-fixed vector

0005-0006 5-6 Fixed-float vector

ooaw K Search character

oooa a Scan-quotes flag

ooog 9 TAB column save

oooA 10 0=LOAD, L=VERIFY

000B 11 Input buffer pointer/number of
subscripts

oooc 12 Default DI M flag

000D 13 Type: FF =string; 00 = numeric

O00E 14 Type: 80 =integer;
00 =floating point

O00F 15 DATA scan/LIST quote/
memory flag

po10 16 Subscript/ FNx flag

0011 17 D=INPUT; $40=GET;
$98=READ

001e 18 ATN sign/Comparison
evaluation flag

0013 19 Current 1/0O prompt flag

0014-0015 c¢0-21 Integer value

0016 ce Pointer: temporary string stack

0017?-00168 23-c4 Last temporary string vector



MACHINE LANGUAGE FOR COMMODORE MACHINES

Hex Decimal Description
0019-0021 25-33 Stack for temporary strings
0022-0025 34-37 Utility pointer area
00ce-002A 3a-4¢2 Product area for multiplication
002B-002C 43-44 Pointer: start-of-BASIC
002D-002E 45-46 Pointer: start-of-variables
0D2F-0030 47-468 Pointer: start-of-arrays
003i-0032 49-50 Pointer: end-of-arrays
0033-0034 51-5¢ Pointer: string-storage (moving
down)
0035-0036 53-54 Utility string pointer
0037-00348 55-5% Pointer: limit-of-memory
0039-003A 57-58 Current BASIC line number
003B-003C 59-&0 Previous BASIC line number
003D-003E El-k2 Pointer: BASIC statement for
CONT
003F-0040 E3-E4 Current DATA line number
0041-004¢ E5-k6 Current DATA address
0043-0044 E7-E8 Input vector
0045-0046 59-70 Current variable name
0047-0048 ‘L1-7¢2 Current variable address
0049-004A ?3-74 Variable pointer for FOR/NEXT
004B-004C ?5-76 Y-save; op-save; BASIC
pointer save
004D Il Comparison symbol
accumulator
0OD4E-0053 78-83 Miscellaneous work area,
pointers, and so on
0054-0056 84-86 Jump vector for functions
00S57-0060 87-96 Miscellaneous numeric work
area
0061 97 Accum#1: exponent
0062-006S 98-101 Accum#1: mantissa
00BG ' 102 Accum#1: sign
0067 103 Series evaluation constant
pointer
DOE8 104 Accum#1 hi-order (overflow)
0069-00BE 105-110 Accum#:2: exponent, and so on
OO&F 111 Sign comparison, Acc#1 versus
#c
oova 112 Accum#1 lo-order (rounding)



APPENDIX C — VIC 20

183

Hex Decimal Description

0071-D0O7?E 113-114 Cassette buffer length/series
pointer

0D07?3-008A 115-138 CHRGET subroutine; get
BASIC character

00?R-007B 122-123 BASIC pointer (within
subroutine)

008B-00A8F 139-1413 RND seed value

0090 144 Status word ST

p09lL 145 Keyswitch PIA: STOP and
RVS flags

00Qae 146 Timing constant for tape

0o0AQa3 147 Load=0; verify=1

0094 148 Serial output: deferred character
flag

0o4qs 149 Serial deferred character

0096 150 Tape EOT received

pogr 151 Register save

00498 152 How many open files

00499 153 Input device, normally D

0049A 154 Output CMD device, normally 3

00aB 155 Tape character parity

oogc 156 Byte-received flag

0o0ap 157 Direct=$80/RUN =0 output
control

009E 158 Tape pass 1 error log/character
buffer

0oQr 159 Tape pass 2 error log corrected

O0AD-0ODAC 1E0-1E2 Jiffy Clock HML

OOA3 1E3 Serial bit count/EOT flag

00RA4 1E4 Cycle count

OOAS 1E5S Countdown, tape write/bit count

O0AG 166 Tape buffer pointer

ooa? 167 Tape write leader count/read
pass/inbit

00OA8 1E8 Tape write new byte/read error/
inbit count

00AA9q 169 Write start bit/read bit error/stbit

00AA 170 Tape Scan;Cnt;Load;End/byte
assembly

OOAB 171 Write lead length/read

checksum/parity



184 MACHINE LANGUAGE FOR COMMODORE MACHINES

Hex Decimal Description

O0OAC-00AD l72-173 Pointer: tape buffer, scrolling

ODAE-DOAF 174-175S Tape end address/end of
program

00BO-00B1 176-177 Tape timing constants

00Be2-00B13 178-179 Pointer: start of tape buffer

D0B4 180 1 =tape timer enabled; bit count

00BS 181 Tape EOT/RS232 next bit to
send

00BE 1482 Read character error/outbyte
buffer

ooB? 143 Number of characters in file
name

00BAa 184 Current logical file

0oB9 185 Current secondary address

00BA 186 Current device

00OBB-0O0OBC 187-1488 Pointer to file name

00BD 189 Write shift word/read input

“char

O0OBE 190 Number of blocks remaining to
write/read

OOBF 1491 Serial word buffer

ooco 192 Tape motor interlock

0O0ci-00ce 193-194 I/O start address

0DC3-00cC4 195-19& Kernal setup pointer

00cCs 197 Last key pressed

00Ck 198 Number of characters in
keyboard buffer

ooce 199 Screen reverse flag

poca 200 End-of-line for input pointer

pgoca-0o0oca 201-202 Input cursor log (row, column)

00CB 203 Which key: &4 if no key

oocc 204 0 =flash cursor

0DCD 205 Cursor timing countdown

OOCE 20t Character under cursor

OOCF c07 Cursor in blink phase

00DO 208 Input from screen/from
keyboard

00D1-00D2 209-210 Pointer to screen line

00D3 21l Position of cursor on above line



APPENDIX C — VIC 20

185

Hex Decimal Description
00D4 cle 0 =direct cursor; else
programmed
00Ds 13 Current screen line length
00Dk 2l4 Row where cursor lives
o0D? 215 Last inkey/checksum/buffer
00Da 21k Number of INSERTs
outstanding
00D9-00FD 217-240 Screen link table
00F1 24l Dummy screen link
00OFe c4c Screen row marker
00F3-00F4 243-244 Screen color pointer
O0F5-00F6 c45-24k Keyboard pointer
00F?-00F8 247-c48 RS-232 Rev pntr
OO0F9-00FA £49-250 RS-232 Tx pntr
O0OFF-010A 256-2kk Floating to ASCII work area
0100-103E 256-3148 Tape error log
0100-01FF 256-511 Processor stack area
0200-0258 512-t00 BASIC input buffer
0259-02k2 £01-610 Logical file table
0263-02kC E11-E20 Device number table
026D-027E &E2l-630 Secondary address table
O0e2??-02a0 6£31-640 Keyboard buffer
02a1-02ae BE41-E42 Start of BASIC memory
0283-0284 B43-E44 Top of BASIC memory
02485 E4S Serial bus timeout flag
0286 B4k Current color code
02487 B47 Color under cursor
0288 E48 Screen memory page
0289 E49 Maximum size of keyboard
buffer
0caa &S0 Repeat all keys
0cAaB E51 Repeat speed counter
02ac ESe Repeat delay counter
02aD E53 Keyboard shift/control flag
028E ES4 Last shift pattern
028F-02490 ES5-E5E Keyboard table setup pointer
0291 ES? Keymode (Kattacanna)
029¢e ES8 0 =scroll enable
02493 659 RS-232 chip control
0294 EED RS-232 chip command



MACHINE LANGUAGE FOR COMMODORE MACHINES

Hex Decimal Description

0295-0296 bbl-EEC Bit timing

peagv bE3 RS-232 status

02aé 51574 Number of bits to send
0299-0249A EES RS-232 speed/code

029B B&7? RS-232 receive pointer
D24dc bEA RS-232 input pointer
029D 669 RS-232 transmit pointer
029E &70 RS-232 output pointer
029F-02A0 E?1-672 IRQ save during tape /O
0300-0301 768-769 Error message link
0302-0303 ?770-771 BASIC warm start link
0304-0305 7ee-773 Crunch BASIC tokens link
0D306-0307 ?774-775 Print tokens link
0308-0309 76777 Start new BASIC code link
030A-030B ?778-7749 Get arithmetic element link
o30cC 7a0 SYS A-reg save

030D 781 SYS X-reg save

030E 7ae SYS Y-reg save

030F 7483 SYS status reg save
0314-0315 7848-7849 IRQ vector (EABF)
0316-0317 790-791 Break interrupt vector (FED2)
0318-0319 792-783 NMI interrupt vector (FEAD)
031A-031B 794-7495 OPEN vector (F40R)
031C-031D 796-797 CLOSE vector (F34AR)
031E-031F ?798-7499 Set-input vector (F2C7)
0320-0321 600-6012 Set-output vector (F309)
0322-0323 a02-4803 Restore 1/0 vector (F3F3)
0324-03e5 a04-805 INPUT vector (FEZOE)
032&-0327 a0&-a0v Output vector (F278)
0328-0329 a0a-609 Test-STOP vector (F?70)
D32A-03EB 810-811 GET vector (F1FS)
032C-03eD 812-613 Abort I/0 vector (FIEF)
032E-032F 8414-815 USR vector (FED2)
0330-0331 816-817 LOAD link

0332-0333 818-819 SAVE link

033C-03FB 826-1019 Cassette buffer
0D400-0FFF 1024-4095 3K RAM expansion area
1000-1FFF 4096-8191 Normal BASIC memory
2000-?FFF 8192-32767 Memory expansion area

8000-8FFF 32768-368L3

Character bit maps (ROM)



APPENDIX C — VIC 20

187

Hex

Decimal

Description

q000-900F
9110-912F
9120-912F
9400-9SFF
qL00-97FF
AODOO-BFFF
COOO0-FFFF

3e864-364879
37136-37151
37152-37167
37?866-36399
36400-36911
409E60-49151
49152-65535

Video interface chip (6560)
VIA (6522) interface-NMI
VIA (6522) interface-IRQ
Alternate color nybble area
Main color nybble area
Plug-in ROM area

ROM: BASIC and operating
system



188

MACHINE LANGUAGE FOR COMMODORE MACHINES

VIC 6560 Chip

Inter-
$9000 lace Left Margin (=5)
$9001 Top Margin (=25)
Scrn Ad
$9002 bit 9 # Columns (=22)
bit 0 Double
$9003 # Rows (=23) Char
$9004 Input Raster Value: bits 8—1
Screen Address Character Address
$9005 bits 13—10 bits 13-10
$9006 Light Pen Input Horizontal
$9007 [~ 9 P Vertical
$9008 Paddle Inputs X
$9009 | P Y —]
$900A | ON | Voice 1 ]
$900B | ON | Voice 2 Frequency ]
$900C | ON | Voice 3
$900D ON | Noise
$900E Multi-Colour Mode (=0) Sound Amplitude
$900F Screen Background Color F/gfgkr;d Frame Color

Figure C.5

36864
36865

36866

36867
36868

36869

36870
36871

36872
36873

36874
36875
36876
36877
36878

36879



APPENDIX C — VIC 6522 189

VIC 6522 Usage

DSR ’ cTS ’ I DCD* | RIF | DTR l RTS | Data
in in in in out out in
RS-232 Interface

39110 or, Parallel User Port 37136
$9111 Unused — see $911F 37137
$9112 DDRB (for $9110) 37138
$9113 DDRA (for $911F) 37139
9114 | T-L RS-232 Send Speed; — 37_140
$9115 | T1-H Tape Write Timing __| 874
$9116 | T1 Latch L | 37142
$9117 | T1 Latch H 37143
$9118 | T2l RS-232 Input timing _| 37144
$9119 | T2-H 37145
$911A Shift Register (*unused) 37146
$911B| TicControl |T2Cnt|  Shift Reg Control | PBLE | PALE | 37147
$911C| CB2:RS-232Send | CB1C| CA2: Tape motorctl | CA1Ctl| 37148
$911D CB1: l CA1: 37149

NMI: T1 T2 RS-232 Restore
$911E in | button 37150

ATN | Tape | - Joysticks --------- Serial | Serial
$911F | out | sense | Button | Left I Down | Up | Datain | Clkin | 37151

Figure C.6



190

MACHINE LANGUAGE FOR COMMODORE MACHINES

VIC 6522 Usage

$9120

$9121
$9122
$9123
$9124
$9125
$9126
$9127
$9128
$9129
$912A
$9128B

$912C

$912D
$912E

$912F

Joystk
| Right

Tape
Out

Keyboard Row Select

Keyboard Column Input

DDRB (for $9120)

DDRA (for $9121)
| T1L Cassette Tape Read:; —
| T1-H Keyboard & Clock —
| T1-L Lateh Interrupt Timing —
T1-H Latch
| T2-L Serial Bus Timing ]
T2-H Tape R/W Timing
Shift Register (*Unused)
T1 Control T2 Ctrl [ Shift Register Contrl I PB LE | PALE
CB1 CA1
Serial Bus Data Out Contl Serial Clock Line out | Contl
CB1:* I CA1:
IRQ: T T2 SRQ in Tape in

*Unused: see $9121

Figure C.7

37152

37153
37154
37155
37156
37157
37158
37159
37160
37161
37162
37163

37164

37165
37166

37167




APPENDIX C — COMMODORE 64 191

Commodore 64
The Great Zero-Page Hunt:

Locations $FC to $FF are available. Locations $22 to $2A, $4E to
$53, and $57 to $&0 are work areas available for temporary use.

Most zero-page locations may be copied to another part of memory so
that their original contents can be restored after use. The programmer
should take great care, however, in modifying the following locations, which
are critical within the operating system or BASIC: $13, $1E to $18,
$2Bto $348, $3A, $53to $54, $648, $73to $8A, $90to $9A, $AD
to $Ac, $BA to $BA, $CS to $F4.

Memory Map

Hex Decimal Description

oooao 0 Chip directional register

0001 1 Chip 1/0; memory and tape
control

0003-0004 3-4 Float-fixed vector

0005-0006 5-6 Fixed-float vector

ooaow ? Search character

oooa 8 Scan-quotes flag

ooog 9 TAB column save

00OOA 10 0=LOAD, L=VERIFY

0ooB 11 Input buffer pointer/number of
subscripts

oooc e Default DIM flag

goobD 13 Type: $ FF = string;
00 = numeric

O0O0E 14 Type: $ 80 =integer;
00 = floating point

000OF 15 DATA scan/LIST quote/memory
flag

o010 16 Subscript/FNx flag

0011 17 0=INPUT;$40=GET;
$98=READ

001e 18 ATN sign/Comparison
evaluation flag

0013 19 Current /O prompt flag

0014-0015 c0-21 Integer value



192 MACHINE LANGUAGE FOR COMMODORE MACHINES

Hex Decimal Description

0016 1= Pointer: temporary string stack

001?-0018 23-24 Last temporary string vector

0019-0021 25-33 Stack for temporary strings

0o02e-0025 34-37 Utility pointer area

0026-00c2A 38-42 Product area for multiplication

00eB-002C 43-44 Pointer: start-of-BASIC

002D-002E 45-4k Pointer: start-of-variables

002F-0030 47-48 Pointer: start-of-arrays

0031-003e2 49-50 Pointer: end-of-arrays

0033-0034 51-5¢2 Pointer: string-storage (moving
down)

0035-0036 53-54 Utility string pointer

po37-0038 55-56 Pointer: limit-of-memory

0039-003A 57-58 Current BASIC line number

003B-003C - 59-&0 Previous BASIC line number

003D-D03E BEl-&2 Pointer: BASIC statement for
CONT

003F-0040 £3-E4 Current DATA line number

0D41-0042 E5-bE Current DATA address

0043-0044 E7-E6 Input vector

0D045-0046 E9-70 Current variable name

0047-0048 71-7¢ Current variable address

0049-004A ?3-74 Variable pointer for FOR/NEXT

004B-004C 75-76 Y-save; op-save; BASIC
pointer save

004D s Comparison symbol
accumulator

004E-0053 78-83 Miscellaneous work area,
pointers, and so on

0054-0056 84-86 Jump vector for functions

0057?-00ED 87-96 Miscellaneous numeric work
area

0061 q7 Accum#1: exponent

DO0&2-00kS 96-101 Accum#1: mantissa

0066 102 Accum#1: sign

00e7 103 Series evaluation constant
pointer

00&48 104 Accum#1 hi-order (overflow)

00&9-00EE 105-110 Accum#2: exponent, and so on

OOG&F 111 Sign comparison, Acc#1 versus
#2

oovOo 112 Accum#1 lo-order (rounding)




APPENDIX C — COMMODORE 64

193

Hex Decimal Description

0071-007¢& 113-114 Cassette buffer length/series
pointer

0D?3-D06A 115-1368 CHRGET subroutine; get
BASIC character

DO?A-007B 122-123 BASIC pointer (within
subroutine)

0DaB-00AF 139-1413 RND seed value

ooga 144 Status word ST

0091 145 Keyswitch PTA: STOP and
RVS flags

ooge 146 Timing constant for tape

0oa3 147 Load=0;verify=1

0094 148 Serial output: deferred character
flag

0045 149 Serial deferred character

00da6 150 Tape EOT received

ooqr 151 Register save

0094 152 How many open files

0oA9q 153 Input device, normally O

0o9Aa 154 Output CMD device, normally 3

009aB 155 Tape character parity

opac 156 Byte-received flag

009D 157 Direct=$80/RUN =0 output
control

009E 158 Tape pass 1 error log/character
buffer

009F 159 Tape pass 2 error log corrected

DDAD-OOAR 160-1k2 Jiffy Clock HML

00A3 163 Serial bit count/EOT flag

00R4 1E4 Cycle count

O0AS 1E5 Countdown, tape write/bit count

ODAG 1EE Tape buffer pointer

ooAav? 167 Tape write leader count/read
pass/inbit

0ORaa 1E8 Tape write new byte/read
error/inbit count

00AA9q 169 Write start bit/read bit error/stbit

OOAA 170 Tape Scan;Cnt;Load;
End/byte assembly

OOAB 171 Write lead length/read
checksum/parity

ODAC-00AD 172-173 Pointer: tape buffer, scrolling



194 MACHINE LANGUAGE FOR COMMODORE MACHINES

Hex Decimal Description
ODOAE-OOAF 174-175 Tape end address/end of
progran
00BO-00B1 176-277 Tape timing constants
00B2-00B3 178-1279 Pointer: start of tape buffer
D0OB4 140 1= tape timer enabled; bit
count
00BS 181 Tape EOT/RS232 next bit to
send
0OBE 182 Read character error/outbyte
buffer
00B? 143 Number of characters in file
name
0DBA 184 Current logical file
00BA9 1485 Current secondary address
OO0OBA 186 Current device
00BB-00OBC 147-1488 Pointer to file name
O0BD 189 Write shift word/read input char
DOBE 190 Number of blocks remaining to
write/read
OOBF 191 Serial word buffer
ooco 19¢ Tape motor interlock
ooci-00oce 193-194 I/O start address
00C3-00C4 195-196 Kernel setup pointer
00Cs 197 Last key pressed
00Ck 1948 Number of characters in
keyboard buffer
goce 1499 Screen reverse flag
pOoca 200 End-of-line for input pointer
poca-00ca 201-202 Input cursor log (row, column)
00CB c03 Which key: £4 if no key
pocc 204 0 =flash cursor
0ocCD c20s Cursor timing countdown
OOCE 20k Character under cursor
O0OCF 207 Cursor in blink phase
oobpao 208 Input from screen/from
keyboard
00D1-00De 209-210 Pointer to screen line
oobp3 21l Position of cursor on above line
00oD4 clce 0 =direct cursor; else
programmed
00DS cl13 Current screen line length



APPENDIX C — COMMODORE 64

195

Hex Decimal Description
00Dk 214 Row where cursor lives
aln)nirg 215 Last inkey/checksum/buffer
oopa 21k Number of INSERTs
outstanding
00D9-00Fe clv-242 Screen line link table
00F3-00F4 243-244 Screen color pointer
O0F5-00FG 245-24t6 Keyboard pointer
DOF?-00F8 247-248 RS-232 Rcv pntr
0DF9-00FA 249-250 RS-232 Tx pntr
0O0FF-010A 256-2kk Floating to ASCII work area
0100-103E 256-318 Tape error log
0100-01FF 256-511 Processor stack area
020D0-0258 512-600 BASIC input buffer
0259-02ke £E01-610 Logical file table
0D263-02kC E11l-E20 Device number table
026D-027k E21-630 Secondary address table
D277-0280 £E31-640 Keyboard buffer
0281-0248¢e B41-b42 Start of BASIC memory
02a83-0284 B43-644 Top of BASIC memory
0245 B45 Serial bus timeout flag
D28k B4E Current color code
0287 E47? Color under cursor
024848 E48 Screen memory page
02489 E49 Maximum size of keyboard
buffer
0248A £SO Repeat all keys
0c28B ES1 Repeat speed counter
02ac ES2 Repeat delay counter
028D ES3 Keyboard Shift/Control flag
028E E54 Last shift pattern
024F-0290 E55-E56 Keyboard table setup pointer
0291 ES7? Keyboard shift mode
0249e ESA 0 =scroll enable
0293 E59 RS-232 control reg
0294 &&0 RS-232 command reg
0295-0296 EEl-EEE Bit timing
0297 EE3 RS-232 status
02948 Eb4 Number of bits to send
0299-029A EES RS-232 speed/code
029B EB? RS232 receive pointer
D2acC EE8 RS232 input pointer




MACHINE LANGUAGE FOR COMMODORE MACHINES

Hex Decimal Description

029D EE9 RS232 transmit pointer
029E &70 RS232 output pointer
029F-02A0 E?1-E72 IRQ save during tape /O
0c2Al E73 CIA 2 (NMI) interrupt control
Oc2Ae &74 CIA 1 timer A control log
02A3 E7S CIA 1 interrupt Log
02R4 E7E CIA 1 timer A enabled flag
02AS E77 Screen row marker
02CO0-02FE ?04-7E6 (Sprite 7)

0300-0301 768-769 Error message link
0302-03013 ?°0-771 BASIC warm start link
0304-0305 ?7e-773 Crunch BASIC tokens link
0306-0307 ?P4-775 Print tokens link
0308-0309 ?P76-777 Start new BASIC code link
030A-030B 778-779 Get arithmetic element link
03ac 780 SYS A-reg save

030D 781 SYS X-reg save

030E rac SYS Y-reg save

030F 783 SYS status reg save
0310-031¢ 784-785 USR function jump (B248)
0314-0315 788-7489 IRQ vector (ER3D)
0316-03127 ?790-79%1 Break interrupt vector (FEEE)
0318-0319 792-7493 NMI interrupt vector (FE47)
D31A-031B 794-795 OPEN vector (F34R)
031C-031D 796-797 CLOSE vector (F291)
031E-031F ?798-7949 Set-input vector (F20OE)
0320-0321 600-601 Set-output vector (F250)
p322-03e3 602-803 Restore 1/0 vector (F333)
0324-0325 604-805 Input vector (F157)
032&-0327 éa06-807 Output vector (FLCA)
0328-03e9 8068-809 Test-STOP vector (FEED)
032A-03¢2B 810-811 GET vector (F13E)
032Cc-03eD 812-813 Abort 1/0 vector (F32F)
032E-032F 814-815 USR vector (FEEE)
0330-0331 816-817 LOAD link (F4AS)
0332-0333 818-819 SAVE link (FSED)
D33C-03FB 828-1019 Cassette buffer
0340-037E 832-894 (Sprite 1.3)

0360-03BE 696-9568 (Sprite 1.4)

03CO-D3FE qe0-1022 (Sprite 15)

0400-07FF 1024-2047 Screen memory
0800-9FFF 2048-40959 BASIC RAM memory



APPENDIX C — COMMODORE 64

197

Hex

Decimal

Description

6000-9FFF
AO0OO0-BFFF
AOOO-BFFF
CO00-CFFF

DOOD-DO2E
D400-D41C
DAOO-DBFF
DCOO-DCOF

DDOO-DDOF
DOOO-DFFF

EOOO-FFFF
EOOO-FFFF

327668-40959
40960-49151
40960-59151
49152-53247

53248-53294
54272-54300
55296-56319
56320-56335

SE576-56591
53248-53294

57344-65535
S7344-65535

Alternative: ROM plug-in area
ROM: BASIC

Alternate: RAM

RAM memory, including
alternative

Video chip (ESEER)

Sound chip (581 SID)
Color nybble memory

Interface chip 1, IRQ (E52k
CId)

Interface chip 2, NMI (E52k
CIA)

Alternative: character set
ROM: operating system
Alternative: RAM



198 MACHINE LANGUAGE FOR COMMODORE MACHINES

CIA 1 (IRQ) (6526) Commodore 64
Paddle SEL Joystick 0
$DCO00 A% A.L.D.U PRA 56320
Keyboard Row Select (inverted)
$DCO1 | — PRB 563
21
Keyboard Column Read

$DCO02 $FF — All Output DDRA 56322
$DCO03 $00 — All Input DDRB 56323
$DC04 - Timer A | TAL 56324
$DCO05 TAH 56325
$DCO06 | Timer B | TBL 56326
$DCO07 TBH 56327

Tape Timer Interr.
$DCOD . . input . B , A [IER 56333

Time Timer | -

One Out PDL A

$DCOE . , , shot mode out  stat |CRA 56334
Time  Timer

One Out PBC B

$DCOF , , , shot mode, out  stat |CRB 56335

Figure C.8




APPENDIX C — COMMODORE 64 199
CIA 2 (NMI) (6526) Commodore 64
Serial Clock Serial Clock ATN RS-232 .
$DD00 Ih  In , Out , Out , Out , Out Video Block | PRA 56576
DSR ‘ cTS I I oco* | R | oTR | RTS [Rsese
$DDO1 In In In In Out Out In | PRB 56577
Parallel User Port
$DD02 In In Out Out$3FOut Out Out Out DDRA 56578
$DD03 $06 For RS-232 DDRB 56579
$DD04 ) TAL 56580
— Timer A —
$DD05 TAH 56581
$DD06 ) TBL 56582
— Timer B —
$DD07 TBH 56583
$DDOD RS-232 Timer  Timer ICR 56589
In B , A
Timer
$DDOE . A Stant CRA 56590
Timer
$DDQF B Start CRB 56591

Figure C.9



200 MACHINE LANGUAGE FOR COMMODORE MACHINES

C64 Memory Map
6566 Video — Sprite Registers

Sprite  Sprite Sprite  Sprite
0 7 0 7
D000 DOOE | position X | 53248 53262
D001  DOOF Y |53249 53263
D027 DOZE | Color | 53287 53294

Sprite Bit Positions
7 6 5 4 3 2 1 0

D010 | X-position high | 53264
DO15 | Sprite Enable | 53269
D017 | Y-expand | 53271
Do1B Background Priority 53275
Do1C Multicolor 53276
DO1D X-expand 53277
DO1E Interrupt: Sprite collisn 53278
DO1F Interrupt: Sprite/Backgrd coll 53279

C64 Memory Map
6566 Video - Control and Misc. Registers

DO11 | Extnd Colorl Bit Map IDspIy Enabll Row Selct Y-Scroll | 53265
Do12 ' Raster Register 53266
D013 X |53267
D014 — Light Pen Input Y_ 53068
DO16 X | Reset | Multi Color | Co!m Sel A X-Scroll | 53270
D018 vmi3 S‘%‘efzn (Video thr:t{l;( ) vmi0 | cb13 Characc&e; Base cbii I X 53272
po19| IRQ IRQ sence , P, SSC | SBC | RST |53273
DO1A IRQ Enable e Pen Spncom,SionBack , Rastr [53274
COLOUR REGISTERS
D020 ' Exterior 53280
D021 B Background #0 53281
poz2| Background #1 53282
D023 B Background #2 53283
Doza| Background #3 53284
D025 B - Sprite Multicolor #0 53285
D026 B Sprite Multicolor #1 53286

Figure C.10



APPENDIX C — COMMODORE PLUS/4 201
SID (6581) Commodore 64
\"Al V2 V3 V1 V2 V3
D400 D407 D40E F L | 54272 54279 54286
— Frequency —
D401 D408 DA40F H | 54273 54280 54287
D402 D409 D410 Pulse Width L | 54274 54281 54288
D403 D40A D411 |0 0 0 O H | 54275 54282 54289
Voice Type
D404 DA40B D412 |wse eu s w, KEY | 54276 54283 54290
Attack Decay
Time Time
D405 D40C D413 2ms-8sec | 6ms—24sec | 54277 54284 54291
Sustain Release time
D406 D40D D414 level | 6ms—24sec | 54278 54285 54292
Voices
(write only)
D415 [0 0 o 0 of L | 54293
D416 Filter Frequency H | 54294
Resonance Filter voices
D417 . . | lEXTI va vz V1 54295
Passband Master
D418 OFF | HI ; BD ) LO |V0llf|me| 54296
Filter & Volume
(write only)
D419 Paddle X 54297
D41A Paddle Y 54298
D41B Noise 3 (random) 54299
D41C Envelope 3 54300
Sense
(read only)

Special voice features (TEST, RING MOD, SYNC) are
omitted from the above diagram.

Figure C.11



202 MACHINE LANGUAGE FOR COMMODORE MACHINES

Commodore PLUS/4 “TED” Chip—
Preliminary

At time of publication the Commodore 264 (alternatively called Plus/4) and
a related machine, the Commodore 16, are not commercially available.
Design details could change before commercial release.

On the prototype units, much of zero-page is the same as for VIC and
Commodore 64; in particular, the Basic pointers (SOB, SOV, etc.) are the
same.

Memory Map, Preliminary

Much of zero-page is the same as for the Commodore 64. Some differ-
ences, and other information:

Hex Decimal Description

007?3-008R 115-138 (CHARGET not present)

oog? 151 How many open files

oogsa 152 Input device, normally O

oogq 153 Output CMD device, normally 3

D0OAC 172 Current logical file

0O0AD 173 Current secondary address

OORE 174 Current device

O0AF-00BO 17?5-176 Pointer to file name

0Do0ca-00CcH9 200-20%1 Pointer to screen line

oOoCa c0e Position of cursor on above line

00OCD 205 Row where cursor lives

DOEF 239 Number of characters in
keyboard buffer

0314-0315 ?88-789 IRQ vector (CEOE)

0316-0317 790-791 Break interrupt vector (F44B)

0318-0319 7?92-7493 OPEN vector (EF53)

(Most other vectors are similar to the C64, but are two locations lower)
0sS00-0502 12a0-12a2 USR program jump
0509-0512 1289-12968 Logical file table
0513-051C 1299-1308 Device number table
051D-0526 1309-13148 Secondary address table
0527-0530 1319-1328 Keyboard buffer
0800-0BEY 2D048-3047 Color memory

OCO0O-OFEY 307?2-4071 Screen memory



APPENDIX C — B SERIES 203
IN: IN: IN: IN: OuT: OUT: OuT: OuUT:
SERIAL CLOCK L TAPE MoToR , ATN SERIAL quock
FFOO L |es280
- T -
FFO1 H ]65281
FFO2 L 65282
— TIMERS T2 —
FFO3 H 165283
FFO4| 3 L _|es284
FFO5 H 65285
FFO6] TEST . ECM , BMM , BLANK | ROWS , Y-ADJUST 65286
FFO7| RVSOFF  PAL , FREEZE , MCM |COLUMNS X-ADJUST 65287
FFO8 KEYBOARD LATCH 65288
FFCI | IRQ FLAG T2, T, P , RAST 65289
FFOA T2 , T , P , RAST 65290
FFOB RASTER CONTROL 65291
FFOC i 65292
FFOD CURSOR CONTROL 65293
FFOE VOICE 1 65294
— SOUND: —
FFOF VOICE 2 65295
FF10 i 65296
FF11 SOUND SELECT VOLUME 65297
FF12 | BIT MAP BASE | rBANK | voICE 1H |e5298
FF13 CHARACTER BASE SCLOCK | STATUS |e5299
FF14 VIDEO MATRIX : e 65300
FF15 ! 0 ]es3on
LUMINANCE i COLOR —
i 65302
1
! 65303
BACKGROUND COLORS 65304
1
i 65305
65306
| 65307
65308
VERTICAL LINE REGISTER 65309
HORIZONTAL POSITION REGISTER 65310
BLINK COUNT | V SUBADDRESS 65311
FF3E Teonly. | FOM SELECT 65342
craF WRI " RAM SELECT 65343

Figure C.12



204 MACHINE LANGUAGE FOR COMMODORE MACHINES

1000-FFFF 4096-65535 BASIC RAM memory
AOD00-FFFF 32768-65535 ROM:BASIC
FFOO-FF3F £5280-65343  TED /O control chip

B Series (B-128, CBM-256, etc.)
The Great Zero-Page Hunt

Zero page has a different meaning on the B series. There are several
zero pages. Usually, you'll want to use values from bank 15 (the ROM
bank, where system variables are kept); but if you are writing programs
that will reside in a different bank, you'll have all of zero page (except
locations O and 1) completely at your disposal.

If you need space in bank 15 zero page, you'll need to do some looking
around. Addresses $EL to $FF are not used by the system. Locations
$20 to $2B and $b4 to $LE are work areas available for temporary
use.

Most zero-page locations may be copied to another part of memory so
that their original contents can be restored after use. The programmer
should take great care, however, in modifying the following locations, which
are critical within the operating system or BASIC: $1A, $1D to $21,
$2D to $41, $43, $5B, $78, $85-87, $9E to $AB, $CO to $ES.

Memory Map

The following information applies to B systems released after April 1983,
which contain a revised machine language monitor. (If POKE &, 0:SYS
& doesn't bring in a monitor display complete with a “period” prompt, you
have an incompatible version.)

Notable features as compared to previous Commodore products include:
—CHRGOT is no longer in RAM. Wedge-type coding must be inserted at links
$029E and $02A0, which is likely to make the job easier.

—BASIC vectors have “split.” Now, for example, there are discrete “start of
variables” and “end of variables,” distinct from end-of-BASIC and start-of-
arrays. Three-byte vectors (including bank number) are not uncommon.

—The “jump table” at top of memory is still accessible and reasonably consistent
with previous Commodore products.

—Simple machine language programs will fit into the spare 1 K of RAM at
$0400 to $07FF without trouble. Large programs must be implemented



APPENDIX C — B SERIES 205

either by plug-in memory (RAM or ROM) in bank 15 or by being placed into
another bank (preferably bank 3). Supplementary code will be needed to
make all the coding components fit.

The following map contains BASIC addresses specific to the B256/80;
references to banks 0O to 4 are also specific to that machine. Most of the
map is of general usage, however.

ALL BANKS:
oooa 0 E£509 execution register
000y 1 £5049 indirection register
BANK 0: Unused.
BANK 1:
pDooe-rooo ©2—-61439 BASIC program (text) RAM
FASE-FBOO b4094-E425E  Input buffer area
BANK 2:
B256:
O002-FFFF 2-65535 BASIC arrays in RAM
Blg2a:
0002-FFFF 2-E65535  BASIC variables, arrays and
strings
Key definitions

BANK 3: (B256 only)
0002-7?FFF c-327k7 Unused RAM.
8000-FFFF 327L8-65535 BASIC variables in RAM
BANK 4: (B25E only)
O0D2-FBFF 2—64511 BASIC strings (top down) in
RAM
FCOO-FCFF b4512-647k7 Unused RAM (descriptors?)
FDOO-FFFF E47E8-65535  Current KEY definitions
BANKS 5 to 14: Unused.

BANK 15:

0002-0004 2-4 USR jump

0D0S-00048 5-8 TI$ output elements:
H,M,S,T

0009-000B 9-11 Print Using format pointer

ooaoc 12 Search character

ooobp 13 Scan-between-quotes Flag

O0O0E 14 Input point; number of
subscripts

ooar 15 Catalog line counter

0010 16 Default DIM flag

0011 17 Type: 255 = string, O =integer



206 MACHINE LANGUAGE FOR COMMODORE MACHINES

goic 18 Type: 128 =integer,
0 =floating point
0013 19 Crunch flag
0014 el Subscript index
0015 2l Input=0; get=E4; read=15¢c.
001&6-0019 cc-25 Disk status work values
001A =S Current 1/0 device for prompt
suppress
001B-001C cr-2a8 Integer value
001D-001F 29-31 Descriptor stack pointers
0020-0021 3e-313 Vector to string descriptors
0022-002B 34-43 Miscellaneous work pointers
002D-002E 45-4E Start-of-BASIC pointer
002F-0030 47-48 End-of-BASIC pointer
p031-0032 49-50 Start-of-Variables pointer
0033-0034 51-5¢ End-of-Variables pointer
0035-0036 §3-54 Start-of-Arrays pointer
p037-0038 §5-56 End-of-Arrays pointer
0039-003A 57-58 Variable work pointer
003B-003C 59-60 Bottom-of-Strings pointer
DD3D-DO03E bl-E2 Utility string pointer
003F-0041 £3-E65 Top of string memory pointer
0042-0043 EE-E7 Current BASIC line number
0044-0045 E&-69 Old BASIC line number
0046-0047 ?70-71 Old BASIC text pointer
0049-004A ?3-74 Data line number
004B-004C 75-76 Data text pointer
DD4D-D0O4E ?e-78 input pointer
0OD4F-0050 79-80 Variable name
0DS1-0053 861-83 Variable address
0054-0056 84-8E For-loop pointer
pos?-00%8 87-848 Text pointer save
00sAa q0 Comparison symbol
accumulator
005B-005D 91-9¢2 Function location
O0SE-DOOEO 94-96 Working string vector
0061-0063 97-499 Function jump code
0064-00BE 100-110 Work pointers, values
00GF 111 Exponent sign
oo7ao 11¢d Acum string prefix
0071 113 Acum#1: exponent

oo?2-007s 114-117° Accum#1: mantissa



APPENDIX C — B SERIES

207

0076
oov?

aové
00?9-007E
0ovF

poao
0081-0084
o0oas-0067
0088-0089
006B-008E
oosar
ooao-0049d
0093-00495
0096-
0oqsas
0099-009B
poac

0o4ap

009E

0oar

00RO

00AL

00ACZ
00AE-00AB
00ASQ

00ARA

O0OAB
O0AC-00AD
O0OAE-00B3
00B4

00BS
00B?-00BA
00B9-00BA
0D0BB-00BC
00BD

O0OBE

00BF
00C0-00CY

poce-ooc3

118
119

120
121-126
127

1248

129-13¢
133-135
136-137
139-14¢
143

144-146
147-149
150-15¢2

153-155
156
157
1568
159
1&0
161
162
166-1E68
169
170
171
172-173
174-179
180
181
183-184
185-1686
187-1488
189
190
191
192-1493

194-195

Accum#1: sign

Series evaluation constant
pointer

Acum#1 hi order (overflow)
Accum#2

Sign comparison, Acc#1 versus
#2

Acc#1 low-order (rounding)
Series, work pointers

BASIC text pointer

Input pointer

DOS parser work values

Error type number

Pointer to file name

Pointer: tape buffer, scrolling
Load end address/end of
program

I/O start address

Status word ST

File name length

Current logical file

Current device

Current secondary address
Input device, normally 0
Output CMD device, normally 3
INBUF

Keyswitch PTA: stop key, etc.
IEEE deferred flag

IEEE deferred character
Segment transfer routine vector
Monitor register save

Monitor stack pointer save
Monitor bank number save
Monitor IRQ save/pointer
Monitor memory pointer
Monitor secondary pointer
Monitor counter

Monitor miscellaneous byte
Monitor device number
Programmable key table
address

Programmable key address



208 MACHINE LANGUAGE FOR COMMODORE MACHINES

goc4-00cC? 196-199 Pointers to change
programmable key table

gooca-0o0cH c00-201 Pointer to screen line

pgoca clie Screen line number

0OCB 203 Position of cursor on line

pocc 204 0 =text mode, else graphics
mode

0oco 205 Keypress variable

OOCE 20k Old cursor column

OOCF c07? Old cursor row

00DO c0é New character flag

00D 209 Number of keys in keyboard
buffer

poDe 210 Quotes flag

00D3 cll Inert key counter

00D4 clce Cursor type flag

00DS 213 Screen line length

00DE 214 Number of keys in “key” buffer

0ob? 215 Key repeat delay

ooDa 21k Key repeat speed

00DS-00DA cl?-218 Temporary variables

00DB £19 Current output character

00DC ccel Top line of current screen

0ODD ccl Bottom line of screen

OODE écc Left edge of current screen

OODF cc3 Right edge of screen

OOEO 224 Keys: 255 =none; 127 =key,
111 =shift

DOEL 2es Key pressed: 255 =no key

ODE2-00ES ceb-229 Line Wrap Bits

0100 256 Hex to binary staging area

0100-010A 256-2kE6 Numeric to ASCII work area

0100-01FE 256-510 Stack area

01FF 511 Stack pointer save location

0200-020F 512-527 File name area

0210-022b 528-550 Disk command work area

0255-0256 597 Miscellaneous work values for
WAIT, etc

0es? 54919 “Bank” value

02548 &00 Output logical file (CMD)

0259 601 Sign of TAN




APPENDIX C — B SERIES

209

025A-025D
025E-0276

0260-0281
0262-0283
0264-0285
D286-02487
0caa-0269
0286RA-028B
0D268C-028D
028E-0Z28F
0290-0291
0292-02493
0294-0295
029&6-0297
0298-0299
029A-029B
02ac

029D-029F

02A0-02A5
O02AG-02A7
0300-0301
0302-0303
0304-0305
0306-0307
0306-0309
030A-030B
030C-030D
030E-030F

0310-0311
0312-0313
0314-0315
0316-0317
0318-0319
031A-031B
031C-031D
031E-031F

E02-605
EO0E-630

E40-641
E42-6413
BE44-b45
E4E-B47
E48-6419
£50-651
£E52-653
E54-E55
ESE-BSY
£E58-659
6E60-661
Et2-EE3
EE4-EBS
EEE-EEY
oYl

EEA-E71

L?2-677
E78-679
768-769
?70-771
?72-773
?P4-775
PPE-777
?78-779
780-781
782-783

784-785
786-787
788-789
?90-791
?92-7493
?94-795
796-797
?98-799

Pickup subroutine;

miscellaneous work values

PRINT USING working

variables

Error routine link [8555]

Warm start link [85CD]

Crunch token link [668C2]

List link [89F 4]

Command dispatch link [8 7 54]

Token evaluate link [9EB1]

Expression eval link [95C4]

CHRGOT link [BA2C]

CHRGET vector [BA32]

Float-fixed vector [BALE]

Fixed-Float vector [9D39]

Error trap vector

Error line number

Error exit pointer

Stack pointer save

Temporary TRAP, DISPOSE

bytes

Temporary INSTR$ bytes

Bank offset

IRQ vector [FBEY]

BRK vector [EEZ1]

NMI vector [FCAA]

OPEN vector [FEBF]

CLOSE vector [FSED]

Connect-input vector [F549]

Connect-output vector [FSA3]

Restore default I/0 vector

[FEAE]

Input vector [F49C]

Output vector [F4EE]

Stop key test vector [FAEB]

GET vector [F43D]

Abort all files vector [FE7 F]

Load vector [F74E]

Save vector [FA4C]

Monitor command vector
[EE??]



MACHINE LANGUAGE FOR COMMODORE MACHINES

0320-0321
0322-0323
0324-0325

0326-0327

0326-0329

032A-032B

032C-03e2D

032E-03cF

0330-0331

0332-0333
0334-033D
033E-0347
0346-0351
0352-0354
0355-0357
0358-035A
035B-035D
03SE
03SF
0360
0361
0363-0366

0369
036A-03EB
036F-0371
0375
0376-0377
037a
037B
037C
037D
0380-03a¢
03843-0396

600-801
a02-803
804-805

806-807

40a-809

810-811

612-813

614-815

616-6817

818-819
420-829
630-839
840-849
850-852
853-855
856-8548
859-861
ke
863
k4
8E5
éec7-47v0

873
874-875
879-8681
885
886-8487
aqao
891
a89ac
493
896-698
699-9148

Keyboard control vector [EQLF]

Print control vector [EODLF]

IEEE send LSA vector
[F27?4]

IEEE send TSA vector
[F2a0]

IEEE receive byte vector
[F30A4]

IEEE send character vector
[F297?]

IEEE send untalk vector
[F2AB]

IEEE send unlisten vector
[F2AF]

IEEE send listen vector
[F234]

IEEE send talk vector [F230]

File logical addresses table

File device table

File secondary address table

Bottom of system memory

Top of system memory

Bottom of user memory

Top of user memory

IEEE timeout; 0=enabled

0 =load; 128 = verify

Number of open files

Message mode byte

Miscellaneous register save

bytes

Timer toggle

Cassette vector (dead end)

Relocation start address

Cassette motor flag (unused)

RS-232 control, command

RS-232 status

RS-232 handshake input

RS-232 input pointer

RS-232 arrival pointer

Top of memory pointer

Programmed key lengths



APPENDIX C — B SERIES

211

0397
03948
0399

039Aa
039B
039cC

039D

D39E

039F

03A0

03A1-03AA
03AB-03B4
03B5-03B6
03F8-03F9
03FA-03FB
0400-07FF
0800-O0FFF
1000-1FFF
c000-7FFF
6000-BFFF
COOO0-CFFF
DO0OO0-D?CF
DA00-DA80L
DAOO-DALC
DBOO-DBOF

DCOO-DCOF
DDOO-DDO3
DEOO-DEO?Y
DFOO-DFO?

EOOO-FFFF

919
920
921,

92¢
Q23
q24

9es
ac6
qe?
928
929-938
939-948
q49-950
1016-2017
1016-1019
1024-2047
2048-4095
4096-68191
8192-23767
32766-49151
49152-53247
53248-55247
§5296-55297
55808-556836
SE064-56079

S6320-56335
S6576-56579
S6832-56839
S7088-57095

§7344-65535

RVS flag

Current line number
Temporary output character
save

O0=normal, 255 =auto insert
0 =scrolling, 128 =no scroll
Miscellaneous work byte for
screen

Index to programmed key
Scroll mode work flag

Bell mode flag

Indirect bank save

Bit mapped tab stops
Keyboard input buffer

‘Key’ word link [E91B]
Restart vector

Restart test mask

Free RAM (reserved for DOS)
Reserved for plug in RAM
Reserved for plug in DOS ROM
Reserved for cartridges
BASIC ROM

Unused

Screen RAM

Video controller 6545

Sound interface device 6581
Complex interface adaptor
E526

Complex interface adaptor
E52k

Asynchronous communications
IA B551

Tri Port Interface Adaptor
6525

Tri Port Interface Adaptor
£525

Kernal ROM

The above table shows contents for the link and vector addresses at $0280
to $0295; these are taken from a recent B-128.



212

MACHINE LANGUAGE FOR COMMODORE MACHINES

6545 CRT Controller

D800 D801 Typical Value
55296 55297 (Decimal)

0 Horizontal Total 108 or 126 or 127

1 Horizontal Char Displayed | 80

2 Horizontal Sync Position 83 or 98 or 96

3 v Sync Width 15 0r 10

4 Vertical Total 25 or 31 or 38

5 Vert Total Adjust 3or6ori

6 Vertical Displayed 25

7 Vert Sync Position 25 or 28 or 30

8 Mode 0

9 Scan Lines 13 or7

10 Cursor Start 96 (blink) or

0 or 6 (underline)

11 Cursor End 13 or7

12 Display Address H) o0

13 L|O

14 Cursor Address H | Varies

15 L | Varies

16 LightPenin {0

17 L|O

Most Registers are Write Only 14/15 are Read/Write

16/17 are Read Only

Registers 10, 14 and 15 change as the cursor moves

Figure C.13




APPENDIX C — COMMODORE 128

213

DEOO

DEO1
DEO02
DEO3
DEO4
DEO5

DEO06
DEO7

DF00
DFO1

DF02
DF03
DF04
DF05
DFo06

6525 Tri Port
NRFD | NDAC | EOl | DAV | ATN | RFN
Cassette Network
Sense Motor Out ARB Rx Tx SRQ IFC
| | ra [ acia] w [cia2| ieee | Pwr
Data Direction Register For DE0O
Data Direction Register For DE0O1
IRQ | aca | 1p | cia2 ]| IEEE | PWR
CcB CA IRQ
Graphics Stack On

Active Interrupt Register

6525 Tri Port 2

Keyboard

Select

CRT
Mode

Keyboard Read

Data Direction Register for DFOO0 (out)

Data Direction Register for DF01 (out)

Data Direction Register for DF02 (in)

Unused

Figure C.14

56832

56833
56834
56835
56836
56837

56838
56839

57088
57089

57090
57091
57092
57093
57094



214 MACHINE LANGUAGE FOR COMMODORE MACHINES

COMMODORE 128:
Memory Maps

These maps apply to the machine when used in the 128K mode. When
used in the 64 mode, the machine’s map is identical to that of the Com-
modore 64. Since the RAM work area is 7K in size—as compared to the
Commodore 64 with 1K—the map can be huge; it is somewhat abridged
here.

Architecture: “Bank numbers” as used in BASIC BANK and the MLM
addressing scheme are misleading; in fact, they are more correctly “con-
figuration numbers.” Bank 0 shows RAM level 0, which contains work
areas and the user's BASIC program. Bank 1 also shows RAM, this time
(for addresses above hexadecimal 0400) level 1 which contains vari-
ables, arrays, and strings. Other “banks” are really configurations, with
various types of ROM or 1/0 overlaying RAM. Thus, Bank 15 (the most
popular) is ROM and I/0 covering RAM bank 0. Bank 14, however, is
ROM and the character generator overlaying RAM Bank 0. Architecture
is set so that addresses below $04 00 reference Bank 0 only. Other bank
switching (more complex than the simplified 16-bank concept) is accom-
plished via storing a mask to address $FF00, or calling up prestored
masks by writing to $FFO01-FF04.

The Great Zero-Page Hunt:

Locations $FA to $FF are available. Locations $24 to $2C, $50 to
$55, and $59 to $E2 are work areas available for temporary use.

Most zero-page locations may be copied to another part of memory so
that their original contents can be restored after use. The programmer
should take great care, however, in modifying the following locations, which
are critical within the operating system or BASIC: $15, $18 to $1A,
$2D to $3E, $56 to $57, $90 to $9A, $A0 to $A2, $A7? to $A8,
$B4 to $BE, $BD, $CO, $CAa to $DA.




APPENDIX C — COMMODORE 128

215

Memory Map
ALL BANKS:

Hex Decimal Description

oooo 0 I/O directional register

0001 1 I/O port, similar to C64

0002-0004 2-4 SYS address, MLM registers
(SR, PC)

0Doo0s-0009 5-9 SYS, MLM register save (A, X,
Y, SR/SP)

goooa 10 Scan-quotes flag

lufu):] 11 TAB column save

pooc = 0=LOAD, 1 =VERIFY

0ooD 13 Input buffer pointer/number of
subscripts

ODODE 14 Default DIM flag

00OF 15 Type: FF =string; 00 =numeric

0010 16 Type: 80 =integer;
00 =floating point

0011 17 DATA scan/LIST quote/memory
flag

0012 18 Subscript/FNx flag

0013 19 0=INPUT;$40=GET,
$98=READ

0014 cD ATN sign/Comparison
evaluation flag

001s cl Current /0 prompt flag

0D16-0017 c¢c-23 Integer value

00148 24 Pointer: temporary string stack

0019-0023 25-35 Stack for temporary strings

0024-0027 3E-39 Utility pointer area

00eé-002C 40-44 Product area for multiplication

002Db-002E 45-4F Pointer: start-of-BASIC (for
Bank 0)

002F-0030 47-448 Pointer: start-of-variables
(Bank 1)

0031-003& 49-50 Pointer: start-of-arrays

pD033-0034 51-5¢ Pointer: end-of-arrays

0035-0036 53-54 Pointer: string-storage (moving

down)



216 MACHINE LANGUAGE FOR COMMODORE MACHINES

Hex Decimal Description

0037-0036 55-56 Utility string pointer

0039-003Aa 57-548 Pointer: limit-of-memory
(Bank 1)

003B-003C 59-&0 Current BASIC line number

003D-003E El-62 Textpointer: BASIC work point

003F-0D040 E3-E4 Utility Pointer

0041-0042 &E5-E6 Current DATA line number

0043-0044 BE7-68 Current DATA address

0045-004& &9-70 Input vector

0047-0048 71-7& Current variable name

0049-004A 73-74 Current variable address

004B-004C 75-76 Variable pointer for FOR/NEXT

004D-004E 7778 Y-save; op-save; BASIC pointer
save

004F 79 Comparison symbol
accumulator

0050-0055 80-85 Miscellaneous work area,
pointers, and so on

00S&-0058 86-848 Jump vector for functions

0059-00&2 89-948 Miscellaneous numeric work
area

0063 qaq Accum#1: exponent

0064-0067 100-103 Accum#1: mantissa

00&a 104 Accum#1: sign

0069 105 Series evaluation constant
pointer

DO&A-OO0GF 106-111 Accum#2: exponent, and so on

oovo 11¢e Sign comparison, Acc#1 versus
#2 »

0071 113 Accum#1 lo-order (rounding)

0072-0073 114-115 Cassette buffer len/Series
pointer

0D?4-0075 116-117 Auto line number increment

00?6 1148 Graphics flag

oov? 1119 Color source number

007a8-0079 120-121 Temporary counters

00?A-007C 122-124 DS $ descriptor

00?D-007E 125-126 BASIC pseudo-stack pointer

0084 132 Multicolor 1 (1)

00as 133 Multicolor 2 (2)



APPENDIX C — COMMODORE 128

217

Hex Decimal Description

008k 134 Graphic foreground color (13)

0090 144 Status word ST

0091 145 Keyswitch 1A: STOP and RVS
flags

0o9e 146 Timing constant for tape

0094 148 Serial output: deferred
character flag

oogs 149 Serial deferred character

ooagr 151 Register save

00og9a 152 How many open files

0099 153 Input device, normally 0

fap:\ 154 Output CMD device, normally 3

009B-D01QC 155-156 Tape parity, output-received
flag

004ap 157 I/0O messages: 192 =all,

E4 =errors, O=nil
009E-009F 158-159 Tape error pointers
ODOAD-DDOAC 160-1k2 Jiffy Clock HML
00A3-00AB 163-171 1/0 work bytes
OO0AC-DOAD 172-173 Pointer: tape buffer, scrolling
ODARE-DOAF 174-175 Tape end adds/End of program
00BO-00B1 176-177 Tape timing constants
00B2-00B3 178-179 Pointer: start of tape buffer
0aoB? 1413 Number of characters in file

name
00BA 184 Current logical file
00B9 1485 Current secondary address
0ODBA 186 Current device
00BB-0O0BC 187-1848 Pointer to file name
D0OBD-0O0CS 189-197 I/0 work pointers
00Ce-0OC? 1968-1499 Banks: I/O data, filename
00Cé8-00CB c00-203 RS-232 input/output buffer

addresses
goocc-oocep 204-205 Keyboard decode pointer (Bank

15)

ODCE-DOCF c0k-207 Print string work pointer

00DD cié Number of characters in
keyboard buffer

00Dl 209 Number of programmed chars

waiting



218 MACHINE LANGUAGE FOR COMMODORE MACHINES

Hex Decimal Description

oobe cl0 Programmed key character
index

00D3 cll Key shift flag: O =no shift

00D4 clic Key code: 88 if no key

00DS £1l3 Key code: 88 if no key

00DE 214 Input from screen/from
keyboard

oob? 215 40/80 columns: 0 =40 columns

ooDa 21k Graphics mode code

00DA{ 217 Character base: 0 =ROM,
4 =RAM

OODA-DODF 2l18-223 Misc work area

0O0ED-DOOEY 224-2c5 Pointer to screen line/cursor

ODEZS-00E3 2ek-2e? Color line pointer

D0E4 ccé Current screen bottom margin

ODES ccqd Current screen top margin

0DEG c30 Current screen left margin

ODE? 23l Current screen right margin

ODEA-0OO0EA[ ¢3ice-c233 Input cursor log (row, column)

OOEA 234 End-of-line for input pointer

OOEB 235 Position of cursor on screen
line

00EC 23k Row where cursor lives

O0DED-OOEE 237-238 Maximum screen lines, columns

O0EF 239 Current I/O character

0OO0FOD 240 Previous character printed

00F1 c4l Character color

00F3 243 Screen reverse flag

00F4 244 0 =direct cursor; else
programmed

00OFS 245 Number of INSERTs
outstanding

00FE 24k 255 = Auto Insert enabled

00F? 247 Text mode lockout

00Fa8 248 0 = Scrolling enabled

00FAQ 249 Bell disable

OOFA-DOFF 250-255 Not used

0100-01FF 256-511 Processor stack area

0100-013E 256-318 Tape error log




APPENDIX C — COMMODORE 128

219

Hex Decimal Description
0200-02A0 Sle-k72 BASIC input buffer
O2A2-02AE E?4-E8E Bank peek subroutine
O2AF-02BD E87-701 Bank poke subroutine
02BE-D02CC 702-716 Bank compare subroutine
02CDh-0O2Ee 717-738 JSR to another bank
O2E3-02FB ?739-7&63 JMP to another bank
O02FC-02FD 764-7E5 Function execute hook
[$4C78]
0300-0301 766-769 Error message link
0302-0303 ?°0-771 BASIC warm start link
0304-0305 ?ee-77°3 Crunch BASIC tokens link
0306-0307 PP4-775 Print tokens link
03068-03049 ?Pb-777 Start new BASIC code link
030A-030B ?78-779 Get arithmetic element link
030C-030D 780-781 Crunch FE hook
030E-D30F 782-783 List FE hook
0310-0311 784-785 Execute FE hook
0312-0313 786-747 Unused
0314-0315 788-7849 IRQ vector [FAES]
0316-0317 790-791 Break interrupt vector [BO0O3]
0318-0319 ?792-783 NMI interrupt vector [FA4 0]
031A-031B 794-795 OPEN Vector [EFBD]
031C-031D 796-797 CLOSE vector [F188]
D31E-O031F 798-7499 Set-input vector [F10E]
0320-0321 600-801 Set-output vector [F14C]
032e-0323 8402-803 Restore 1/0 vector [F22E]
0324-0325 804-4805 Input vector [EFOE]
0326-0327 606-807 Output vector [EF?79]
0328-0329 608-809 Test-STOP Vector [FEERE]
032A-032B 810-811 GET vector [EEEB]
03eCc-03eD 61c2-8113 Abort I/O vector [F222]
032E-03C2F 814-815 Machine Lang Monitor link
0330-0331 816-817 LOAD link
0332-0333 6168-819 SAVE link
0334-033S 620-821 Control code (low) link
0336-0337 éc22-a3c2 High ASCII code link
0338-0339 624-8¢25 ESC sequence link
034A-0353 842-851 Keyboard buffer
0354-035D 852-861 Tab stop bits
035E-0361 862-8k5 Line wrap bits




220

MACHINE LANGUAGE FOR COMMODORE MACHINES

Bank 0:

Hex Decimal Description
0362-03LB 86E-875 Logical file table
036C-037S 876-885 Device number table
037?6-037F 666-895 Secondary address table
0380-039E 896-926 CHRGET subroutine
038E 902 CHRGOT entry
039F-03AR 927-938 Fetch from RAM Bank 0
03AB-03BE 939-950 Fetch from RAM Bank 1
03B?-03BF 951-959 Fetch from RAM Bank 1
pD3CcO0-03cCa 960-9k48 Fetch from RAM Bank 0
03C9-03D1 qe9-977 Fetch from RAM Bank 0
03D2-03D4 978-980 Unused
03DS 9481 Current BANK for SYS, PEEK
03EC 894 Graphic/Text backgrounds
03E3 Qs Graphic/Multi color log
FFOO £E5280 MMU configuration register
FFOL-FFO4 £5281-E5284 MMU load config registers
0400-07E7 1024-2023 40-column screen memory
0?F8-07FF c040-2047 Sprite identity area (text)
0800-0QFF c048-2560 BASIC pseudo-stack
0AOC c572 CIA 1 interrupt log
OAOD 2573 CIA 1 timer enabled
OAOF-0A1? 2575-25483 RS-232 work values
DA18 2584 RS-232 receive pointer
DA19 25485 RS-232 input pointer
DALA 2586 RS-232 transmit pointer
OALB 2587 RS-232 send pointer
OA1D-O0ALF £588-2590  Sleep countdown;

FFFF =disable
0ac20 2549¢ Keyboard buffer size
Y5 2593 Screen freeze flag
OA2c2 2594 Key repeat: 128 =all,

&4 =none
0A23 2595 Key repeat timing
0ac24 c¢5496 Key repeat pause
OA2S c59°? Graphics/text toggle latch
OAZCE 2594 40-col cursor mode
OA27?-0ACA 2599-2602  40-col blink values
OAEB 2k03 80-col cursor mode
0aeC 2604 40-col video $D01 6 image



APPENDIX C — COMMODORE 128

221

Description

Hex Decimal

OACZE-DACF 2b06-2607 80-col pages—screen, color

O0A40-0ASA cbe4-2k50 40/80 pointer swap $E0—-FA

OAED-DAED 2bSk-2bk9  40/80 data swap $354-3E1

OACO 2?52 PAT counter

DOACL1l-0AC4 2753-2756 ROM Physical Address Table

OBOO-0BBF 2816-3007  Cassette buffer

0CO0-0ODFF 3072-3543 RS-232 input, output buffers

ODEODO-OFFF 3584-4095 System sprites (56-613)

1000-1009 4096-41065 Programmed key lengths

100A-10FF 4106-4351  Programmed key definitions

1100-1130 4352-4400 DOS Command staging area

1131-11E6E 4401-44E2  Graphics work area

11EF 4463 Trace mode: FF =on

1170-1173 L4B4-4467 Renumbering pointers

1174-1177 44B8-4471 Directory work pointers

1178-1197 4472-4473  Graphics index

117A-117B L474-4475 Float-fixed vector [849F]

117C-117D L47B-4477 Fixed-float vector [?93C]

117E-11D5S 4478-45E5  Sprite motion tables (8 x 11
bytes)

11DE-11ES 4566-4581 Sprite X/Y positions

11EE 4548¢ Sprite X-high positions

11E?-11Eé8 4583-4584 Sprite bump masks (sprite,
backgnd)

11E9-11EA 4585-45486 Light pen values, X and Y

11EB 45487 CHRGEN ROM page, text [D 8]

11EC 4588 CHRGEN ROM page, graphics
(DO]

11ED 4589 Secondary address for
RECORD

11EE-11FF  4590-4607 Unused

1204-1207 4612-4615  PU characters ( , . $)

120B-120C 4bL19-4L20 TRAP address: FFFF if none

1210-1211 4E24-4625  End of BASIC

1212-1213 462b-4627 Basic program limit [FF0O0]

1214-1217 4628-4631 DO work pointers

1218-121A 4632-4E34 USR program jump [?D28]

121B-121F 4E35-4639  RND seed value

ic2ee 442 Sound tempo

12eF 4E55 Music sequencer




222

MACHINE LANGUAGE FOR COMMODORE MACHINES

Hex Decimal Description

1234-123°7 4LE0-4BE3 Note image

1239-123E 46EES-4E670  Current env pattern

123F-1270 4671-4720 Envelope tables ..

123F-1248 4671-4E80 AD(SR) pattern

1249-125¢ 4681-4690 (AD)SR pattern

1253-125C 4691-4700 Waveform pattern

125D-12kE 4701-4710 Pulse width pattern

1ek7?-1270 4711-4720 Pulse width hi pattern

1271-1274 4721-4724 Note: xx,xx,volume

1275 4725 Previous volume image

1276-1278 472b-4728 Collision IRQ task table

1279-127E 4729-4734 Collision IRQ address tables

127F 4735 Collision mask

12480 4736 Collision work value

1Bl 4785 PEN work value

1300-17FF 48k4-B1413 Unused

1800-1BFF E144-7167 Reserved for key functions

1CO0-FBFF 7168-64511 BASIC RAM memory (text)

1COD-1FF7? 7168-8186 Video (color) matrix (hi-res)

1FF8-1FFF 6167-6191 Sprite identities (hi-res)

2000-3FFF 8192-16383 Screen memory (hi-res)

4000-FBFF 16384-E4511 BASIC RAM memory (hi-res)
Bank 1:

0400-FBFF 1024-64511 Basic variables, arrays, strings

Bank 14: Same as Bank 15, below, except:

DOOO-DFFF §3248-57343 Character generator ROM
Bank 15: '

4000-CFFF 16384-53247 ROM: BASIC

DOOO-DORCE §3248-53294 40-col video, chip 8564

D400-D41C S4272-54300 SID sound chip 6581

DS0O0-DSOA 54528-54538 Memory Management Unit

8722

DE00-DEOY S4784-54785 80-column CRT controller 8563

DAOO-DAE? §55296-56295 Color nibbles

DCOO-DCOF S6320-5633E CIA 1 (IRQ) 6526

DDOO-DDOF SES?E-56591 CIA 2 (NMI) 6526

DFOO-DFOA S?088-57098 DMA slot

EOOO-FEFF S7?344-65279 ROM: Kernal

FFOS-FFFF £E5285-65535 ROM: Transfer, Jump Table



APPENDIX C — COMMODORE 128

223

8502 Processor /O registers

0000 XXXXX 0=in 1=out 0=in 1=out 1=out 1=out 1=out
0001 XXXXX Caps Tape Tape Tape HiRes LoRes Color
Key Motor Sense Outpt Acces

Figure C.15

00000
00001




224 MACHINE LANGUAGE FOR COMMODORE MACHINES

C128 Memory Map
8564 Video — Sprite Registers

Sprite Sprite Sprite Sprite
0 7 0 7
D000 DOOE| position X__|53248 53262
D001 DOOF Y [53249 53263
D027 DO2E Color 53287 53294

Sprite Bit Positions
7 6 5 4 3 2 1 0

D10 | X-position high | 53264
Do15 Sprite Enable | 53269
Do17 | Y-expand | 53271
Do1B Background Priority 53275
Do1C Multicolor 53276
DO1D X-expand 53277
DO1E Interrupt: Sprite collisn 53278
DO1F Interrupt: Sprite/Backgrd coll 53279

Figure C.16



APPENDIX C — COMMODORE 128

225

Do11
D012

D013
D014

Do16

Do18
Do19

DO1A

D020
Do21
D022
D023
D024
D025

D026
DO2F
D030

C128 Memory Map
8564 Video — Control and Misc. Registers

| Extnd Color I Bit Map | Dsply Enabl | Row Selct A Y-Scroll
Raster Register
— Light Pen input -
Y
X I Reset | Multi Color | Colm Sel A x-sﬂ
vm1i3 Svc':‘e1ezn (Video vng vmi0 I cb13 Charaocg?a Base cb11 | X
IRQ IRQ sence | LP | S§SC \ SBC | RST
IRQ Enable Hant Pen Spncoui,SionBack . Rastr
COLOR REGISTERS
Exterior
B Background #0
B Background #1
B Background #2
B Background #3
B Sprite Multicolor #0
B Sprite Multicolor #1
XXXXX XXXXX XXXXX XXXXX XXXXX | [Keyboard Rows]
XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX I Test I CFlgf:tk

Figure C.16 continued

53265
53266

53267
53268

63270

63272
53273

53274

53281
53282
53283
53284
53285

53286
53295
53296




226 MACHINE LANGUAGE FOR COMMODORE MACHINES

SID (6581) Commodore 128
V1 v2 V3 \"A v2 V3
D400 D407 D40OE | Frequency L | 54272 54279 54286
D401 D408 D40F H | 54273 54280 54287
D402 D409 D410 Pulse Width L | 54274 54281 54288
D403 D40A D411 |o o 0 O H | 54275 54282 54289
Voice Type
D404 D40B D412 |wse,ru,sw w, KEY | 54276 54283 54290
Attack Decay
Time Time
D405 D40C D413 2ms-8sec | 6ms-24sec | 54277 54284 54291
Sustain Release time
D406 D40D D414 , level | 6ms—24sec | 54278 54285 54292
Voices
(write only)
D415 [0 0 0 o o] L | 54203
D416 Filter Frequency H | 54294
Resonance Filter voices
D417 o Jext, va v w 54295
Passband Master
D418 |of, w60, 10  Volume 54296
Filter & Volume
(write only)
D419 Paddie X 54297
D41A Paddie Y 54298
D41B Noise 3 (random) 54299
D41C Envelope 3 54300
Sense
(read only)

Special voice features (TEST, RING MOD, SYNC) are
omitted from the above diagram.

Figure C.17



APPENDIX C — COMMODORE 128 227
Memory Management Unit 8722
D500 RAM select HIGH RAM MID RAM LO C GEN 54528
0-3 | /ROM | /ROM | RAM I
D501 Preconfiguration registers; 54529
-D504 Similar to D500, above -54532
D505 40/80 C64 Cartr-Sense Fast JOXKXKXXXX 280 54533
Key Mode Color-Bank Disk
D506 Video-Bank JORXXXHXXXKX Shared RAM Shared RAM 54534
hi low 0 =1K
D507 L Zero page pointer 54535
D508 H ($0000) 54536
D509 L Stack page pointer 54537
DS0A H ($0100) 54538

Figure C.18



228

MACHINE LANGUAGE FOR COMMODORE MACHINES

D600 read (status):

8563 CRT Controller

D600 Status Light Vert JOOKXXXXIKXXXXXXXXXXXKXKXX 54784
Pen Blank
D800 D601 Typical
54784 54785 Value
0 $00 Horizontal Total 126
1 $01 Horizontal Characters Displayed (80) 80
2 $02 Horizontal Sync position 102
3 $03 Sync Width 1/3
Vertical Horizontal
4 $04 XXXXX Vertical Total 32 or 39
5 $05 XXXXX XXXXX XXXXX Vertical Total Adjust 0
6 $06 XXXXX Vertical Displayed (25) 25
7 $07 XXXXX Vertical Sync Position 29 or 32
8 $08 XXXXIOOOKXXXXXXXXXXXXXXXKXXXXXXXXXX | Interlace 0
9 $09 XXXXXXXXXXXXXXXXX Scan Lines per Character 7
10 $0A XXXXX Cursor Mode Cursor Start 32
11 $0B XXXXXXXXXXXXXXXXX Cursor End 7
12 $0C JOXXXXXXXXHXK Display H 0
13 $0D Address L 0
14 $0E Cursor Address H 0
15 $0F L 0
16 $10 Light Pen H varigs
17 $11 Input L varies
18 $12 Video RAM Address H varies
19 $13 (See register 31) L varies
20 $14 Color H 8
21 $15 Address L 0
22 $16 Character 120
Total Display Horizontal
23 $17 XXXXXXXXXXXXXXXXXK Display Vertical 8
24 318 Block Scrn Blink V Scroll 32
Copy RVS Rate
25 $19 Bit Color Semi Wide H Scroll 64 or 71
Map Enable Graphic Pixel
26 $1A Color 240
Foreground Background
27 $1B Scroll Control Horizontal 0
28 $1C Char set address RAM | XXXXXKXXXXXXXXXX 32
29 $1D XXXXX XXXXX XXXXX Underline Scan Line Count 7
30 $1E Character Count varies
31 $1F Video RAM data (see registers 18,19) varies
32 $20 Block Copy Start H varies
33 $21 Address L varies
34 $22 Display begin 125
35 $23 Enable end 100
36 $24 XXXXXXXXXXXXXXXXXXXXXK DRAM refresh rate 5

Figure C.19




APPENDIX C — COMMODORE 128

229

$DC00

$DCo1

$DC02
$DC03
$DCo4
$DCO05
$DC06
$DC07

$DCOC
$DCOD
$DCOE

$DCOF

CIA 1 (IRQ) (6526) ‘ Commodore 128

Paddle SEL Joystick 0

A , B R , L, D, U
Keyboard Row Select (inverted)
Joystick 1
Keyboard Column Read
$FF — All Output
$00 — All Input

— Timer A —
I Timer B —

Serial (shift) Register
IRQ XXXXXXXXXXX Flag | S.Reg | XXXXX | Tim.B | Tim.A
S Reg e Timer A S
/0 Load 0/S Toggl Start
e —— Timer B —————
Load 0/S Start

Figure C.20

PRA

PRB

DDRA
DDRB
TAL
TAH
TBL
TBH

56332
56333
56334

56335

56320

56321

56322
56323
56324
56325
56326
56327



230 MACHINE LANGUAGE FOR COMMODORE MACHINES

CIA 2 (NMI) (6526) Commodore 128

Serial Clock Serial Clock ATN Rs-232 ,,.
$DDO00 In . In . Out  Out. Out . Out .Vldeo.BIock PRA 56576
DSR | CTS ’ |DCD' RF | DTR | RTS |Rs-232
$DDO1 In In In in Out | Out In PRB 56577
Parallel User Port
$DDO2 In In Out Out$3FOut Out Out Out DDRA 56578
$DD03 $06 For RS-232 DDRB 56579
$DD04 | Timer A ] TAL 56580
$DD05 TAH 56581
$DD06 - Timer B | TBL 56582
$DDO07 TBH 56583
$DDOD RS-232 Timer Timer ICR 56589
In B , A

Timer
$DDOE . AStart CRA 56590

Timer
$DDOF . B Start CRB 56591
Figure C.21

DMA Controller

DF00 Busy [ Fault XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 57088
DFo1 | Exec | Sum | xoooooooox | IRQ | Inc | Mode 57089
DF02 Host L | 57090
DFO03 Address H 57091
DF04 Expansion L 57092
DF05 Address H 57093
DF06 XXXXXXXXXXXXXXXXXXXXXXXXXXXXX I Expansion Bank 57094
DF07 Transfer L 57095
DFo08 Length H 57096
DF09 Checksum 57097
DFOA Version, Maximum-Memory 57098

Xxxx = unused
(blank) = not of interest

Figure C.22



APPENDIX C — COMMODORE 128 231

Commodore 64: ROM Detail

This type of ROM memory map is intended primarily for users who want
to “browse” through the inner logic of the computer. It allows a user to
disassemble an area of interest, to see why the computer behaves in a
certain way. With the use of this map, the user will be able to identify
subroutines that are called by the coding under study.

| recommend against using the ROM subroutines as part of your own
programs. They often don’t do precisely what you want. They change
locations when you move to a different machine. With rare exceptions,
you can probably write better coding to do the job yourself. Stick with the
kernal jump table: especially $FFD2 to output; SFFE4 to get input;
$FFEL to check the RUN/STOP key; $FFCE and $FFCY to switch
input and output respectively; and $ FFCC to restore normal input/output.
They are the same on all Commodore computers.

AOOO: ROM control vectors
ADOC: Keyword action vectors
AOS2: Function vectors
ADA&0: Operator vectors
AO9E: Keywords

AL9E: Error messages
A328: Error message vectors
R3E5: Miscellaneous messages
A3BA: Scan stack for FOR/GOSUB
A3BA: Move memory

A3FB: Check stack depth
R408: Check memory space
A435: Print “out of memory”
R437: Error routine

A469: BREAK entry

R47?4: Print "ready."
R480: Ready for BASIC
R49C: Handle new line
A533: Re-chain lines

ASEO0: Receive input line
A579: Crunch tokens

AB13: Find BASIC line
AL42: Perform [NEW]
AGSE: Perform [CLR]
AGAE: Back up text pointer
BEAC: Perform [LIST]



232

MACHINE LANGUAGE FOR COMMODORE MACHINES

A?42:
A7ED:
A81D:
A8eC:
BR82F:
A831:
ABS7?:
RA7?L:
A8A83:
ABAD:
A8De2:
ABF&:
AQO0E:
A9cé8:
A93dB:
AQ4B:
A9QEB:
AQAS:
ARA8O:
AABE:
AAAD:
ABlE:
AB3B:
AB4D:
ABY?B:
ABAS:
ABBF:
ABF9:
ACObL:
ACFC:
AD1E:
AD78:
ADSE:
AEAS:
AEF1:
AEF7:
AEFF:
AF08:
AFl4:
AFc28:
AFA7?:
AFEL:

Perform [FOR]
Execute statement
Perform [RESTORE]
Break

Perform [STOP]
Perform [END]
Perform [CONT]
Perform [RUN]
Perform [GOSUB]
Perform [GOTO]
Perform [RETURN]
Perform [DATA]
Scan for next statement
Perform [IF]
Perform [REM]
Perform [ON]

Get fixed point number
Perform [LET]
Perform [PRINT#]
Perform [CMD]
Perform [PRINT]
Print string from (Y.A)
Print format character
Bad input routine
Perform [GET]
Perform [INPUT#]
Perform [INPUT]
Prompt and input
Perform [READ]
Input error messages
Perform [NEXT]
Type match check
Evaluate expression
Constant-pi

Evaluate within brackets
Check for )"
Check for comma
Syntax error

Check range

Search for variable
Set up FN reference
Evaluate [OR]



APPENDIX C — COMMODORE 128 233

AFEQ: Evaluate [AND]
BOLE: Compare

BO&L: Perform [DIM]
BOAB: Locate variable
B113: Check alphabetic
BL1D: Create variable
B194: Array pointer subroutine
BLAS: Value 327L8
B1BZ2: Float-fixed

B1DL: Setup array

B245: Print “bad subscript”
B248: Print “illegal quantity”
B34C: Compute array size
B37?D: Evaluate [FRE]
B391: Fixed-float

B39E: Evaluate [POS]
B3AL: Check direct

B3B3: Perform [DEF]
B3El: Check fn syntax
B3F4: Evaluate [FN]
B4ES: Evaluate [STR$]
B47?5: Calculate string vector
B487: Set up string

B4F4: Make room for string
BSZE: Garbage collection

BSBD: Check salvageability
BEOE: Collect string

BE3D: Concatenate

BE7A: Build string to memory
BEA3J: Discard unwanted string
BEDB: Clean descriptor stack
BGEEC: Evaluate [CHR$]
B?00: Evaluate [LEFTS$]
B?2C: Evaluate [RIGHT$]
B?37: Evaluate [MIDS$]
B?EL: Pull string parameters
B?7?C: Evaluate [LEN]

B7?82: Exit string-mode
B7?8B: Evaluate [ASC]

B?9B: Input byte parameter
B7AD: Evaluate [VAL]

B?EB: Parameters for POKE/WAIT



234

MACHINE LANGUAGE FOR COMMODORE MACHINES

B?F?:
B&0OD:
B&e24:
Ba&eDh:
B849:
Ba&50:
BA&S3:
BAEA:
BA4?:
BA?E:
BAa3:
BYEA:
BACB:
BASSH:
BAAC:
BAB?:
BAD4:
BAEZ:
BAF9:
BAFE:
BBl2:
BBAZ:
BBC?7:
BBFC:
BCOC:
BC1B:
BC2B:
BC39:
BCS48:
BCSB:
BCHB:
BCCC:
BCF3:
BD7E:
BDC2:
BDCD:
BDDD:
BF1lGE:
BF3A:
BF?1l:
BF?B:
BFB4:

Float-fixed

Evaluate [PEEK]
Perform [POKE]
Perform [WAIT]

Add 0.5
Subtract-from

Evaluate [subtract]
Evaluate [add]
Complement FAC (floating accumulator)#1
Print “overflow”
Multiply by zero byte
Evaluate [LOG]
Evaluate [multiply]
Multiply-a-bit

Memory to FAC#¢Z
Adjust FAC#1 and FAC#¢2
Underflow/overflow
Multiply by 1.0

+ 10 in floating point
Divide by 1.0

Evaluate [divide]
Memory to FAC#1
FAC#1 to memory
FAC#2 to FAC#1
FAC#1 to FAC#¢2
Round FAC#1

Get sign

Evaluate [SGN]
Evaluate [ABS]
Compare FAC#1 to memory
Float-fixed

Evaluate [INT]

String to FAC

Get ASCII digit

Print "IN. . "

Print line number

Float to ASCII

Decimal constants

TI constants

Evaluate [SQR]
Evaluate [power]
Evaluate [negative]




APPENDIX C — COMMODORE 128 235

BFED: Evaluate [EXP]
E0D43: Series evaluation 1
EO0S9: Series evaluation 2
EO0A7: Evaluate [RND]
EOF9: Kernal calls with error checking
EL2A: Perform [SYS]

E156: Perform [SAVE]
E1ES5: Perform [VERIFY]
ELEA: Perform [LOAD]
ELBE: Perform [OPEN]
ELC?: Perform [CLOSE]
ELD4: Parameters for LOAD/SAVE
E20&: Check default parameters
E20E: Check for comma
E219: Parameters for open/close
E2E4: Evaluate [COS]
E2EB: Evaluate [SIN]
E2b4: Evaluate [TAN]
E30E: Evaluate [ATN]
E37?B: Warm restart

E394: Initialize

E3A2: CHRGET for zero page
E3BF: Initialize BASIC '
E447: Vectors for $300
E453: Initialize vectors
E4SF: Power-up message
ES0O0: Get I/O address
ESO0S: | Get screen size

ESOA: Put/get row/column
ES1A8: Initialize I/O

ES44: Clear screen

ESEE: Home cursor

ESEC: Set screen pointers
ESAO: Set I/0 defaults

ESB4: Input from keyboard
EB32: Input from screen
EEA4: Quote test

EEA1: Set up screen print
EGEBE: Advance cursor

EGBED: Retreat cursor

E7?01: Back into previous line



236

MACHINE LANGUAGE FOR COMMODORE MACHINES

E?1b:
E87C:
EA&91:
E8AL:
EaB3:
EACB:
E&DA:
EBEA:
EQES:
EACAa:
EQED:
EQFO0:
EQFF:
EAl13:
EBD24:
EA3Ll:
EB87:
EB7?9:
EB81:
EBC2:
ECO3:
EC44:
ECA4F:
EC?8:
ECBA9:
ECE?:
ECFD:
EDOA9:
EDOC:
ED4D:
EDBZ2:
EDBA9:
EDBE:
EDC?:
EDCC:
EDDD:
EDEF:
EDFE:
EE13:
EEA&S:
EE8E:
EEQ7:
EEAQO:

Output to screen

Go to next line

Perform (return)
Check line decrement
Check line increment

Set color code

Color code table

Scroll screen

Open space on screen
Move a screen line
Synchronize color transfer
Set start-of-line

Clear screen line

Print to screen
Synchronize color pointer
Interrupt-clock, etc.

Read keyboard

Keyboard select vectors
Keyboard 1-unshifted
Keyboard 2-shifted
Keyboard 3-“Commodore” shift
Graphics/text contrl

Set graphics/text mode
Keyboard 4

Video chip setup

Shift/run equivalent
Screen In address low
Send “talk” to serial bus
Send “listen” to serial bus
Send to serial bus

Serial timeout

Send listen SA

Clear ATN

Send talk SA
Wait for clock

Send serial deferred

Send “untalk” to serial bus
Send “unlisten” to serial bus
Receive from serial bus
Serial clock on

Serial clock off

Serial output “1”

Serial output “0”




APPENDIX C — COMMODORE 128 237

EERQ: Get serial in and clock signals
EEB3: Delay 1 millisecond
EEBB: RS-232 send

EF0E: Send new RS-232 byte
EFZE: No-DSR error
EF31: No-CTS error
EF3B: Disable timer

EF4A: Compute bit count
EF59: RS-232 receive
EF?E: Set up to receive
EFCS: Receive parity error
EFCA: Recieve overflow
EFCD: Receive break

EFDO: Framing error

EFEL: Submitto RS-232
FOOD: No-DSR error

FOL7?: Send to RS-232 buffer
FO4D: Input from RS-232
FO8E: Getfrom RS-232
FOA4: Check serial bus idle
FOBD: Messages

F1Z2B: Printif direct

F13E: Get...
FL4E: ... from RS-232
F157: Input

F199: Get: tape/serial/RS-232
F1LCA: Output...

F1DD: ... totape

F2O0E:  Setinput device
F250: Set output device
F291: Close file

F30F: Find file

F3I1F: Set file values

F32F: Abort all files

F333: Restore default /0
F34A: Do file open

F3ID5: Send SA

F409: Open RS-232

F49E: Load program

FSAF: Print “searching”
FSCL: Print filename

FSD2: Print “loading/verifying”
FSDD: Save program



238 MACHINE LANGUAGE FOR COMMODORE MACHINES

FLAF: Print “saving”

FLAB: Bump clock

FLBC: Log PIA key reading
FEDD: Gettime

FGLE4: Settime

FLED: Check stop key
FEFB: Output error messages
F?2D: Find any tape header
F?6A: Write tape header
F?D0: Get buffer address
F?D?: Set buffer start/end pointers
F?EA: Find specific header
FA0D: Bump tape pointer
FB817: Print“press play...”
FB82E: Check tape status
FA838: Print “press record ..."
F841: Initiate tape read
FB8L4: Initiate tape write
FA87?5: Common tape code
FaDO: Check tape stop
FBE2: Setread timing
F92C: Read tape bits

FALO: Store tape characters
FBABE: Reset pointer

FBA7: New character setup
FBAL: Send transition to tape
FBC&: Write data to tape
FBCD: IRQ entry point N
FC57: Write tape leader
FC93: Restore normal IRQ
FCBA: Set IRQ vector
FCCA: Kill tape motor

FCD1: Check R/W pointer
FCDB: Bump R/W pointer
FCE2: Power reset entry
FDO2: Check 8-ROM

FD10O: A-ROM mask

FD15: Kernal reset

FD1A: Kernal move

FD30: Vectors

FDSO: Initialize system constants
FDAB: IRQ vectors

FDA3: Initialize I/O



APPENDIX C — COMMODORE 128 239
FDDD: Enable timer
FDFQ: Save filename data
FEOO: Save file details
FEO7?: Get status
FE18: Flag status
FE1C: Set status
FE2l: Settimeout
FE25: Read/set top of memory
FE27: Read top of memory
FEEZD: Set top of memory
FE34: Read/set bottom of memory
FE43: NMI entry
FEGLE: Warm start
FEBE: Reset IRQ and exit
FEBC: Interrupt exit
FECZ: RS-232 timing table
FEDE: NMI RS-232in
FFO?: NMI RS-232 out
FF43: Fake IRQ
FF48: IRQ entry
FF81: Jumbo jump table
FFFA: Hardware vectors






D

Character
Sets

241



242

MACHINE LANGUAGE FOR COMMODORE MACHINES

Superchart

The “superchart” shows the PET character sets. A byte may have any of
several meanings, depending on how it is used. The chart is constructed
to reflect this. “ASCII” is PET ASCII; these are the characters as they
would be input or printed. “Screen” is the Commodore screen codes, as
they would be used in screen memory—POKEing to or PEEKing from
the screen would yield these codes. Notice that the numeric character set
is the same for both screen and PET ASCII.

Within a program, the code changes again. “BASIC” shows these codes;

they are similar to ASCII in the range $20 to $5F.

Machine language op codes are included for the sake of convenience and

completeness.

DECIMAL  HEX

O©CONOOA_WN-=0O

00
01

ASCII

white

bell .
lock
unlock

car ret
text
top

cur down
reverse
cur home
delete
del. line
ers.begin

scr. up

red
cur right

SCREEN BASIC

‘_'/"‘N-<><§<C—|(D:UO'UOZZ"X‘—"IQ'HI‘“UOUS)@

end-line

6502
BRK
ORA(1,X)

ORA Z
ASL Z

PHP

ORA #
ASL A

ORA
ASL

BPL
ORA(l),Y

ORA ZX
ASL Z,X

CLC
ORAY

ORA X

DECIMAL




APPENDIX D — SUPERCHART 243
DECIMAL  HEX ASCII SCREEN BASIC 6502 DECIMAL
30 1E green 1 ASL X 30
31 1F blue «— . 31
32 20 space space space JSR 32
33 21 ! ! ! AND(,X) 33
34 22 " " " 34
35 23 # # # 35
36 24 $ $ $ BIT Z 36
37 25 % % % AND Z 37
38 26 & & & ROL Z 38
39 27 ' ' ' 39
40 28 ( ( ( PL 40
41 29 ) ) ) AND # 4
42 2A * * * ROL A 42
43 2B + + + 43
4 2C ! ! ! BIT 44
45 2D - - - AND 45
46 2E . . . ROL 46
47 2F / / / 47
48 30 0 0 0 BMI 48
49 31 1 1 1 AND()),Y 49
50 32 2 2 2 50
51 33 3 3 3 51
52 34 4 4 4 52
53 35 5 5 5 AND Z,X 53
54 36 6 6 6 ROL Z,X 54
55 37 7 7 7 55
56 38 8 8 8 SEC 56
57 39 9 9 9 AND Y 57
58 3A : : : CLI 58
59 3B ; ; ; 59
60 3C < < < 60
61 30 = = = AND X 61
62 3E > > > ROL X 62
63 3F ? ? ? 63
64 40 @ = @ RTI 64
65 41 A M, a A EOR(1,X) 65
66 42 B m, b B 66
67 43 C H, c (o] 67
68 44 D H,d D 68
69 45 E B. e E EOR Z 69
70 46 F o, f F LSR Z 70
71 47 G Do G 7
72 48 H I, h H PHA 72
73 49 | B, i | EOR # 73
74 4A J ™ J LSR A 74
75 4B K 7, k K 75
76 4C L ol L JMP 76
77 4D M N, m M EOR 77
78 4E N A, n N LSR 78




244 MACHINE LANGUAGE FOR COMMODORE MACHINES

DECIMAL HEX ASCII SCREEN BASIC 6502 DECIMAL
79 4F (0] Do (0] 79
80 50 P (m N} P BVC 80
81 51 Q @, q Q EOR(l),Y 81
82 52 R Hr R 82
83 53 S ™, s S 83
84 54 T o, t T 84
85 55 U (4, u U EOR, Z,X 85
86 56 \ X, v \" LSR Z,X 86
87 57 W @, w W 87
88 58 X @, x X CLI 88
89 59 Y ,y Y EORY 89
90 5A z @,z b4 90
91 5B [ H [ 91
92 5C N £l AN 92
93 5D | 1] ] EOR X 93
94 5E 1 o, B 1 LSR X 94
95 5F - NN -« 95
96 60 O RTS 96
97 61 L 1] ADC(1,X) 97
98 62 =] 98
99 63 0 99

100 64 d 100
101 65 O ADC Z 101
102 66 ] ROR z 102
103 67 a 103
104 68 bl PLA 104
105 69 P #Z ADC # 105
106 6A a ROR A 106
107 6B H 107
108 6C I JMP(I) 108
109 6D L] ADC 109
110 6E al ROR 110
111 6F | 11
112 70 ] BVS 112
113 71 =] ADC(l),Y 113
114 72 o] 114
115 73 L] 115
116 74 O 116
117 75 O ADC Z,X 117
118 76 ] ROR Z,X 118
119 77 m] 119
120 78 [} SEI 120
121 79 (] ADCY 121
122 7A [ | 122
123 7B 2 123
124 7C ™ 124
125 7D 7] ADC X 125
126 7E ol ROR X 126
127 7F o] 127




APPENDIX D — SUPERCHART 245
DECIMAL  HEX ASCII SCREEN BASIC 6502 DECIMAL
128 80 r-@ END 128
129 81 orange r-A FOR STA(I,X) 129
130 82 r-B NEXT 130
131 83 r-C DATA 131
132 84 r-D INPUT# STY Z 132
133 85 r-E INPUT STAZ 133
134 86 r-F DIM STX Z 134
135 87 r-G READ 135
136 88 r-H LET DEY 136
137 89 r-l GOTO 137
138 8A r-J RUN TXA 138
139 8B r-K IF 139
140 8C r-L RESTORE STY 140
141 8D car ret r-M GOSUB STA 141
142 8E graphic r-N RETURN STX 142
143 8F bottom r-O REM 143
144 90 black r-P STOP BCC 144
145 91 cur up r-Q ON STA(l), Y 145
146 92 rvs off r-R WAIT 146
147 93 clear r-S LOAD 147
148 94 insert r-T SAVE STY Z,X 148
149 95 ins. line/br r-U VERIFY STA ZX 149
150 96 ers. end/p r-v DEF STXZY 150
151 97 Gray 1 r-w POKE 151
152 98 Gray 2 r-X PRINT# TYA 152
153 99 scr. down r-Y PRINT STAY 153
154 9A L. Blue r-Z CONT TXS 154
155 9B Gray 3 r-[ LIST 155
156 9C magenta r-\ CLR 156
157 9D cur left r-] CMD STA X 157
158 9E yellow r-1 SYS 158
159 9F cyan -, OPEN 159
160 A0 | CLOSE LDY # 160
161 Al ] r-t GET LDA(1,X) 161
162 A2 =] r- NEW LDX # 162
163 A3 O r-# TAB( 163
164 A4 O r-$ TO LDY Z 164
165 A5 O r-% FN LDA Z 165
166 A6 ] r-& SPC( LDX Z 166
167 A7 a r-' THEN 167
168 A8 b r-( NOT TAY 168
169 A9 P.Z% r-) STEP LDA # 169
170 AA 0O r-* + TAX 170
17 AB B r-+ - 171
172 AC P r- * LDY 172
173 AD ® r-- / LDA 173
174 AE Al r-. 1 LDX 174
175 AF ] r-/ AND 175
176 BO B r-0 OR BCS 176




246 MACHINE LANGUAGE FOR COMMODORE MACHINES

DECIMAL  HEX AscCll SCREEN BASIC 6502 DECIMAL
177 B1 =} r-1 > LDA(I),Y 177
178 B2 = r-2 = 178
179 B3 2 r-3 < 179
180 B4 O r-4 SGN LDY Z,X 180
181 B5 O r-5 INT LDA ZX 181
182 B6 a r-6 ABS LDX Z,Y 182
183 B7 i r-7 USR 183
184 B8 = r-8 FRE cLv 184
185 B9 = r-9 POS LDAY 185
186 BA aw r-: SQR TSX 186
187 BB o r- RND 187
188 BC ™ r-< LaG LDY X 188
189 BD @ r-= EXP LDA X 189
190 BE ] r-> cos LDX Y 190
191 BF " r-? SIN 191
192 Co ] TAN CPY# 192
193 c1 % a ATN CMP(l),X 193
194 c2 M b PEEK 194
195 c3 B LEN 195
196 c4 B.d STR$ CPYZ 196
197 Cs B.e VAL CMP Z 197
198 o] g f ASC DEC Z 198
199 c7 Mg CHR$ 199
200 cs m, h LEFT$ INY 200
201 c9 Y RIGHTS CMP # 201
202 CA ®.j MID$ DEX 202
203 cB 7, k GO 203
204 cc (Wl CONCAT  CPY 204
205 cD Nm DOPEN CMP 205
206 CE @ n DCLOSE  DEC 208
207 CF Do RECORD 207
208 DO Q.p HEADER  BNE 208
209 D1 @ q COLLECT  CMP(l),Y 209
210 D2 g BACKUP 210
211 D3 ™, s COPY 211
212 D4 Ot APPEND 212
213 D5 @ u DSAVE CMP Z,X 213
214 D6 R v DLOAD DEC Z,X 214
215 D7 @, w CATALOG 215
216 D8 B, x RENAME  CLD 216
217 D9 a,y SCRATCH CMPY 217
218 DA @,z DIRECTORY 218
219 DB ® i 219
220 DC 3 i 220
221 DD m CMP X 221
222 DE o, B DEC X 222
223 DF N, i 223
224 EO [ ] CPX # 224
225 E1 u SBC(I).X 225



APPENDIX D — SUPERCHART 247
DECIMAL  HEX ASCII SCREEN BASIC 6502 DECIMAL
226 E2 - 226
227 E3 u 227
228 E4 | CPX Z 228
229 E5 m SBC Z 229
230 E6 B INC Z 230
231 E7 | 231
232 E8 ] INX 232
233 E9 , SBC # 233
234 EA | NOP 234
235 EB 235
236 EC [ ] CPX 236
237 ED (4] SBC 237
238 EE INC 238
239 EF n . 239
240 FO [ r] BEQ 240
241 Fi SBC(l), Y 241
242 F2 242
243 F3 ] 243
244 F4 ] 244
245 F5 1] SBC Z,X 245
246 F6 D INC ZX 246
247 F7 =] 247
248 F8 =] SED 248
249 Fo - SBCY 249
250 FA m, 250
251 FB L | 251
252 FC E 252
253 FD SBC X 253
254 FE " | INC X 254
255 FF a 255




248

MACHINE LANGUAGE FOR COMMODORE MACHINES

Control Character Representations

Data Link Escape (CC)

NUL  Null DLE
SOH  Start of Heading (CC) DC1 Device Control 1
STX Start of Text (CC) DC2  Device Control 2
ETX End of Text (CC) DC3 Device Control 3
EOT  End of Transmission (CC) DC4 Device Control 4
ENQ  Enquiry (CC) NAK  Negative Acknowledge (CC)
ACK  Acknowledge (CC) SYN  Synchronous Idle (CC)
BEL Bell ETB End of Transmission Block
BS Backspace (FE) (CC)
HT Horizontal Tabulation CAN  Cancel
(FE) EM End of Medium
LF Line Feed (FE) SUB  Substitute
vT Vertical Tabulation (FE) ESC Escape
FF Form Feed (FE) FS File Separator (IS)
— CR Carriage Return (FE) GS Group Separator (IS)
SO Shift Out RS Record Separator (IS)
Si Shift In us Unit Separator (IS)
DEL Delete
{CC)  Communication Control
(FE) Format Effector
(1S) Information Separator
Figure D.1
Special Graphic Characters
— SP  Space — < Less Than
— ! Exclamation Point — = Equals
-7 Quotation Marks — > Greater Than
— #  Number Sign -? Question Mark
—$ Dollar Sign — @ Commercial At
— %  Percent - Opening Bracket
— &  Ampersand N\  Reverse Slant
-’ Apostrophe —] Closing Bracket
—( Opening Parenthesis - Circumflex
—) Closing Parenthesis —  Underline
- Asterisk Grave Accent
— +  Plus { Opening Brace
-, Comma | Vertical Line (This graphic
— —  Hyphen (Minus) is sometimes stylized to
- Period (Decimal Point) distinguish it from the un-
-/ Slant broken Logical OR which
- Colon is not an ASCII character)
-, Semicolon } Closing Brace
i Tilde

Characters marked — correspond to the PET ASCII character set.

Figure D.2



APPENDIX D — ASCII 249

ASCII

ASCI| is the American Standard Code for Information Interchange. It is
the standard for communications, and is often used with non-Commodore
printers.

When a Commodore machine is in its graphic mode, its character set
corresponds closely to ASCII. Numeric, upper case alphabetic, and punc-
tuation characters are the same. A few control characters, such as
RETURN, also match. Commodore graphics have no counterpartin ASCII.

When the Commodore machine is switched to text mode, the character
set diverges noticeably from ASCII. Numeric characters and much of the
punctuation corresponds, but ASCII upper case alphabetic codes match
the Commaodore computer’s lower case codes. Commodore’s upper case
alphabetics are now completely out of the ASCII range, since ASClI is a
seven-bit code.

As a result, Commodore's PET ASCII codes require conversion before
transmission to a true ASCII device or communications line. This may be
done with either hardware interfacing or with a program. Briefly, the pro-
cedure is:

1. If the Commodore character is below $3F, it may be transmitted directly to
the ASCII facility.

2. If the Commodore character is between $40 and $5TF, it should be logically
ORed with $20 (or add decimal 32) before transmission to ASCII.

3. If the Commodore character is between $CO and $DF, it should be logically
ANDed with $7F (or subtract decimal 1 8)before transmission to ASCII.

Equivalent rules can be derived to allow a Commodore computer to receive
from ASCII. For either direction of transmission, some control characters
may require special treatment.



250

MACHINE LANGUAGE FOR COMMODORE MACHINES

First Hexadecimal Digit

DEL

SP

%
&

DLE
DCI

DC2
DC3
DC4

SYN
ETB

CAN
EM

SuUB

FS
GS

RS

US

NUL
SOH
STX

ETX

EOT

ENQ | NAK
ACK

BEL

BS

HT

LF

FF

CR

SO
Sl

2

<

5

©

~

@

»

<

161 [ewioapexaH pucoas

ASCII code values.



E

Exercises for
Alternative
Commodore
Machines

251



252

MACHINE LANGUAGE FOR COMMODORE MACHINES

Commodore 128 users should turn to page 257.

From Chapter 6:
VIC-20 (Unexpanded) Version

We write the BASIC program as follows:

100
110
120
130
140
150

VZ=0

FORJ=1TOS

INPUT "VALUE";VZ

SYS ++++

PRINT "TIMES TEN =";VZ
NEXT J

Plan to start the machine language program at around 4097 + 127, or
4224 (hexadecimal 1080). On that basis, we may change line 130 to
SYS 4224. Do not try to run the program yet.

A 1080 LDY #$02

A 1082 LDA ($2D),Y
A 1084 STA $033C

A 1087 STA $O033E

A 108A LDY #$03

AR 108C LDA ($2D),Y¥
A 108E STA $033D

A 1091 STA $033F

A 1094 ASL $033D

A 1097 ROL $033C

A 109A ASL $033D

A 109D ROL $033C

A 10A0 CLC

A 10A1 LDA $033D

A 10A4 ADC $033F

A 10A? STA $033D

R 10RA LDA $033C

AR 10AD ADC $033E

A 10BO STA $033C

A 10B3 ASL $033D

A 10B6 ROL $033C

A 10B9 LDY #$02

A 10BB LDA $033C

AR 10BE STA ($2D),Y
A 10C0 LDY #$03
A10C2 LDA $033D

A 10CS STA ($2D),Y
A 10C? RTS



APPENDIX E — PET/CBM VERSION 253

To change the start-of-variables pointer to a location above the machine
language program, display the SOV pointer with .M 002D O02E and

change the pointer to

:00edC8LW0 .. o0 o ol ol ..

PET/CBM Version

We write the BASIC program as follows:

100 vZ=0
1120 FORJ=1TOS

120 INPUT "VALUE";VZ%

130 SYS ++++

140 PRINT "TIMES TEN =";VZ%
150 NEXTJ

Plan to start the machine language program at around 1,025+ 127, or
1152 (hexadecimal 480). On that basis, we may change line 130 to
SYS 115¢2. Do not try to run the program yet.

A 0480
A 0482
B 0484
R O487
A 048R
A 048C
R D48E
A 0491
A 0494
B D497
A D49R
A 049D
A D4AD
A D4A1
A 04R4
A D4A?
A D4AR
A D4AD
A 04BO
A 04B3
A 04BG
A 04B9
A O4BB
A D4BE

LDY
LDA
STA
STA
LDY
LDA
STA
STA
ASL
ROL
ASL
ROL
CLC
LDA
ADC
STA
LDA
ADC
STA
ASL
ROL
LDY
LDA
STA

#$02
($2R),Y
$033C
$033E
#$03
($21),Y
$033D
$033F
$033D
$033C
$033D
$033C

$033D
$033F
$033D
$033C
$033E
$033C
$033D
$033C
#8502
$033C
($2R),Y



254 MACHINE LANGUAGE FOR COMMODORE MACHINES

A 04CO
A D4CE
A O4CS
A 04C7

LDY
LDA
STA
RTS

#$03
$033D
($2n),Y

ifl'g_ change the start-of-variables pointer to a location above the machine
ldhguage program, display the SOV pointer with M 002A 002B and

change the pointer to

:002A C8 04

From Chapter 7:
An Interrupt Project
VIC-20 (Unexpanded) Version

The only difference with the VIC-20 is that the screen is located at $1E00:

A 033C LDA $91

e e o 0o o0 o e e e oo

A 033E STA $1EOO
A'0341 JMP ($03A0)

To place the link address into $03A0/1:

A 0344 LDA $0314
A 0347 STA $03A0
A 034R LDA $0315
A 034D STA $03A1

To fire up the program:

A 0350 SEI
A 0351 LDA #$3C

A 0353 STA $0314
A 03S6 LDA #$03

A 0358 STA $0315
A D3SB CLI
A 035C RTS

To restore the original interrupt:

A 035D SEI
A O3SE LDA $03A0
A 0361 STA $0314
A 0364 LDA $03A1
A 0367 STA $0315



APPENDIX E — PET/CBM VERSION 255

A 03BA CLI
A 036B RTS

SYS 836 will invoke the new interrupt code; SYS 8E1 will turn it off. As
with the Commodore 64, there is a possibility of the character printing
white-on-white, so that it cannot be seen.

PET/CBM Version

This vérsioh is not for original ROM machines, which have the TRQ vector
located at address $0219/A:

A 033C LDA $9B
A D33E STA $8000
A 0341 JUP ($03IA0)

To place the link address into $03A0/1:

A 0344 LDA $0090
A 0347 STA $03A0
AR 034A LDA $0091
R 034D STA $03R%L

To fire up the program:

A 0350 SEI

A 0351 LDA #%3C
A 0353 STA $0090
A 0356 LDA #3%03
A 0358 STA $0091
A 03SB CLI

A 035C RTS

To restore the original interrupt:

A 035D SEI
A D3SE LDA $03A0
A 0361 STA $0090
A 0364 LDA $03A1
A 0367 STA $0091
A 036A CLI
A D3LB RTS

SYS 836 will invoke the new interrupt code; SYS 861 will turn it off.
Since the PET/CBM does not have colors, the characters will always show.



256 MACHINE LANGUAGE FOR COMMODORE MACHINES

Project: Adding a Command
PET/CBM Version

It's not possible to write a comparable program to add a command to the
PET/CBM. This machine doesn’'t have a “link” neatly waiting for us at
address $0308/9. Equivalent code would need to be somewhat longer

and less elegant.

The equivalent program for PET/CBM won't be given here. It would involve
writing over part of the CHRGET program (at $0070 to $0087), sup-
plying replacement code for the part we have destroyed, and then adding
the new features.



APPENDIX E — EXERCISES FOR THE C128 257

Exercises for the Commodore C128
From Chapter 1:

Locations $0380 and $0381 are important in the C128. They are sen-
sitive BASIC locations, and if we changed them, BASIC would stop work-
ing. So we’ll change the task to this: swap the contents of locations $0B&0
and $0BA1.

Our plan will look like this:
LDA $0BAa0D (bring in first value)
LDX $0BA&1 (bring in second value)
STA $0Bal (store in opposite place)
STX $0BA&0D (and again)
BRK
We may write the machine language code as:
AD 80 OB LDA $0Ba0
AE 81 OB LDX $0Bal1
8D 81 OB STA $0BA&1
8E a0 OB STX $0BAa0
0o BRK
The code within the computer will consist of 13 bytes: AD 60 OB AE 81
0B 8D 41 OB AE 40 OB 0O. Now we decide where to put it.

On the Commodore 128, we can't use the addresses startingat $033C—
we'd quickly run into sensitive areas. We'll place our program into the
C128's cassette buffer that starts at address $0B00 (decimal 281E). .
That's a good place to put short test programs on this machine, and most
of our following examples will go there.

On the Commodore 128, the BASIC command MONITOR will bring the
machine language monitor into action. You'll immediately get the register
display:
MONITOR
PC SR AC XR YR SP
; FBOOO 00 OO0 00 OO F9
The cursor will be flashing at the start of the next line.

The information is as explained in chapter 1, except that the address under
P%ontains an extra digit. The first digit (in this case, the “F”) is called
the"bank number. The letter F_is hexadecimal notation for the value 15
decimal, and we say that the program stopped in bank 15 at address hex

BOOD.
XSop )28 Manvasl

_[5 390 for List




258

MACHINE LANGUAGE FOR COMMODORE MACHINES

For the moment, we can consider that “bank 15" means “situated in
ROM—Read Only Memory.” We know that the Machine Language Monitor
is built into the Commodore 128; so of course it's in ROM.

When we write programs, we will put them in RAM. The Commodore 128
has a great deal of RAM fitted to it. We could choose RAM from bank 0,
where BASIC programs are stored, or from bank 1, where BASIC vari-
ables, arrays and strings are kept. There’s plenty of memory in either
bank. We will choose bank 0, mostly because it's easier—if the first digit
is zero (for bank 0) we don't have to type it.

To display memory from $1,000 to $1010 we would command:

M 1000 1010
The resulting memory display might look something like this:

>1000 0?7 060A0?06040508:........

>10068 09 05 47 52 41 50 48 49:..GRAPHI

>1010 43 44 4C 4F 41 44 22 44:CDLOAD"D
The four-digit number at the start of each line represents the address in
memory being displayed. The two-digit numbers to the right represent the
contents of memory. The characters to the right of the colon are ASCII
equivalents of the same memory contents (or a period if no equivalent
exists). If you are working on an 80-column monitor, you will get more
memory locations per line than are shown above.

To change memory, we move the cursor until it is positioned over the
memory contents in question, type over the value displayed, and then
press RETURN. You can't change the ASCII part of the display; only the
two-digit hexadecimal values.

If you have displayed the contents of memory, as in the example above,
you might wish to change a number of locations. Be careful: on the Com-
modore 128, this particular part of memory holds the definitions for the
function keys, F1 to F10. The first ten bytes are definition lengths; the
following locations, as you might have guessed, are the definitions them-
selves. If you play with these locations, expect to end up with muddled
function keys.

Here comes our final rewrite of this program example
0BOD AD 80 OB LDA $0BAa0
0OBO3 AE 81 OB LDX $0B81
OBOE 4D 81 OB STA $0BA81
0B0OY9 &8E 80 OB STX $0BAa0
0BOC OO
Now to put it in: -



APPENDIX E — EXERCISES FOR THE C128 259

We go to the MLM, and display memory with

M BOO BOC
Note that we may drop leading zeros. The first address in full is 00BOO
(bank O, address DBOO). But we may shorten it if we wish; in either case,
we'll get something like:

Don't type in the “x X or the trailing colon or periods—just leave whatever
was there before. And be sure to press RETURN. If you have an 80-
column display, you will get the whole memory display on one line.

Now we must put something into locations $0B&0 and $0B8&1 so that
we’ll know that the swap has taken place correctly.

Display memory with M BA0 B&1 and set the resulting display so that
the values are

>00BA&0 11 99 XX XX XX XX XX XX
Remember to press RETURN. Now we may run our program; we start it
with

G BOO
Display the data values to confirm that they have been exchanged with
M 0380 D381.

From Chapter 2:

Print projects:

The first exercise uses the same code, but is placed in address BOO:
A OBOO LDA #4868

Note that the use of the dollar sign for hexadecimal is optional in this
monitor. It's probably better to use it, but if you don’t the computer will
assume hex numbers are intended. Using the plus sign to signal a decimal
number, you could type . . .LDA #+ 72 and the decimal value of
7 2—the same value as hex 4 8—uwill be accepted. You could even type
. . .LDA #%201001000 to enter the same number in binary. Either
way, it's still the ASCII letter H, and you'll find that hexadecimal is more
convenient and compact.

If you have correctly typed the line, it will be assembled. The object code
will be placed into memory starting at the address specified and you'll also



260

MACHINE LANGUAGE FOR COMMODORE MACHINES

see it on the screen as part of the line that you originally typed. You'll also
get a prompt for the next instruction. The screen will now show:

A 0OBOO A9 448 LDA #$48

A 00BO2
The cursor will be flashing to the right of the “2.” Continue by typing in
JSR $FFD2 and pressing RETURN. Again, the computer will rework
what you have typed and anticipate your next line by printing A 00BOS,
which allows you to type in the final command, BRK. The screen now
looks like this:

A 0DDBOO R9 48 LDA #$48
A 00OBOE2 20 D2 FF JSR $FFDC
A 00BOS 0O BRK

A 00BOG

Press RETURN to signal that you're finished. If you wish, you may display
memory with M BOO BOE. You'll see your program in memory:
>00BO0 A9 48 20 D2 FF 00 xx xXx
There's less need to check your work with a disassembler since you can
see the code as it is being written. But it never hurts to be safe; so we
may inspect our program again with:
D BOO BOS
Note that we give two addresses, the starting and the ending address. If
you give the starting address only, you'll get about 20 bytes of code, which
is more than we need.

If you wish to disassemble more code than the screen will hold, you may
“continue” a disassembly by typing the letter D by itself. You'll get about
20 more bytes from wherever your previous disassembly left off. Inciden-
tally, you can use the same technique for memory display: an M command
without an address will continue a memory display.

Minor errors that you spot in either an assembly or a disassembly may
be corrected directly on the right-hand side of the assembly or disassembly
listing. In other words, suppose that you had incorrectly coded LDA #$58
during the assembly phase; when you perform the disassembly, this line
will show as
00BOD A9 58 LDA #%$58

You recognize that the $58 should be $48; you may move the cursor up—
use cursor home if you wish—and type over the value on the right-hand
side. In this case, you place the cursor over the 5, type 4 to change the
display to $48, and press RETURN. You will see from the display that
the problem has been fixed.

To run the program type the command G FOBOO. What? Our program
is in bank 0; how can we call it by naming bank 15? And why would we
do so?



APPENDIX E — EXERCISES FOR THE C128 261

We can successfully call the program by naming bank 15 for this reason:
in bank 15, all addresses below hexadecimal 4000 (decimal L6£384)
are taken from RAM, bank 0. It would be more accurate to call bank 15,
“configuration 15.” You can read more on this, when you're ready, in
Appendix B-1. That explains how we get there; but why bother?

We need to call bank 15 because our program calls CHROUT at address
$FFD2—a ROM routine. And we see ROM in bank. 15, not in bank 0. If
we were in bank 0 and made a subroutine call to address $FFD2, we'd
jump to RAM at that address. There’s no code at that locatiori in RAM,
and we'd be in trouble.

When you get into advanced programming in the Commodore 128, you
will be able to call subroutines across banks. At that time, you'll be able
to have a program running in bank zero that will call a subroutine in ROM,
bank 15, with provision for a successful return to bank zero. When you're
ready for it, you'll find that a subroutine called JSFAR, located at address
$02CD in all banks, will do the job of getting you across and back. You'll
need to learn how to carefully set up the contents of addresses 2 to &
before calling JSFAR.

For the moment, we can skip the advanced techniques and get our pro-
gram running with G FOBOO. The H will be printed on the same line, to
the right of the last zero.

To switch this program to a BASIC-callable subroutine, we must change
the BRK command at the end to an RTS. Disassemble, if you wish, and
type over the BRK with the characters RTS.

Just before returning to BASIC, let's ask for the decimal equivalent to
hexadecimal 0BOO. Type $B0O0 and press return. You'll see the equiv-
alent representations in hexadecimal (the same number), in decimal
(+281k) and also in octal and binary. The decimal value 281k is what
we need.

Return to BASIC (using the X command). The computer will say READY;
you may now call your program with a SYS command.

The computer has toid us that address $0B00 is 281k in decimal. If
we had forgotten to ask before leaving the ML M, we could now-ask BASIC
with PRINT DEC (" 0OBOO" );we'd getthe same value of 28 1 & printed.
Now we type BANK 15:SYS 281E. When we press RETURN, the letter
H will be printed.

Don't forget the reason that we are using BANK 15—it's to make sure
that we reach both our program in RAM (below hex 4000) and the Kernal
ROM (hex 4000 and above) at the same time to avoid extra “switching”
work. Now we may type NEW and enter a BASIC program:



262

MACHINE LANGUAGE FOR COMMODORE MACHINES

100 BANK 15

110 FOR J=1 TO 10

120 SYS 281k

130 NEXT J
If you prefer, you're allowed to say SYS DEC("BOO") in line 120.
BASIC commands know only decimal numbers, so we must transiate from
hex one way or another.
Loops project:

A OBOO LDX #0

A 0BOZ LDA $BODE,X

A OBOS JSR $FFDE

A OBOA& INX

A 0BD9 CPX #b

A OBOB BNE $BO2

A OBOD RTS
After entry, the program looks like this:
A OBOO A2 OO LDX #3$00

A OBO2 BD OE OB LDA $0BOE,X
A 0OBOS 20DE2 FF JSR $FFDE

A OBOG E8 INX

A 0BO9 EO O& CPX #$0b
A OBOB DO FS BNE $0BOC
A OBOD &O RTS

We guessed (or planned) that the address $0BOE would be available for
our message HELLO. Now we must store these characters in memory.

Command M BOE B13, and type over the display to show

>00BOE 48 45 4C 4C 4F 0D xx XX
Return to BASIC (with X) and try BANK 15:SYS 281E. The computer
should say HELLO.

Once again, you may set up a BASIC loop program:

100 BANK 15

120 FORJ=1TO 3

120 SYS 2816

130 NEXT J , .
To preserve the program within DATA statements, type:

FOR J=2816 TO 2835:PRINT PEEK(J); :NEXT J
Study the above line. You will see that it asks BASIC to go through the
part of memory containing your machine language program, and display
the contents (in decimal notation, of course). You'll see a result that looks
something like this:

162 0 189 14 11 32 <210 @255 @232 224 &
c08 245 96 72 B9 7?6 7?6 7?9 113



APPENDIX E — EXERCISES FOR THE C128 263

You may arrange these within data statements:

S0 DATA 1&2,0,169,14,11,32,210,255,232,2¢24,6

&0 DATA 208,245,96,72,69,76,76,79,13

80 FOR J=2816 TO 2835:READ X:POKE J,X:NEXT J
... and our program continues as before with:

100 BANK 15 '

110 FORJ=1TO 3

120 SYS 2816

130 NEXT J

From Chapter 3:

Input exercise:
A 00OBOO JSR $FFEL
A DOBO3 BEQ $B1S
A DDOBOS JSR $FFE4
A 00OBOA CMP #30
A OOBOA BCC $0BOO
A 0OBOC CMP #3A
A DOBOE BCS $BOO
A 00OB10 JSR $FFDE
A OOB13 AND #$0F
A 0OOB1S RTS

The forward branch to $0B15 was a guess, but it turns out to be correct.
The final assembly looks like this:

00BOO 20 E1 FF JSR $FFEL

00BO3 FO 10 BEQ $0B1S

00BOS 20 E4 FF JSR $FFE4

00BO& C9 3D CMP #3$30

0O0OBOA 90 F4 BCC $0BOD

ooBOC €9 3A CMP #$3A

O0OBOE BO FO BCS $0BOO

00B1O0 20 D2 FF JSR $FFD2

00B13 29 OF AND #3$0F

00B1S &O RTS

Call the subroutine for testing with BANK 15:SYS 2816.

From Chapter 4:

Addition program:

L R B

Be sure that the above code from the previous chapter has been entered
before continuing with the main program:
A 00B1& JSR $BOO



264 MACHINE LANGUAGE FOR COMMODORE MACHINES

00B19
00B1C
0O0B1E
00B21
00B24
00B2S
ooBE27?
0oBZ2A
00BeB
goBeC
00BEF
00B31
00B34
00B36
00B39

oo Bl

As a matter of style, you might prefer to type addresses as four digits of
hex ($0B00 rather than $B0OD0) to remind yourself that you're dealing
with sixteen bits. The dollar sign isn't needed, but | suggest you keep it.
When you graduate to a full symbolic assembler, you'll be required to use
the dollar sign; you might as well keep in practice.

STA
LDA
JSR
JSR
TAX
LDA
JSR
TXA
CLC
ADC
ORA
JSR
LDA
JSR
RTS

$BEO
#$cB
$FFD2
$BOO

#$3D
$FFDC

$BEO
#$30
$FFD2
#$0D
$FFD2

The assembled screen code looks like this:

00B1E
00B19
00B1C
OOB1E
00B21
00B24
00B25S
0O0B2?
00B2A
0O0B2B
ooB2C
00B2F
00B31
00B34
00B36
00B39

T DD DD DD

Remember we don’t want to SYS to address $B00 (281 E)—that's the
subroutine. Instead, command BANK 15:SYS 2838 which takes us to the

20
8D
A9
20
20
AR
Aq
20
8
18
)
ik
20
A9
20
b0

00 OB
&0 OB
cB

D2 FF
00 OB

EN)
D2 FF

&0 OB
30
De FF
0D
D2 FF

main routine at $0B1E.

JSR
STA
LDA
JSR
JSR
TAX
LDA
JSR
TXA
CLC
ADC
ORA
JSR
LDA
JSR
RTS

$0BOO
$0B&O
#$cB

$FFDC
$0BOO

#$3D
$FFDC

$0B&O
#$30
$FFDC
#$0D
$FFDC2




APPENDIX E — EXERCISES FOR THE C128 265

From Chapter 5:

Project: Screen Manipulation

It's not possible to do a simple POKE to the screen when you are in the
Commaodore 128’s 80-column mode, so this example must be for the 40-
column configuration only. The first instruction uses a decimal value of 40
rather than hex 28.
A 00BOO LDA #+40
A 00BOZ2 STA $Ba0O
The 40-column screen is usually at $0400.
A 00BOS LDX #$04
A 00BO? STX $BC
A 00BO9 LDA #$00
A DOBOB STA $BB
A 0O0BOD LDX #0O
Here's where we start on a new line
A O0OBOF LDY #$04
And this is where we handle the next column.
00B11 LDA ($BB),Y
00B13 CMP #3520
00B15 BEQ $B19
00B1? EOR #%$480
00B19 STA ($BB),Y
O0B1B INY
00B1C CPY #+18
ODO0OB1E BCC $Bll
00B20 CLC
00B21 LDA $BB
00B23 ADC $BaO
00B2k STA $BB
00B28 LDA $BC
OD0OBZ2A ADC #300
00B2C STA $BC
DOB2E INX
O0B2F CPX #+14
00B31 BNE $BOF
00B33 RTS
The assembled code will look like the following. There’s not enough room
on the screen to see it all at once.
A 0OOBOO A9 28 LDA #$c26
A 00BOZ2 AD A0 OB STA $0BA&O
A 0O0OBOS A2 04 LDX #3$04

DD ED NS



266

MACHINE LANGUAGE FOR COMMODORE MACHINES

00BO?Y
ooBO4g
00BOB
ooBOD
00BOF
00B11
00B13
00B1S
00B17
00B19
00B1B
00B1C
O0B1E
00B20
00B21
00BE3
00B2E
00B2a
00B2A
ooBecC
00B2E
00BZF
00B31
00B33

LR R A A R R R R N Rl o A

]S
A9
a5
Ac
AD
Bl
ca
FO
49
q1
of}
co
qo
18
AS
ED
as
AS
&9
a8s
E8
EO
DO
&0

BC
0o
BB
ao
04
BB
el
0e
ao
BB

12
F1

BB
a0
BB
BC
oo
BC

0E
DC

0B

STX
LDA
STA
LDX
LDY
LDA
CMP
BEQ
EOR
STA
INY
CPY
BCC
CLC
LDA
ADC
STA
LDA
ADC
STA
INX
CPX
BNE
RTS

$BC
#$00
$BB
#3$00
#3504
($BB),Y
#3520
$0B19
#3680
($BB), Y

#%$1c
$0B11

$BB
$0BA0
$BB
$BC
#$00
$BC

#$0E
$O0BOF

Now for the BASIC program to demonstrate how it all works:
100 BANK 15
110 FORJ=1 to 10

120 SYS 2816
130 FOR K=1 to 200
140 NEXTK,d

From Chapter 6:

We can do the exercise, but there are new rules that we must learn.

The Commodore 128 has more than one bank of memory, and different
things are found in different banks. The role of pointers in keeping various
types of data separate is not the same as before. An earlier Commodore
machine (the B-128 or 700 series) had this same kind of multi-bank ar-
chitecture, and some of the following comments will also apply to that

machine.



APPENDIX E — EXERCISES FOR THE C128 267

Siting Behind BASIC

About the pointers: Our BASIC program is in bank O, but the variables,
arrays and strings are in bank 1. This means that the start-of-BASIC pointer
works with a different memory bank than the others. When we place a
machine language program directly behind a BASIC program we are in
no danger of bumping into variables. There is a pointer, saying where the
empty space starts in bank 0—the pointer is at hex 1210, decimal 4624—
but it mustn't be confused with start-of-variables.

On the Commodore 128, a BASIC program usually is stored at address
$1CO0O1. The address may change if graphics functions are used. That's
quite a high address compared to most other Commodore machines. You
may establish where a program ends by checking addresses $1210 and
$1211. If you wish to write a program that will be located in bank 0 but
above your BASIC program, the pointer will tell you the area that’s safe.
After you have placed your program in the appropriate part of memory,
you may move the pointer up. From that point on, BASIC and machine
language will load and save together as a unit.

We're going to use this parked-behind-BASIC location in the exercise.
There’s one more caution, however. If you want the ease of bank 15
operation, with simple access to your program in RAM and the Kernal in
ROM, you must make sure that your programs—BASIC and machine
language together—don'’t go above address $4000. Beyond that point,
you'll have to carefully call banking subroutines—principally the one at
$02CD—to make sure that everything works together. For our tiny sample
program, that's no problem.

Crossing The Banks

Here’s a new problem. Our program—Ilocated in bank 0— is going to look
at and change BASIC variables as they lie in memory. How can a program
in bank 0 look at and change data in bank 1? We must learn about the
subroutines that allow us to do this.

To LOAD from any memory bank, we must call subroutine INDFET (indirect
fetch), located at address $FF 7 4. Set things up as if you are about to
do a LDA (..),Y command. That calls for first setting up an indirect address
somewhere in page zero. Tell the subroutine where the indirect address
is located by loading its address into the A register. Then load the bank
number into register X, load Y with an appropriate value for indirect use,
and call JSR $FF?4. The data from the appropriate bank will be re-
turned in the A register.



268

MACHINE LANGUAGE FOR COMMODORE MACHINES

To STORE in any memory bank, we must call subroutine INDSTA (indirect
stash), located at address $FF7 7. Set things up as if you are about to
do a STA (..),Y command. That calls for first setting up an indirect address
somewhere in page zero. Tell the subroutine where the indirect address
is located by storing it into address $02B9. Then load the bank number
into register X, load A with the data to be stored, load Y with an appropriate
value for indirect use, and call JSR $FF7 7. The data will be stored in
the appropriate bank.

Project

Type NEW and enter the BASIC program as follows:

100 VZ=0:BANK 15

L10FORJI=1TOS

120 INPUT "VALUE";VZ

130 SYS ++++

140 PRINT "TIMES TEN ="; V%

150 NEXT J
Assuming that our BASIC program will occupy less than 127 bytes and
that BASIC starts at $1,C01 (decimal 7169) we can start our machine
language program at around 7169 + 127, or 7296 (hexadecimal 1, Ca&0).
On that basis, we may change line 130 to SYS 729k. Do not try to
run the program yet. It would be a good idea to call the monitor briefly
and display the contents of memory address 1210-1211 to confirm
that we are in the right range.

Switch into the machine language monitor. Assemble the following code,
but don’t type the comments in parentheses:

0D1CA0 LDY #302

01Ca2 SEI

01CA3 LDA #$2F (the indirect address)
01C85 LDX #3%01 (bank 1)

0LCA? JSR $FF74

01CAAR STA $0OBOO

0D1CAaD STA $0BOZ

01C90 LDY #$03

01C92 LDA #$2F

01C94 LDX #3%01

01CAE JSR $FF74

01C99 CLI

01CH9A STA $0BO1

01CAD STA $0BO3

O1CAD ASL $0BO1

0LCA3 ROL $0BOO

L R B B R NN R NN NN RN



APPENDIX E — EXERCISES FOR THE C128

269

e A S A R R B

Th

(]

S DDDD DD DD DD DD

01CAG
01CAqg
01CAC
01CAD
01CBO
01CB3
01CBGE
01CB9
01CBC
0LCBF
01cce
01LCCS
01CCE
D1cca
01cca
01CCD
01LCCF
01Cbhe
01CDS
01CD?
01CDA
01CDbC
01CDF
01CEO

ASL
ROL
CLC
LDA
ADC
STA
LDA
ADC
STA
ASL
ROL
SEI
LDY
LDA
STA
LDX
LDA
JSR
LDY
LDA
LDX
JSR
CLI
RTS

$0BOL
$0BOO

$0BOL
$0BO3
$0BO1
$0BOO
$0BOE2
$0BOO
$0B0OY
$0BOO

#$02
#$2F
$02B9
#$01
$0BOO
$FF?7?
#%$03
$0BO1
#3501
$FF?77?

(the indirect address)

(bank 1)

assembled code will look like this:

01Ccé0
0ucae
01Ca3
01Cas
01ca-7
01CaA
01Cab
01CQa0
01Ccae
01CH4
01CH6
01cqaq9
01CAaA
01CAD
01CADO
01CA3
01CAGE
01CAq

AD
78
A9
Ac
ci
aD
aD
AO
Aq
Ac
20
=1s)
aD
8D
0OE
cE
0OE
cE

02

cF
01
74 FF
00 OB
o2 0B
03
cF
01
74 FF

01 OB
03 OB
01 OB
00 OB
01 OB
00 OB

LDY
SEI
LDA
LDX
JSR
STA
STA
LDY
LDA
LDX
JSR
CLI
STA
STA
ASL
ROL
ASL
ROL

#$0c

#$2F
#$01
$FF?4
$0BOO
$0BO2
#$03
#$2F
#$01
$FF74

$0BOL
$0B0O3
$0B0OL
$0BOO
$0BOL
$0BOO



270

MACHINE LANGUAGE FOR COMMODORE MACHINES

0LCAC 18 CLC
01CAD AD 01 OB LDA $0BOL
01CBO &D 03 OB ADC $0BO3
01CB3 4D 01 OB STA $0BOL
0LCBE AD 00 OB LDA $0BOO
01CB9 &D O2 OB ADC $0BOZ
0LCBC 4D 00 OB STA $0BOO
0LCBF OE 01 OB ASL $0BO1
01cce 2E 00 OB ROL $0BOO
01CCS 78 SEI
0LCCEt ADO 02 LDY #$02
0LCCA8 A9 2F LDA #$2F
0LCCA 8D B9 02 STA $02B9
0LCCD AZ 01 LDX #%$01
0LCCF AD 00 OB LDA $0BOO
01CDpe 20 ?? FF JSR $FF??
01CDS AD O3 LDY #$03
01CD? AD 01 OB LDA $0BOl
0LCDA AZ 01 LDX #$01
01CpC 20 ?? FF JSR $FF??
OLCDF 58 CLI
0LCEQ &OD RTS
We must change the End-of-BASIC pointer to a location above the ma-
chine language program. That would be $1.CE1, and so we display the
EOB pointer with M 1210 1211 and change the pointer to
>1210 E1 1C .. .. .. .. .. ..
Check . . . disassemble . . . and then back to BASIC. List, and you'll see
your BASIC program again. There’s no sign of the machine language
program, of course, but SAVE will now save everything together. You may
now RUN.

e R B

From Chapter 7:

Interrupt Exercise

The interrupt:
A 00OBOO LDA $91
A 00BOZ2 STA $0400
A 00BOS JMP ($0BSO)
The enable:
A 0OOBO& LDA $0314
A 0OOBOB STA $0BSO
A OOBOE LDA $031S
A 00OB11l STA $0BS1



APPENDIX E — EXERCISES FOR THE C128 271

00B14 SEI

00B1S LDA #$00

00B1? STA $0314

0O0BLA LDA #30B

00B1C STA $031S

00B1F CLI

00B20 RTS

disable:

00B21 SEI

00B22 LDA $0BSO

00B25 STA $0314

00B28 LDA $0BS1

00B2B STA $031S

00B2E CLI

00BZF RTS

completed program should look like this:
00BOO AS 91 LDA $91
00BOZ2 &D OO0 04 STA $0400
00BOS &C SO0 OB JMP ($0BSO)
00BOA& AD 14 03 LDA $0314
00BOB 6D S0 OB STA $0BSO
O0OBOE AD 1S5 03 LDA $0315
00B11 AD 51 OB STA $0BS1
00B14 78 SEI

00B1S A9 OO0 LDA #3%00
00B1? &D 14 03 STA $0314
O00BLA B9 OB LDA #$0B
00B1C &D 15 03 STA $031%

=S D

Th

(V]

O0B1F 54 CLI
00B20 &O RTS
00B21 78 SEI

00B22 AD 50 OB LDA $0BSO

00B25 AD 14 03 STA $0314

00B2&8 AD 51 OB LDA $0BS1

00B2B 8D 15 03 STA $031S

O0B2E S& CLI

00B2F &O RTS

Enable the new interrupt procedure by a SYS to $0B08, above (SYS
2824). Return to the “standard” interrupt with acallto $0B21 (SYS 2849).

ﬂ’bP3:"3’3’3’PP?’S’PS’S’PS’S’E’S’P”%PH’DKBPU’:’

Project: Adding a Command

CHRGET is now at address $0380. TXTPTR is still in zero page, how-
ever, at $3D. We use coding quite similar to that for the Commodore 64.



272

MACHINE LANGUAGE FOR COMMODORE MACHINES

Here's the “intercept”:

#$01
($3D), Y
#$26
$0BOB
($0BS0)
$0380
#$00
#$2R
$FFD2

#$0A
$0B1C2
#$0D
$FFDC
$0BO8

A 00BOO LDY #1
A 00BOZ LDA ($3D),Y
A 00BO4 CMP #%¢2kb
A 0OOBO& BEQ $BOB
A 00OBO& JMP ($0BSO)
A DOBOB JSR $0340
A OOBOE LDY #0O
A 00B10 LDA #%$c2A
A 00Bl2 JSR $FFDE
A 00B1S INY
A 0O0B1E CPY #+10
A 00Bl1& BCC $Ble2
A O0OB1A LDA #$0D
A D0OB1C JSR $FFDCE
A OOB1F JMP $BO&

Here's the link to turn it on:
A 00B2e2 LDA $0308
A 00Be2S STA $BSO
A 00B2& LDA $03049
A 00BE2B STA $BS1
A ODOB2E LDA #%00
A 0D0OB30 STA $0308
A 00B33 LDA #$0B
A 00B35 STA $0309
A 00B38& RTS o

The assembled code will look like this:
A 0O0BOO AO 01 LDY
A 00BOZ Bl 3D LDA
A 00BO4 C9 @26 CMP
A 0O0OBO& FO O3 BEQ
A 0O0OBOA &EC S0 OB JMP
A 0O0OBOB 20 a0 03 JSR
A OOBOE AO OO LDY
A 00B1O A9 22 LDA
A 00Bl2 20 D2 FF JSR
A 0OOB1S Ca INY
A 0O0B1& CO 0OA CPY
A 0O0OB18 90 Fa BCC
A 00OBlA A9 0D LDA
A 00OB1LC 20 D2 FF JSR
A OOB1F 4C D& OB JMP
A 00OBeZ2 AD 08 03 LDA

$03048



APPENDIX E — EXERCISES FOR THE C128 273

00B2S 8D 50 OB STA $0BSO
00B2& AD 09 03 LDA $0309
00BeB 4D 51 OB STA $0BS1
00BZE A9 OO0 LDA #%$00
00B30 4D 08 03 STA $0304
00B33 A9 OB LDA #$0B
00B35 4D 09 03 STA $0309
00B3&8 &0 RTS

When you have completed and checked the code return to BASIC. Type
NEW and write the following program:

100 PRINT 3+4:&:PRINT S5+&

110 &

120 PRINT "THAT'S ALL"
Type RUN and you'll get a SYNTAX ERROR in line 100. Now implement
the “ampersand” feature with BANK 15:SYS 2850. Type RUN again. The
ampersand command obediently prints ten asterisks each time it is in-
voked. A point of interest: in the two examples in this chapter, bank 0 will
work. Can you see why?

From Chapter 8:

Output Example

g - &

To put the message HI on the printer:
100 OPEN 1,4
110 BANK 15:S5YS 281E
120 CLOSE 1

The machine language:

00BOO LDX #3%01

00BO2 JSR $FFCH

00BOS LDA #%$%48

00BO? JSR $FFDE

O0OBOA LDA #3449

00BOC JSR $FFDE

O0OBOF LDA #30D

00B11 JSR $FFDC

00B14 JSR $FFCC

00B1? RTS

The assembled code:
A 00BOO A2 01 LDX #%$01
A 00BOZ 20 C9 FF JSR $FFCAH
A 00BOS A9 48 LDA #%$46
A 00BO? 20 D2 FF JSR $FFDE

o S R



274

MACHINE LANGUAGE FOR COMMODORE MACHINES

O0OBOA A9 49 LDA #%$49
00BOC 20 D2 FF JSR $FFDE
OOBOF R9 OD LDA #$0D
00B1l 20 D2 FF JSR $FFDC
00B14 20 CC FF JSR $FFCC
00B1? &O RTS

Input Example

=

Create the file as described in Chapter 8. The BASIC program is also
similar except for the SYS command:

100 OPEN1,8,3,"DEMO"

110 BANK 15:SYS 2816

120 CLOSE 1
The machine language program:

00BOO LDX #3$01

00BO2 JSR $FFCE

00BOS JSR $FFE4

0DBOA& JSR $FFDE

0D0OBOB LDA $490

00BOD BEQ $0BOS

0DOBOF JSR $FFCC

00B12 RTS
assembled code:

00BOO A2 01 LDX #$01
00BO2 20 Ck FF JSR $FFCE
00BOS 20 E4 FF JSR $FFE4
00BOA& 20 D2 FF JSR $FFD2
0DBOB AS 490 LDA $490
00BOD FO F& BEQ $0BOS
ODBOF 20 CC FF JSR $FFCC
00B12 kO RTS
A File Transfer Program

Here comes BASIC:
100 PRINT "FILE TRANSFER"
110 INPUT "INPUT FROM (DISK,TAPE)" ;A%
120 IF LEFT$(A%$,1)="T" THEN OPEN 1:GOTO 1&0
130 IF LEFT$(A$,1)<> "D" GOTO 110
140 INPUT "DISK FILE NAME";N$
150 OPEN1,8,3,N%
160 INPUT "TO (DISK, TAPE, SCREEN)";B$
170 IF LEFT$(B$,1)="S" THEN OPEN 2,3:GOTO 240
180 IF LEFT$(B$,1)="D" GOTO 210
190 IF LEFT$(B$,1)<>"T" GOTO 1&0O

ol

Th

(]

LR R B



APPENDIX E — EXERCISES FOR THE C128

275

200 IF LEFT$(A$,1)="T" GOTO 1L&O
210 INPUT "OUTPUT FILE NAME";F$
220 IF LEFT$(B$,1)="D" THEN OPEN

2,8,4,"0:"+F$+",S,W"

230 IF LEFT$(B$,1)="T" THENOPENZ,1,1,F$

240 BANK 15:SYS ?E40

250 CLOSE 2: CLOSE 1
The above BASIC program should not take up more than 511 bytes; on
a standard Commodore 128, that means that we'll have clear space for
our machine language program starting at $1E00 (decimal 7680). We'll
move the end-of-BASIC pointer along, of course (NOT the start-of-vari-
ables), so that our machine language program will save together with

BASIC.

01EOO
01EOC
01EOS
01EO8
0LEQOA
0LEOB
01EQOC
0LEQF
01E11
01E14
01E1S
01EL8
0O1E1B
01E1C
01ELE

e R R

Th

o

01EOO0
01EOS
01EOS
OLEO8
0LEOA
0LEOB
01EOC
0LEOF
01E1LY
01E14
01E1S
01E18
0LE1B
01E1LC

e R Rl

LDX
JSR
JSR
LDX
PHP
PHA
JSR
LDX
JSR
PLA
JSR
JSR
PLP
BEQ
RTS

Ac
=
=
AGE
08
48
c0
Ac
el
B8
=
=
2
FO

#$01
$FFCE
$FFE4
$90

$FFCC
#$0c2
$FFCA

$FFDC
$FFCC

$1EOO

assembled code is:

01
Ct FF
E4 FF
a0

CC FF
0e
C9 FF

D2 FF
CC FF

EZ

LDX
JSR
JSR
LDX
PHP
PHA
JSR
LDX
JSR
PLA
JSR
JSR
PLP
BEQ

#3501
$FFCE
$FFE4
$q0

$FFCC
#$02
$FFCA

$FFDC
$FFCC

$1EDO



276 MACHINE LANGUAGE FOR COMMODORE MACHINES

A 01ELE &O RTS
Be sure to move the Start-of-Variables pointer ($0210/$0211) so that
it points at address $1LE1F.



F

Floating
Point
Representation

277



278 MACHINE LANGUAGE FOR COMMODORE MACHINES

Packed: 5 bytes (as found in variable or array)

[ | I | | |

Zero : Mantissa (value)
Flag/ 4 bytes
Exponent

High bit represents sign of mantissa

Unpacked: 6 bytes (as found in floating accumulator)

I e E R | | ]

ZF/ Sign
Exponent Mantissa—4 Bytes (ngc;‘t;rOr-
Bit only)

e |f exponent = 0, the whole number is zero

e If exponent > $80, the decimal point is to be set as many places to the
right as the exponent exceeds $80.

e Example: Exponent: $83 mantissa: 11000000 . . . binary set the point
three positions over: 110.000 . . . to give a value of 6.

e If exponent < = $80, the number is a fraction less than 1.

Exercise: Represent +27 in Fleating Point

27 decimal = 11011 binary; mantissa = 11011000 . . . the point is to be
positioned 5 places in (11011.000 . . .) so we get:

Exponent: $85 mantissa: 11011000 . . . binary or D8 Q0 00 00 hexadecimal
To pack, we replace the first bit of the mantissa with a sign bit (0 for
positive) and arrive at:

45 54 00 00 00



Uncrashing

It's best to write a program that doesn't fail (or “crash”). Not all of us
succeed in doing this.

If a program gives trouble, it should be tested using breakpoint techniques.
The BRK (break) instruction is inserted at several strategic points within
the program. The program stops (or “breaks”) at these points, and the
programmer has an opportunity to confirm correct behavior of the program
at selected points. Using this technique, a fault can be pinned down quite
closely.

Occasionally, usually because of bad planning, a program crashes and
the cause of the crash cannot be identified. Worse still, a lengthy program
crashes and the user has forgotten to save a copy of it; the user is then
faced with the task of putting it in all over again.

In such cases, uncrashing techniques are sometimes available to bring
the computer back from limbo. They are never entirely satisfactory, and
should be thought of as a last resort.

The technique differs from computer to computer.

279



280 MACHINE LANGUAGE FOR COMMODORE MACHINES

PET/CBM

Original ROM PETs cannot be uncrashed.

Subsequent models can be uncrashed, though hardware additions are
necessary. The reader should find someone with computer hardware
knowledge to assist in fitting the switches to the computer.

A toggle switch is needed, to be connected to the “diagnostic sense” line
of the parallel user port; that's pin 5 of the PUP. The other side of the
toggle switch should connect to ground (pin 1.2).

Additionally, a momentary pushbutton is required. This must connect the
reset line of the computer to ground. Technically speaking, it's better to
trigger the input of the computer’s power-on reset chip (a 555 one-shot),
using a resistor to guard against accidentally grounding a live circuit.

To uncrash, set the toggle switch to “on” and press the pushbutton; the
machine will come back to life in the machine language monitor. Set the
toggle switch off. There’s more work to do.

The computer is still in an unstable state. To correct this, either of two
actions may be taken. You may return to BASIC with . X and immediately
give the command CLR; Alternatively, you may type . ; followed by the
RETURN key.

Whatever investigation or other action is needed should be performed
quickly and the computer reset to its normal state.

VIC/Commodore 64

You might try holding down the RUN/STOP key and tapping the
RESTORE key to see if that will bring the machine to its senses. Oth-
erwise, you must do a more serious reset.

You must depend on the fact that the computer does a nondestructive
memory test during reset. There are various commercially available in-
terfaces for the cartridge port—usually “mother boards” that are fitted with
reset switches.

When the reset switch is pressed, the computer starts from the beginning;
but memory is not disturbed. If you have logged the entry location of the
machine language monitor, you can bring it back with the appropriate SYS
command.




APPENDIX G — COMMODORE PLUS/4 281

Commodore PLUS/4

There’s a reset button next to the power switch. Before you press it, hold
down the RUN/STOP and CTRL keys. Now press the reset button and
you’ll find yourself in the machine language monitor.






Supermon
Instructions

Commodore 128 users should turn to page 290, which also includes a
summary of instructions to SUPERMON+ for C64 users who also want a
better monitor.

Program Supermon is not a monitor; it is a monitor generator that will
make a machine language monitor for you. There's a reason for this.
Supermon finds a likely spot in memory and then plunks the MLM there
so as to fit it into the most suitable place.

Load Supermon and say RUN. It will write an ML M for you, and call it up.
Now, exit back to BASIC and command NEW. You do not want the ML M
builder any more (it's done the job) and you do not want the danger of
building two—or more—MLM’s. Get rid of the generator program. Any
time you need to use the MLM, give SYS4 or SYS8, as appropriate.

Supermon contains the following “essential” commands:

R—to display (and change) registers
M—to display (and change) memory
S—to save memory to disk or tape
L—to load from disk or tape

G—to go to an ML program

X—to exit to BASIC

Supermon also contains the following extra commands:

A—to assemble
D—to disassemble

283



284

MACHINE LANGUAGE FOR COMMODORE MACHINES

Most versions of Supermon (not the “do-it-yourself’ below) contain the
following commands. Though not used by this book, they are useful:

F—fills memory with fixed contents:
F 1600 18FF 00

H—hunts for a memory pattern:
H 0800 1800 20 D2 FF

T—transfers a block of memory to a new location:
T 0400 OBFF 4000

A few versions of Supermon contain the command .| which causes ma-
chine language single stepping.

A Do-lt-Yourself Supermon

oo~ NWUeE

10

If you do not have access to Supermon from friends, dealers, clubs, or
disk, you may find the following program useful for the Commodore 64
only.

Enter this program (it will take you hours). Be sure that lines 300 and
above are correct; the lower numbered DATA lines will be checked for
accuracy by the program.

When you say RUN, the program will run in two phases. Part 1 takes over
two minutes to run: it will check all DATA statements for missing lines
and errors and report any problems to you. Part 2 will run only if part 1
shows no errors: it will cause the program to “collapse” into itself, resulting
in Supermon. The moment the program has completed running, save
Supermon to disk or tape.

The Supermon generated by this program is a “junior” version (to save
your fingers) but it contains all commands needed for this book.

DATA 2&L,8,100,0,153,34,247,16,29,249,-30
DATA 29,29,83,85,80,69,82,32,54,52,-16
DATA 45,7?7?,79,7?8,0,49,6,120,0,153,-39
DATA 34,17?,32,32,32,32,32,32,32,32,-50
DATA 32,32,32,32,32,32,3¢,0,7?5,8,-3
DATA 120,0,153,34,17,32,4k,46,74,73,-48
DATA 7?,32,bL,85,84,84,69,82,70,73,-5b
DATA &9, 7?t,68,0,102,8,130,0,158,40,-4
DATA 194,40,52,51,41,170,50,53,54,172,-53
DATA 194,40,52,52,41,170,49,50,55,41, -¢25

11 DATAO,O0,0,170,170,170,170,270,170,17?0,-64
12 DATA 1?0,170,17?0,1?0,270,370,370,170,170,270,-29




APPENDIX H — A DO-IT-YOURSELF SUPERMON 285

13
14
15
16
17
148
19
20
cl
ce
23
24
25
2b
e’
cé
29
30
31
32
33
34
s
36
37
38
3q
40
41
42
43
44
45
46
47
48
49
S0
S1
52
53
54
55

DATA 1?0,31?0,170,370,270,170,270,165,45,133,-61
DATA 34,1k5,46,233,35,165,55,133,36,165, 12
DATA 5&,133,3?,160,0,165,34,206,2,198,-55
DATA 35,198,34,17?7?,34,208,60,165,34,208, -34
DATA 2,1968,35,1968,34,17?7?,34,240,33,133,-52
DATA 38,1&65,34,2068,2,1968,35,1968,34,177,-60
DATA 34,24,101%,36,1270,165,38,10%,37,72,-56
DATA 1&5,55,2068,2,1498,56,2968,55,104,145,-1
DATA 55,138,7?2,1&5,55%,2068,2,198,56,198, -1
DATA 55,104,145,55,24,144,162,201,79,208, -48
DATA 237,1&5%,55,133,51,165,56,133,52,108, -17
DATA 55,0,7?9,7?9,749,7?4,173,230,255,0, -2¢

DATA 14%,22,3,17?3,231,255,0,141,23,3, —E4
DATA 1&9,126,32,144,255,0,0,216,104,141,-30
DATA &2,2,104,141,61,2,104,141,60,2,-41

DATA 104,141,5%49,2,104,170,104,168,56,238,-17
DATA 233,2,141,568,2,152,233,0,0,141, -1¢

DATA 57,2,186,142,63,2,32,147,253,0,-57

DATA 1&2,EL,169,42,32,205,251,0,1649,82, —-&2
DATA 208,4¢2,230,193,208,6,230,194,208,2,-52
DATA 230,38,96,32,207,255,201,13,208,248,-24
DATA 104,104,1t9,0,0,133,38,162,13,1649, -11
DATA 4&,32,205,2531,0,32,220,2449,0,201, —3¢2
DATA 4&,240,249,201,32,240,245,162,14,221, —-23
DATA »95,255%,0,208,12,136,10,170,1849,207, -36
DATA 255%,0,7?2,189,20&,255,0,72,96,202, -¢
DATA ¥&,236,7?&,60,252,0,165,193,141,58,-29
DATA 2,165,194,14%,57,2,96,169,6,133, -44
DATA 29,1&0,0,0,32,143,253,0,177,193, —-31
DATA 32,1490,251,0,32,209,249,0,198,29, -61
DATA 2068,241,96,32,254,251,0,144,11,162,-53
baTa0,0,1329,193,193,1493,240,3,76,80, —-56
DATA 252,0,32,209,249,0,14968,29,496,1649, —-56
DATA 59,133,193,169,2,133,194,169,5,96, - 20
DATA 152,72,32,147,253,0,104,162,46,76, -44
DATA 205,251,0,1&k2,0,0,12689,234,255,0, -31
DATA 32,210,255,232,224,22,208,245,160,59, -51
DATA 32,8&,250,0,17?3,57,2,32,1490,251, -4
paTado,2?3,%8,2,3¢,1490,251,0,32,7?5,-31

DATA 250,0,32,33,250,0,240,87,32,220,-113
DATA 249,0,32,239,251,0,144,46,32,223,-40
DATA 25%,0,32,220,2449,0,32,239,251,0, -51
DATA 144,35,32,2¢3,251,0,32,225,255,240,-33



286 MACHINE LANGUAGE FOR COMMODORE MACHINES

S5t DATA &0,16&,38,208,56,165,12495,197,193,1E5, —-22
5?7 DATA 149&,229,194,144,46,160,58,32,86,250,-21
58 DATAO,32,1283,251,0,32,31,250,0,240,-60

59 DATA 224,7&,80,252,0,32,239,251,0,144,-42

&0 DATA 3,32,20,25%0,0,32,75,250,0,2068,—-43

&1 DATA ?,32,2349,251,0,144,235,169,8,133,-28

&¢ DATA 24,3¢,2e0,249,0,32,53,250,0,208,-18

&3 DATA 248,7?k,224,2449,0,32,207,255,201,13, -2
&4 DATA 240,12,20%1,32,208,2049,32,239,2512,0,-57
&S DATA 144,3,32,20,250,0,174,63,2,154, 46

&t DATA 120,273,57,2,72,273,58,2,72,173,-35

&? DATAS9,2,72,1273,&0,2,274,62,2,272,-55

&8 DATALZ,2,tk4,174,63,2,154,208,2,160,-56

&9 DATA 1&0,1,132,186,232,185,336,132,163,132,-27
?0 DATA 144,132,147?,1t9,64,133,167,1649,2,233,-19
?1L DATA 188,32,207?,255,201,32,240,2449,201,13, -4¢2
?2 DATA 240,5%&,201,34,208,20,32,207,255,201,-35
?3 DATA 34,240,16,201,13,240,41,145,167,230,-39
?4 DATA 183,200,192,1&,2068,236,76,60,252,0,-18
?5 DATA 32,207?,255%,201,13,240,22,201,44,208,-51
?L DATA 220,32,254,251,0,41,15,240,233,201, -46
?? DATA 3,240,229,133,188,32,207,255,201,13,-45
?8 DATAA9t,108,48,3,106,50,3,32,22,251,-60

?9 DATAO,cO06,222,1&49,0,0,32,322,252,0,-37

80 DATA 165,144,41,1t,208,201,7L,229,2449,0,-22
81 DATA 32,22,251,0,201,44,206,191,32,239, -48

82 DATA 25%1,0,32,2243,251,0,32,207,255,201,-25

83 DATA 44,208,17?8,32,2349,25%1,0,1285,193,233, -7
84 DATA 174,165,194,133,175,32,223,25%,0,32,—-34
85 DATA 207?,255,20%,13,206,157,32,114,251,0,-36
8t DATA ?&,2249,2449,0,1k5,1494,32,1490,252,0, -39

87 DATA 1&S%,193,7?2,?4,74,?4,7?4,32,214,251,-113

88 DATAO,1?0,104,4%,15,32,214,251,0,72,-16

89 DATA 138,32,210,255,104,7?6,210,255,9,48, -9

90 DATA 201,58,144,2,105,6,96,162,2,1681,-30

91 DATA 1492,72,181,194,149,192,104,149,194,202,-25
92 DATA 208,243,96,32,25%4,253,0,144,2,133,-30

93 DATA 194,32,25%4,251,0,144,2,133,193,96, —43

94 DATA 1&49,0,0,233,42,32,220,249,0,201,-39

95 DATA 3¢,206,9,32,220,249,0,201,32,208,-25

9t DATA 14,24,96,32,37?,25¢,0,10,10,10,-&2

9? DATA 10,133,4¢2,32,220,2449,0,32,37,252,—-39

94 DATAO,S5,42,5t,96,201,56,144,2,105,-26



APPENDIX H — A DO-IT-YOURSELF SUPERMON 287

99 DATA 8,41,15,9&,9&,32,220,249,0,201, -2

100 DATA 32,240,2449,96,1649,0,0,2412,0,0,-22

101 DATAL1,32,47,252,0,32,5,252,0,32,-¢9

102 DATA 242,251,0,144,9,96,32,220,249,0,-268

103 DATA 32,239,251,0,176,222,174,63,2,154,-35
104 DATA 1&9,&3,32,210,255,7?6,229,249,0,32,-48
105 DATA 143,253,0,202,208,250,96,165,195,164, -12
10t DATA 19&,56,233,2,176,12,136,56,229,1493, -61
107 DATA 133,30,152,229,1494,166,5,30,96,32, 41
108 DATA SS,ée%2,0,133,32,165,194,133,33,162, -2¢
109 DATAO,0,134,40,169,147,32,210,255,169,-32
110 DATA 22,133,29,32,1k5,252,0,32,5,253,-¢2

111 DATAO,133,193,132,194,198,29,206,242,169,-16
112 DATA 145,32,210,255,76,229,249,0,160,44, —-41
113 DATA 32,8&,250,0,32,143,253,0,32,183,-23

114 DATA 251,0,32,143,253,0,162,0,0,161,-25

115 DATA 193,32,20,253,0,72,32,90,253,0,-¢25

11t DATA 104,32,112,253,0,1k2,6,224,3,208,-43
11? DATA 18,1k4,31,240,14,165,42,201,232,277,-10
118 DATA 193,17&t,28,32,253,252,0,136,208,242,-15
119 DATAbL,42,144,14,189,54,255,0,32,187,-3

120 DATA253,0,189,60,255,0,240,3,32,187,-24

121 DATA 2%3,0,202,208,213,496,32,8,253,0,-45

122 DATA 170,232,208,1,200,152,32,253,252,0,-39
123 DATA 138,134,28,32,190,252,0,166,28,96,—-47
124 DATA 1&5,31,5&,164,294,170,26,%,136,101, -53
125 DATA 193,144,1,200,96,168,74,144,11,74,-21
12t DATA 17?&,23,201,34,240,19,41,7,9,126,-63

12?7 DATA ?4,170,189,229,254,0,176,4,74,74,-5¢
128 DATA ?4,74,41,15,208,4,160,1268,169,0,-20

129 DATAO,1?0,1289,41,255,0,133,42,41,3,-&C

130 DATA 133,31,152,41,143,170,152,160,3,224,-36
131 DATA 138,240,11,7?4,144,8,74,74,9,32,-6

132 DATA 13&,208,250,200,136,208,242,96,177,193,-29
133 DATA 32,2%3,2%2,0,1k2,1,32,92,252,0,-16

134 DATA 19&,31,200,144,241,162,3,192,4,144,-18
135 DATA 242,96,168,185,67,255,0,133,40,185,-143
136 DATA 131,255%,0,133,41,169,0,0,160,5,-3

137 DATAGL,41,38,40,42,13k,206,248,105,63,-27
138 DATA 32,210,255,202,208,236,169,32,206,11, -16
1,39 DATA 1&9,23,36,19,16,5,32,210,255,169, -30
140 DATA 10,7?k,210,255,32,55,252,0,169,3,-Cl

141 DATA 133,29,32,220,249,0,32,53,250,0,-4¢



288

MACHINE LANGUAGE FOR COMMODORE MACHINES

142
143
144
145
146
147
148
149
150
151
152
153
154
1585
156
157
1568
159
160
161
162
1E3
164
165
166
167
1E8
169
170
171
172
173
174
17?5
176
177
178
179
140
181
142
183
184

DATA ¢08,248,15,32,133,193,165,33,133,194, -43
DATA ?&,134,252,0,197,40,240,3,32,210,—-60
DATA 255%,9&,32,55,¢25%¢,0,3¢4,223,251,0, -57
DATA 142,17?,2,1&2,3,32,47,252,0,72,—-43

DATA 202,206,249,162,3,104,56,233,63,160, -37
DATAS5,74,110,17,2,220,16,2,136,208, -1k

DATR 24&,202,2068,237,1k2,¢,32,207,255,201, -31
DATA 13,240,30,201,32,240,245,32,220,254,-9
DATAO,L?&,15,32,18,252,0,164,193,13<, -9
DATA 194,133,193,1&9,46,157?,16,2,232,157, - 47
DATA 1&,2,232,208,219,134,40,1&2,0,0,-10
DATA 134,38,240,4,230,36,240,117,162,0,-9
DATAO,134,29,1k5,368,32,20,253,0,16k, -448
DATA 42,134,41,17?0,186,7,255,0,169,131, -47
DATA 255,0,32,197,254,0,208,227,162,6, —54
DATA 224,3,206,25,1t4,31,240,21,165,42, -E3
DATA 20%,232,169,48,17?6,33,32,203,254,0, -39
DATA 206,<204,32,205,254,0,206,199,136,208, —28
DATA 235,6,42,144,12,1868,60,255,0,269, -15
DATA 54,25%5,0,32,197?,254,0,208,1481,202, -1
DATA 206,209,240,10,32,1496,254,0,208,171, -51
DATA 32,19&,254,0,208,166,165,40,197,29, -15
DATA 206,1&0,32,223,251,0,164,31,240,40, -6
DATA 1&S5,41,201,157,208,26,32,499,252,0, —-35
DATA 144,10,152,208,4,165,30,16,10,76, —40
DATA 80,25<¢,0,200,206,250,165,30,16,246, -9
DATA 1&64,31,208,3,185,194,0,0,145,193, -2
DATA 13t,206,248,165,38,145,193,32,5,253, -41
DATAO,133,193,1232,194,160,65,32,86,250, - 34
DATA O,32,143,253,0,32,183,251,0,32, -56

DATA 143,253,0,7&,198,253,0,1k8,32,203, -29
DATA 254,0,208,17,152,240,14,134,28,1bb, —b3
DATA €9,221,16,2,8,232,134,29,166,28, -60
DATA 40,9&,202,468,244,3,201,71,96,56, -30
DATA 9&,k4,2,69,3,208,8,k4,9,48, —14

DATA 34,69,51,208,8,64,9,L4,2,69, -50

DATA 51,208,8,64,9,64,2,69,179,208, -47

DATA 6,&4,9,0,0,34,68,51,208,140,-18

DATA k6,0,0,17?,34,68,51,208,140,68, -5

DATA 154,1k,34,68,51,208,8,64,9,16, -20

DATA 34,66,51,2068,8,64,9,98,19,120, -kL2

DATA 1&9,0,0,33,129,130,0,0,0,0, -41

DATA 89,77,145,146,134,7?4,133,157,44,41, -39



APPENDIX H — A DO-IT-YOURSELF SUPERMON 289

185
186
187
168
189
190
191
192
193
194
195
196
197
1948
199
c00
201
202
203
204
205
206
c07?
255
300
310
320
330
340
350
360
370
360

390
400
410

DATA 44,35,40,36,89,0,0,88,3b,36,—22

DATA O,0,28,138,28,35,93,139,27,161, -10
DATA 157,138,29,35,157,139,29,161,0,0,-9
DATA 41,25,174,105,168,25,35,36,83,27, -b4
DATA 35,3b,83,25,161,0,0,26,91,91, — 24

DATA 1&5,105,36,36,174,174,168,173,41,0,-3
DATA 0,124,0,0,21,156,109,156,165,105, —20
DATA 41,83,132,19,52,17,165,105,35,160, -26
DATA 21t,98,90,72,38,98,148,13b,84,68, -20
DATA 200,684,104,68,232,146,0,0,180,6,—31
DATA 132,11b,180,40,110,116,244,204,74,114,-32
DATA 242,1L4,138,0,0,170,162,162,116,116, -11
DATA 11t,114,68,104,178,50,178,0,0,34,-30
DATA O,0,2&,26,38,38,114,114,13kL,200,-27
DATA 19&,202,38,72,68,k8,162,200,58,59, —35
DATA 82,77,71,88,76,83,b8,44,65,204, —59
DATA 250,0,191,250,0,96,250,0,134,250, -25
DATA O,224,250,0,14,251,0,11&,251,0, -23
DATA 135,251,0,120,252,0,160,253,0,194, —19
DATA 253,0,228,249,0,157,249,0,139,249, -63
DATA O,13,32,32,32,80,L7,32,32,83,-3

DATA &82,32,65,L7,32,88,62,32,89,82,-16
DATA 32,83,80, -59

DATA 208

M=63

READ X:L=PEEK(M):H=L=255:IF H THEN L=X
V=R(OL:S=(T(b3 AND R)0 AND V)

IF V THEN T=L:IF NOT S THEN R=R+1:S=R(L
T=(T*3+X)ANDE3

IF S THEN PRINT "ERROR LINE";R:E=-1
R=L:IF NOT H GOTO 310

IF E THEN STOP

PRINT"HERE WE GO":X=—-1:RESTORE:B=2049:FOR A=1
TO 9999

IF X)=0 THEN POKE B,X:B=B+1

READ X:L=PEEK (M) :IF L(255 THEN NEXT A

POKE 45,1b:POKE 4b,16:CLR



290 MACHINE LANGUAGE FOR COMMODORE MACHINES

The Commodore 128 Monitor and
SUPERMON +

The built-in machine language monitor of the Commodore 128 is quite
close to SUPERMON. With the release of the C128, a new version of
SUPERMON (called SUPERMON +) has been produced so as to match
the commands and syntax of the 128’s monitor. Versions are available
for Commodore 64 (including the 128 in 64 mode) and for VIC-20.

The principal features of the new monitor, as compared to SUPERMON,
are as follows:

—Syntax is somewhat easier. Leading zeros need not be typed on any number.
Spacing between addresses is non-critical.

—Conversion between number systems is built-in. The user may employ the
following prefixes: $ for hexadecimal; + for decimal; & for octal (rarely used
with present day microcomputers); and % for binary. Any value or address
may be entered in any number system. If a number is typed in alone, with
its prefix, it will be shown converted to all other number systems.

—When the A(assemble) command is given, the object code immediately ap-
pears on the line just typed.

—The disk may be controlled, interrogated or cataloged by means of the disk
“@"” command.

—Memory displays contain information on the ASCII equivalents of the bytes
displayed.

—Commands such as M (memory display) and D allow: two addresses, to
display a specified range; one address, to display a fixed range; or no ad-
dresses, to continue the display from that shown previously.

Program SUPERMON +, for VIC-20 and Commodore 64, is hot a monitor;
it is a monitor generator that will make a machine language monitor for
you. SUPERMON + finds a likely spot in memory and then plunks the
MLM there so as to fit into the most suitable place.

If you are using a VIC-20 or Commodore 64 configuration, load SUPER-
MON+ and type RUN. It will write an MLM for you, and call it up. Now,
exit back to BASIC and command NEW. You do not want the ML M builder
any more (it's done the job) and you do not want the danger of building
two—or more—MLM's. Get rid of the generator program. Any time you
need to use the MLM, give SYSA8.

If you are using the Commodore 128 in its C128 mode, there’s no need
to load a monitor. Just command MONITOR and you are there.



APPENDIX H — C128 MONITOR AND SUPERMON + 291

The C128 monitor and SUPERMON + use the following commands:

R—to display (and change) registers
M—to display (and change) memory
S—to save memory to disk or tape
L—to load from disk or tape

G—to go to an ML program

X—to exit to BASIC

A—to assemble

D—to disassemble

The above commands are the only ones used within the text of the book.
Other commands which are available are:

F—fills memory with fixed contents:
F 1800 18FF 00

H—nhunts for a memory pattern:
H 0800 1800 20 D2 FF

T—transfers a block of memory to a new location:
T 0A00 OBFF 8000

C—compares a block of memory to another.
C Daoo ocoo aooo

J—callls a subroutine directly from the monitor.
J 033c

@—alone, gets the disk status report.
@ , $0—gets the disk directory.

@, SO : SAMPLE—sends a command to the disk (in the example, scratch file
SAMPLE).

The @ symbol may be followed by a number to reference a drive other
than unit 8.






1A Chip
Information

The following material has been adapted from manufacturer's specifica-
tions. The information is not essential to machine language programming,
but can be a great help for further study. Some of these specifications are
not widely published and contain “hard to get” information.

6520 PIA, peripheral interface adaptor

6522 VIA, versatile interface adaptor

6525 TPA, tri port adaptor

6526 CIA, complex interface adaptor

6545 CRTC, CRT controller

6560 VIC video interface chip

6566 VIC-2 video interface chip

6581 SID sound interface chip

[Essentially manufacturer’s specs, less hardware details]

293



294

MACHINE LANGUAGE FOR COMMODORE MACHINES

6520 Peripheral Interface Adaptor (PIA)

The 6520 is an I/O device which acts as an interface between the micro-
processor and peripherals such as printers, displays, keyboards, etc. The
prime function of the 6520 is to respond to stimulus from each of the two
worlds it is serving. On the one side, the 6520 is interfacing with peripherals
via two eight-bit bi-directional peripheral data ports. On the other side, the
device interfaces with the microprocessor through an eight-bit data bus.
In addition to the lines described above, the 6520 provides four interrupt
input/peripheral control lines and the logic necessary for simple, effective
control of peripheral interrupts.

r ! N
' (' CONTROL )
8BIT 8 BIT
DATA DATA PERIPHERAL
MICRO BUS PORT DEVICES—
PROCESSORS 6520 PRINTERS,
650 x 8 BIT DISPLAYS,
CONTROL DATA ETC.
PORT
| CONTROL
L : )
Figure 1.1

The functional configuration of the 6520 is programmed by the micro-
processor during systems initialization. Each of the peripheral data lines
is programmed to act as an input or output and each of the four control/
interrupt lines may be programmed for one of four possible control modes.
This allows a high degree of flexibility in the overall operation of the in-
terface.

Data Input Register

When the microprocessor writes data into the 6520, the data which ap-
pears on the data bus is latched into the Data Input Register. It is then
transferred into one of six internal registers of the 6520. This assures that
the data on the peripheral output lines will not “glitch,” i.e., the output lines
will make smooth transitions from high to low or from low to high and the
voltage will remain stable except when it is going to the opposite polarity.



APPENDIX | 295

Control Registers (CRA and CRB)

Figure 1.2 illustrates the bit designation and functions in the Control Reg-
isters. The Control Registers allow the microprocessor to control the op-
eration of the interrupt lines (CAL, CA2, CB1, CB2), and peripheral
control lines (CA2, CB2). A single bit in each register controls the ad-
dressing of the Data Direction Registers (DDRA, DDRB) and the Output
Registers, (ORA, ORB) discussed below. In addition, two bits (bit & and
?) are provided in each control register to indicate the status of the interrupt
input lines (CA1, CA2, CB1, CB2). These interrupt status bits (IRQA,
IRQB) are normally interrogated by the microprocessor during the inter-
rupt service program to determine the source of an active interrupt. These
are the interrupt lines which drive the interrupt input (IRQ, NMI) of the
microprocessor. The other bits in CRA and CRB are described in the
discussion of the interface to the peripheral device.

The various bits in the control registers will be accessed many times during
a program to allow the processor to enable or disable interrupts, change
operating modes, etc. as required by the peripheral device being con-
trolled.

Data Direction Registers (DDRA, DDRB)

The Data Direction Registers allow the processor to program each line in
the 8-bit Peripheral 1/0 port to act as either an input or an output. Each
bit in DDRA controls the corresponding lines in the Peripheral A port and
each bit in DDRB controls the corresponding line in the Peripheral B port.
Placing a "0" in the Data Direction Register causes the corresponding
Peripheral I/O line to act as an input. A "1 " causes it to act as an output.

The Data Direction Registers are normally programmed only during the
system initialization routine which is performed in response to a Reset
signal. However, the contents of these registers can be altered during
system operation. This allows very convenient control of some peripheral
devices such as keyboards.

Peripheral Output Registers (ORA, ORB)

The Peripheral Output Registers store the output data which appears on
the Peripheral 1/O port. Writing an "O" into a bit in ORA causes the
corresponding line on the Peripheral A port to go low (< 0.4V) if that
line is programmed to act as an output. A "1 " causes the corresponding
output to go high. The lines of the Peripheral B port are controlled by ORB
in the same manner.



296 MACHINE LANGUAGE FOR COMMODORE MACHINES

Interrupt Status Control

The four interrupt/peripheral control lines (CAl, CA2, CB1, CB2) are
controlled by the Interrupt Status Control (B, B). This logic interprets the
contents of the corresponding Control Register, detects active transitions
on the interrupt inputs and performs those operations necessary to assure
proper operation of these four peripheral interface lines.

Reset (RES)

The active low Reset line resets the contents of all 6520 registers to a
logic zero. This line can be used as a power-on reset or as a master reset
during system operation.

Interrupt Request Line (IRQA, TRQB)

The active low Interrupt Request lines (IRQA and TRQB) act to interrupt
the microprocessor either directly or through external interrupt priority cir-
cuitry.

Each Interrupt Request line has two interrupt flag bits which can cause
the Interrupt Request line to go low. These flags are bits & and 7 in the
two Control Registers. These flags act as the link between the peripheral
interrupt signals and the microprocessor interrupt inputs. Each flag has a
corresponding interrupt disable bit which allows the processor to enable
or disable the interrupt from each of the four interrupt inputs (CA1, CAZ,
CB1, CB2).

The four interrupt flags are set by active transitions of the signal on the
interrupt input (CALl, CA2, CB1, CB2). Controlling this active transition
is discussed in the next section.

Control of TRQA

Control Register A bit 7 is always set by an active transition of the CAL
interrupt input signal. Interrupting from this flag can be disabled by setting
bit O in the Control Register A (CRA) to a logic 0. Likewise, Control
Register A bit & can be set by an active transition of the CA2 interrupt
input signal. Interrupting from this flag can be disabled by setting bit 3 in
the Control Register to a logic O.

Both bit & and bit ? in CRA are reset by a “Read Peripheral Output
Register A” operation. This is defined as an operation in which the pro-
cessor reads the Peripheral A 1/O port.



APPENDIX | 297

Control of IRQB

Control of IRQB is performed in exactly the same manner as that de-
scribed above for IRQA. Bit 7 in CRB is set by an active transition on
CB1; interrupting from this flag is controlled by CRB bit 0. Likewise, bit
& in CRB is set by an active transition on CB2; interrupting from this flag
is controlled by CRB bit 3.

Also, both bit & and bit 7 are reset by a “Read Peripheral B Output
Register” operation.

Summary

IRQA goes low when CRA -7
= land CRA-3 =

IRQB goes low when CRB—7 = 1 and CRB—-0 = 1 or when CRB-&
= 1 and CRB—-3 = 1.

It should be stressed at this point that the flags act as the link between
the peripheral interrupt signal and the processor interrupt inputs. The in-
terrupt disable bits allow the processor to control the interrupt function.

Peripheral I/O Ports

Each of the Peripheral I/0 lines can be programmed to act as an input or
an output. This is accomplished by setting a "1 " in the corresponding
bit in the Data Direction Register for those lines which are to act as outputs.
A "O" in a bit of the Data Direction Register causes the corresponding
Peripheral I/O lines to act as an input.

Interrupt Input/Peripheral Control Lines (CA 1,
CAcZ, CBl, CBZ

The four interrupt input/peripheral control lines provide a number of special
peripheral control functions. These lines greatly enhance the power of the
two general purpose interface ports (PAO-PA?, PBO-PB?).

Peripheral A Interrupt lnput/Perlpheral Control
Lines (CALl, CAC)

CA1l is an interrupt input only. An active transition of the signal on this
input will set bit ? of the Control Register R to a logic 1. The active transition
can be programmed by the microprocessor by setting a "0 in bit 1 of

L and CRA-0 = L orwhenCRA-E



298 MACHINE LANGUAGE FOR COMMODORE MACHINES

the CRA if the interrupt flag (bit 7 of CRA) is to be set on a negative
transition of the CA 1 signalora " 1" if itis to be set on a positive transition.

Setting the interrupt flag will interrupt the processor through ITRQA if bit
0 of CRA is a 1 as described previously.

CAR2 can act as a totally independent interrupt input or as a peripheral
control output. As an input (CRA, bit 5 = 0O) it acts to set the interrupt
flag, bit & of CRA, to a logic 1 on the active transition selected by bit 4
of CRA.

These control register bits and interrupt inputs serve the same basic func-
tion as that described above for CA1. The input signal sets the interrupt
flag which serves as the link between the peripheral device and the pro-
cessor interrupt structure. The interrupt disable bit allows the processor
to exercise control over the system interrupts.

In the Output mode (CRA, bit 5§ = 1), CAZ can operate independently
to generate a simple pulse each time the microprocessor reads the data
on the Peripheral A 1/O port. This mode is selected by setting CRA, bit 4
toa "O" and CRA, bit 3 to a ""1". This pulse output can be used to
control the counters, shift registers, etc. which make sequential data avail-
able on the Peripheral input lines.

A second output mode allows CAZ to be used in conjunction with CAL

~ to “handshake” between the processor and the peripheral device. On the
A side, this technique allows positive control of data transfers from the
peripheral device into the microprocessor. The CA1 input signals the
processor that data is available by interrupting the processor. The pro-
cessor reads the data and sets CA 2 low. This signals the peripheral device
that it can make new data available.

The final output mode can be selected by setting bit 4 of CRAtoa 1. In
this mode, CA2 is a simple peripheral control output which can be set
high or low by setting bit 3 of CRA to a 1 or a O respectively.

Peripheral B Interrupt Input/Peripheral Control
Lines (CB1, CBZ2)

CB1 operates as an interrupt input only in the same manner as CAL. Bit
? of CRB is set by the active transition selected by bit 0 of CRB. Likewise,
the CB2 input mode operates exactly the same as the CA2 input modes.
The CB2 output modes, CRB, bit 5 = 1, differ somewhat from those
of CA2. The pulse output occurs when the processor writes data into the
Peripheral B Output Register. Also, the “handshaking” operates on data
transfers from the processor into the peripheral device.



APPENDIX | : 299

7 6 5 4 3 2 1 (0]
CRA | IRQA1 | IRQA2 CA2 CONTROL DDRA |CA1 CONTROL
; A .| ACCESS | ——A \
7 6 5 4 3 2 1 (0)]
CRB | IRQB1 | IRQB2 CB2 CONTROL DDRB | CB2 CONTROL
p A ,| ACCESS | — A \
Figure 1.2
6545-1 CRT Controller (CRTC)
Concept

The 6545-1 is a CRT Controller intended to provide capability for inter-
facing the 6500 microprocessor family to CRT or TV-type raster scan
displays.

Horizontal Total (RO)

This 8-bit register contains the total of displayed and non-displayed char-
acters, minus one, per horizontal line. The frequency of HSYNC is thus
determined by this register.

Horizontal Displayed (R1)

This 8-bit register contains the number of displayed characters per hori-
zontal line.

Horizontal Sync Position (R2)

This 8-bit register contains the position of the HSYNC on the horizontal
line, in terms of the character location number on the line. The position
of the HSYNC determines the left-to-right location of the displayed text on
the video screen. In this way, the side margins are adjusted.



300 MACHINE LANGUAGE FOR COMMODORE MACHINES

Horizontal and Vertical SYNC Widths (R3)

This 8-bit register contains the widths of both HSYNC and VSYNC, as

follows:
L7 lels]aflsala]i]ol]
8 4 2 18 4 2 1
VSYNC IWIDTH' HSYNCIWIDTH

(NUMBER OF SCAN LINES)  (NUMBER OF CHARACTER
CLOCK TIMES)

*|F BITS 4-7 ARE ALL “0”; THEN VSYNC WILL BE 16 SCAN LINES WIDE.

Control of these parameters allows the 6545-1 to be interfaced to a variety
of CRT monitors, since the HSYNC and VSYNC timing signals may be
accommodated without the use of external one-shot timing.

Vertical Total (R4)

The Vertical Total Register is a 7-bit register containing the total number
of character rows in a frame, minus one. This register, along with R5,
determines the overall frame rate, which should be close to the line fre-
quency to ensure flicker-free appearance. If the frame time is adjusted to
be longer than the period of the line frequency, then RES may be used
to provide absolute synchronism.

Vertical Total Adjust (R5)

The Vertical Total Adjust Register is a 5-bit write only register containing
the number of additional scan lines needed to complete an entire frame
scan and is intended as a fine adjustment for the video frame time.

Vertical Displayed (R6)

This 7-bit register contains the number of displayed character rows in each
frame. In this way, the vertical size of the displayed text is determined.



301

APPENDIX |

‘asimaNl| sajelado yoym |, |,, SO 10} pue ‘|je
Je snq ejep sy} SALIP 10U SB0P Yoiym ‘Ley Joj 1daoxa ‘.0, shempe si g siuy Buipesy “1q pasnun sajeubisaqg X
1q Areulq sejeubiseq m

:S9J0N
"B " EE N EGH / (1) ‘Bey usd wbri| 214
E = = = mo@m X X / (H)Bay uad wbr| 91y
" E " B E B E RN / / (7) uomisod 108Ny | gLy
" " " mwm X X / / (H) uomisod Josiny | 1Y
" " B 3 E BN / () Jppv vEIS Aeidsiq| €1y
= " = == m X X / (H) Jppv velS Aeidsiq| 2iH
= = m m m X X X Vs "ON 8ul] ueodg pugJosiny| 1Y
= = = m m%g'g X / "ON 8ul uedsg uels losing| 01y
m = m B ® X X X / SouI UBdS # aul ueodsg 64
E B B R E B E BN / |0U0D SPON 84
E B B B E m m X / SMOY "oeJiey)D # uoIlISOd JUAS "Uap /4
E B B B B E ®m X / SMOY -oeiey) # paAe|dsiq "WBA oy
= = mm® X X X / seulq ueog # 1snipy el "WeA Gy
" = m mm = @m X / moy -oeleyyn # [e101 "MOA ey
sauwlj “reyQ #
°H 'H ®H ®H °A ‘A A A/ g Saur ueag # SUIPIM ONASH ‘ONASA| €
" B ®E B B B B B \, oeley) # uollisod oc>w "ZIIOH o4
E B B B BN B E BN / oeley) # paAe|dsiq "zlIOH Iy
E B R E E R B / -oeley) # [e10} “ZLIoH o4y
0 L ¢ € v § 9 ¢ UM ad oju] palols aweN Jajsibay ‘ON
1q se1siboy ‘Boy




302

MACHINE LANGUAGE FOR COMMODORE MACHINES

Vertical Sync Position (R7)

This 7-bit register is used to select the character row time at which the
VSYNC pulse is desired to occur and, thus, is used to position the dis-
played text in the vertical direction.

Mode Control (R8)

This register is used to select the operating modes of the 6545-1 and is

outlined as follows:

716

5

4

3

2

1

o)

LINTERFACE MODE CONTROL

BIT OPERATION

110

O | NON INTERLACE

x | 1] INVALID (DO NOT USE)

VIDEO DISPLAY RAM ADDRESSING
/0" FOR STRAIGHT BINARY
/1" FOR ROW/COLUMN

MUST PROGRAM TO ““0"'

DISPLAY ENABLE SKEW

0" FOR NO DELAY

1" TO DELAY DISPLAY ENABLE
ONE CHARACTER TIME

Figure 1.3

Scan Line (R9)

This 5-bit register contains the number of scan lines per character row,

including spacing.

CURSOR SKEW

“0"" FOR NEW DELAY

“1"" TO DELAY CURSOR ONE
CHARACTER TIME

J— NOT USED



APPENDIX | 303

Cursor Start (R10) and Cursor End (R11)

These 5-bit registers select the starting and ending scan lines for the
cursor. In addition, bits 5 and 6 of R10 are used to select the cursor mode,

as follows:
BIT
CURSOR MODE
6 5
0 0 No Blinking
0 1 No Cursor
1 0 Blink at 1/16 field rate
1 1 Blink at 1/32 field rate

Note that the ability to program both the start and end scan line for the
cursor enables either block cursor or underline to be accommodated.
Registers R14 and R15 are used to control the character position of the
cursor over the entire 16K address field.

Display Start Address High (R12) and Low
(R13)

These registers together comprise a 14-bit register whose contents is the
memory address of the first character of the displayed scan (the character
on the top left of the video display, as in Figure 1). Subsequent memory
addresses are generated by the 6545-1 as a result of CCLK input pulses.
Scrolling of the display is accomplished by changing R12-and R13 to the
memory address associated with the first character of the desired line of
text to be displayed first. Entire pages of text may be scrolled or changed
as well via R12 and R13.

Cursor Position High (R14) and Low (R15)

These registers together comprise a 14-bit register whose contents is the
memory address of the current cursor position. When the video display
scan counter (MA lines) matches the contents of this register, and when
the scan line counter (RA lines) falls within the bounds set by R10 and

- R11, then the CURSOR output becomes active. Bit 5 of the Mode Control
Register (R8) may be used to delay the CURSOR output by a full CCLK
time to accommodate slow access memories.

LPEN High (R16) and Low (R17)

These registers together comprise a 14-bit register whose contents is the
light pen strobe position, in terms of the video display address at which



304

MACHINE LANGUAGE FOR COMMODORE MACHINES

the strobe occurred. When the LPEN input changes from low to high, then,
on the next negative-going edge of CCLK, the contents of the internal
scan counter is stored in registers R16 and R17.

6560 (VIC) Video Interface Chip

The 6560 Video Interface Chip (VIC) is designed for color video graphics
applications such as low cost CRT terminals, biomedical monitors, control
system displays and arcade or home video games. It provides all of the
circuitry necessary for generating color programmable character graphics
with high screen resolution. VIC also incorporates sound effects and A/D
converters for use in a video game environment.

Features

Fully expandable system with a 16K byte address space

System uses industry standard 8 bit wide ROMS and 4 bit wide RAMS
Mask programmable sync generation, NTSC-6560, PAL-6561

On-chip color generation (16 colors)

Up to 600 independently programmable and movable background locations
on a standard TV

Screen centering capability
Screen grid size up to 192 Horizontal by 200 Vertical dots
Two selectable graphic character sizes

On-chip sound system including:

a) Three independent, programmable tone generators
b) White noise generator

¢) Amplitude modulator

Two on-chip 8 bit A/D converters

ON-chip DMA and address generation

No CPU wait states or screen hash during screen refresh
Interlaced/Non-Interlaced switch

16 addressable control registers

Light gun/pen for target games

2 modes of color operation

A: Interlace mode: A normal video frame is sent to the TV 60 times each
second. Interlace mode cuts the number of repetitions in half. When used
with multiplexing equipment, this allows the VIC picture to be blended with
a picture from another source.



APPENDIX |

305

To turn off: POKE 36864, PEEK(36864) AND 127
To turn on: POKE 36864, PEEK(36864) OR 128

B: Screen origin—horizontal: This determines the positioning of the
image on the TV screen. The normal value is 5. Lowering the value moves
the screen to the left, and increasing it moves the image to the right.

To change value: POKE 36864, PEEK(36864) AND 128 OR X

LOC START VALUE-5K VIC Bit
Hex Binary Decimal Function
9000 00000101 5 ABBBBBBB
9001 00011001 25 cceeccecc
9002 10010110 150 HDDDDDDD
9003 v0101110 46 or 174 GEEEEEEF
9004 VVVVVVVV v GGGGGGGG
9005 11110000 240 HHHHIIII
9006 00000000 0 JJJJazagg
9007 00000000 0 KKKKKKKK
9008 11111111 255 LLLLLLLL
9009 11111111 255 MMMMMMMM
900A 00000000 0 NRRRRRRR
900B 00000000 0 0SsSSsSsss
900C 00000000 0 PTTTTTTT
900D 00000000 0 QUUUUUUU
900E 00000000 0 WWWWVVVV
900F 00011011 27 XXXXYZZZ
A: Interlace mode: 0=off, N: Bass sound switch
1=o0n O: Alto sound switch
B: Screen origin—horizontal P: Soprano sound switch
C: Screen origin—vertical Q: Noise switch
D: Number of video columns R: Bass Frequency
E: Number of video rows S: Alto Frequency
F: Character size: T: Soprano Frequency
0=8x8,1=8x16 U: Noise Frequency
G: Raster value _V: Loudness of sounds
H: Screen memory location W: Auxiliary color
I: Character memory location X: Screen color
J: Light pen—horizontal Y: Reverse mode 0=on,
K: Light pen—vertical 1 =off
L: Paddle 1 Z: Border color
M: Paddle 2




306

MACHINE LANGUAGE FOR COMMODORE MACHINES

C: Screen origin—vertical: This determines the up-down placement of
the screen image. The normal value is 25. Lowering this causes the screen
to move up by 2 rows of dots for each number lowered, and raising it
moves the screen down.

To change value: POKE 36865, X

D: Number of video columns: Normally, this is set to 22. Changing this
will change the display accordingly. Numbers over 27 will give a 27 column
screen. The cursor controls are based on a fixed number of 22 columns,
and changing this number makes the cursor controls misbehave.

To change: POKE 36866, PEEK(36866) AND 128 OR X.

E: Number of video rows: The number of rows may range from 0 to 23.
A larger number of rows causes garbage to appear on the bottom of the
screen.

To change: POKE 36867, PEEK(36867) AND 129 OR (X*2)

F: Character size: This bit determined the size of the matrix used for
each character. A 0 here sets normal mode, in which characters are 8 by
8 dots. A 1 sets 8 by 16 mode, where each character is now twice as tall.
8 by 16 mode is normally used for high resolution graphics, where it is
likely to have many unique characters on the screen.

To set 8 by 8 mode: POKE 36867, PEEK(36867) AND 254
To set 8 by 16 mode: POKE 36867, PEEK(36867) OR 1

G: Raster value: This number is used to synchronize the light pen with
the TV picture.

H: Screen memory location: This determines where in memory the VIC
keeps the image of the screen. The highest bit in location 36869 must be
a 1. Bits 4—6 of location 36869 are bits 10—12 of the screen’s address,
and bit 7 of location 36866 is bit 9 of the address of the screen. To
determine the location of the screen, use the formula:

S = 4* (PEEK(36866) AND 128) + 64* (PEEK(36869) AND 112)

Note that bit 7 of location 36866 also determines the location of color
memory. If this bit is a 0, color memory starts at location 37888. If this bit
is a 1, color memory begins at 38400. Here is a formula for this:

C = 37888 + 4* (PEEK(36866) AND 128)

I: Character memory location: This determines where information on
the shapes of characters are stored. Normally this pointer is to the char-
acter generator ROM, which contains both the upper case/graphics or the



APPENDIX | 307

upper/lower case set. However, a simple POKE command can change
this pointer to a RAM location, allowing custom character sets and high
resolution graphics.

To change: POKE 36869, PEEK(36869) AND 240 OR X
(See chart on next page.)

J: Light pen horizontal: This contains the latched number of the dot
under the light pen, from the left of the screen.

K: Light pen vertical: The latched number of the dot under the pen,
counted from the top of the screen.

X Location
- Contents
Value HEX Decimal

0 8000 32768 Upper case normal characters
1 8400 33792 Upper case reversed characters
2 8800 34816 Lower case normal characters
3 8C00 35840 Lower case reversed characters
4 9000 36864 unavailable
5 9400 37888 unavailable
6 9800 38912 VIC chip-unavailable
7 9C00 39936 ROM-unavailable
8 0000 0 unavailable
9 unavailable

10 unavailable

11 unavailable

12 1000 4096 RAM

13 1400 5120 RAM

14 1800 6144 RAM

15 1C00 7168 RAM

L: Paddle X: This contains the digitized value of a variable resistance
(game paddle). The number reads from 0 to 255.

M: Paddle Y: Same as Paddle X, for a second analog input.

N: Bass switch: If this bit is a 0, no sound is played from Voice 1. A 1
in this bit results in a tone determined by Frequency 1.

To turn on: POKE 36874, PEEK(36874) OR 128
To turn off: POKE 36874, PEEK(36874) AND 127
O: Alto switch: See Bass switch.



308

MACHINE LANGUAGE FOR COMMODORE MACHINES

P: Soprano switch: See Bass switch.
Q: Noise switch: See Bass switch.

R: Bass Frequency: This is a value corresponding to the frequency of
the tone being played. The larger the number, the higher the pitch of the
tone.

The actual frequency of the sound in cycles per second (hertz) is deter-
mined by the following formula:

Clock
(127 - X)

X is the number from 0 to 127 that is put into the frequency register. If X
is 127, then use —1 for X in the formula. The value of Clock comes from
the following table:

Frequency =

Register NTSC (US TV’s) PAL (European)
36874 3995 4329
36875 7990 8659
36876 15980 17320
36877 31960 34640

To set: POKE 36874, PEEK(36874) AND 128 OR X

S: Alto Frequency: This is a value corresponding to the frequency of the
tone being played. The larger the number, the higher the pitch of the tone.

T: Soprano Frequency: This is a value corresponding to the frequency
of the tone being played. The larger the number, the higher the pitch of
the tone.

To set: POKE 36876, PEEK(36876) AND 128 OR X

U: Noise Frequency: This is a value corresponding to the frequency of
the noise being played. The larger the number, the higher the pitch of the
noise.

To set: POKE 36877, PEEK(36877) AND 128 OR X

V: Loudness of sounds: This is the volume control for all the sounds
playing. O is off and 15 is the loudest sound.

To set: POKE 36878, PEEK(36878) AND 240 OR X

W: Auxiliary color: This register holds the color number of the auxiliary
color. The value can be from 0 to 15.



APPENDIX | 309

To set: POKE 36878, PEEK(36878) AND 15 OR (16*X)
X: Screen color: A number from O to 15 sets the color of the screen.
To set: POKE 36879, PEEK(36879) AND 15 OR (X*16)

Y: Reverse mode: A 1 in this bit indicates normal characters, and a 0
here causes all characters to be displayed as if reversed.

To turn on reverse mode: POKE 36879, PEEK(36879) AND 247

To turn off reverse mode: POKE 36879, PEEK(36879) OR 8

Z: Border color: A number from 0 to 7 sets the color of the screen.
To set: POKE 36879, PEEK(36879) AND 248 OR X

6522 Versatile Interface Adapter (VIA)

The 6522 Versatile Interface Adapter (VIA) provides two peripheral ports
with input latching, two powerful interval timers, and a serial-to-parallel/
parallel-to-serial shift register.

6522 Versatile Interface Adapter Description

ADDRESS DESCRIPTION REGISTER
9110 Port B AAAAAARA
9111 Port A (with handshaking) BBBBBBBB
9112 Data Direction B ccccecece
9113 Data Direction A DDDDDDDD
9114 Timer #1, low byte EEEEEEEE
9115 Timer #1, high byte FFFFFFFF
9116 Timer #1, low byte to load GGGGGGGG
9117 Timer #1, high byte to load HHHHHHHH
9118 Timer #2, low byte IIIIIIII
9119 Timer #2, high byte JJJIIIIT
911A Shift Register KKKKKKKK
911B Auxiliary Control LLMNNNOP
911C Peripheral Control QOQRSSST
911D Interrupt Flags UVWXYZab
911E Interrupt Enable cedfghij
911F Port A (no handshaking) kkkkkkkk




310

MACHINE LANGUAGE FOR COMMODORE MACHINES

PORT A I/O REGISTER

These eight bits are connected to the eight pins which make up port A.
Each pin can be set for either input or output.

Input latching is available on this port. When latch mode is enabled the
data in the register freezes when the CB1 interrupt flag is set. The register
stays latched until the interrupt flag is cleared.

Handshaking is available for output from this port. CB2 will act as a DATA
READY SIGNAL. This must be controlled by the user program. CB1 acts
as the DATA ACCEPTED signal, and must be controlled by the device
connected to the port. When DATA ACCEPTED is sent to the 6522, the
DATA READY line is cleared, and the interrupt flag is set.

PORT B I/O REGISTER

These eight bits are connected to the eight pins which make up port B.
Each pin can be set for either input or output. Handshaking is available
for both read and write operations. Write handshaking is similar to that on
PORT B. Read handshaking is automatic. The CA1 input pin acts as a
DATA READY signal. The CA2 pin (used for output) is used for a DATA
ACCEPTED signal. When a DATA READY signal is received a flag is set.
The chip can be set to generate an interrupt or the flag can be polled
under program control. The DATA ACCEPTED signal can either be a
pulse or a DC level. It is set low by the CPU and cleared by the DATA
READY signal.

DATA DIRECTION FOR PORT B

This register is used to control whether a particular bit in PORT B is used
for input or output. Each bit of the data direction register (DDR) is asso-
ciated with a bit of port B. If a bit in the DDR is set to 1, the corresponding
bit of the port will be an OUTPUT. If a bitin the DDR is 0, the corresponding
bit of the port will be an INPUT.

For example, if the DDR is set to 7, port B will be set up as follows:

BITS NUMBER DDR PORT B FUNCTION
1 OUTPUT
1 OUTPUT
1 OUTPUT
0 INPUT
0 INPUT
0 INPUT
0 INPUT
0 INPUT

NoOOoOp,~,WN—=O



APPENDIX | . 311

DATA DIRECTION REGISTER FOR PORT A
This is similar to the DDR for port B, except that it works on PORT A.

E,F,G,H: TIMER CONTROLS

There are two timers on the 6522 chip. The timers can be set to count
down automatically or count pulses received by the VIA. The mode of
operation is selected by the Auxiliary Control register.

TIMER T1 on the 6522 consists of two 8-bit latches and a 16-bit counter.
The various modes of the TIMER are selected by setting the AUXILIARY
CONTROL REGISTER (ACR). The latches are used to store a 16-bit data
word to load into the counter. Loading a number into the latches does not
affect the count in progress.

After it is set, the counter will begin decrementlng at 1 MHz. When the
counter reaches zero, an mterrupt flag will be set, and the IRQ will go low.
Depending on how the TIMER is set, either further interrupts will be dis-
abled, or it will automatically load the two latches into the counter and
continue counting. The TIMER can also be set to invert the output signal
on a peripheral pin each time it reaches zero and resets.

The TIMER locations work differently on reading and writing.

WRITING TO THE TIMER:

E: Write into the low order latch. This latch can be loaded into the low
byte of the 16-bit counter.

F: Write into the high order latch, write into the high order counter, trans-
fer low order latch into the low order counter, and reset the TIMER T1
interrupt flag. In other words, when this location is set the counter is loaded.

G: Same asE.
H: Write into the high order latch and reset the TIMER T1 interrupt flag.

READ TIMER T1

E: Read the TIMER T1 low order counter and reset the TIMER T1 in-
terrupt flag.

F: Read the TIMER T1 high order counter.
G: Read the TIMER T1 low order latch.
H: Read the TIMER T1 high order latch.



312

MACHINE LANGUAGE FOR COMMODORE MACHINES

TIMER T2

This TIMER operates as an interval timer (in one-shot mode), or as a
counter for counting negative pulses on PORT B pin 6. A bit in the ACR
selects which mode TIMER T2 is in.

WRITING TO TIMER T2

I: Write TIMER T2 low order byte of latch.
J:  Write TIMER T2 high order counter byte, transfer low order latch to
low order counter, clear TIMER T2 interrupt flag.

READING TIMER T2

I: Read TIMER T2 low order counter byte, and clear TIMER T2 interrupt
flag.

K: SHIFT REGISTER

A shift register is a register which will rotate itself through the CB2 pin.
The shift register can be loaded with any 8-bit pattern which can be shifted
out through the CB1 pin, or input to the CB1 pin can be shifted into the
shift register and then read. This makes it highly useful for serial to parallel
and parallel to serial conversions.

The shift register is controlled by bits 2—4 of the Auxiliary Control register.

L,M,N,O,P: AUXILIARY CONTROL REGISTER

L: TIMER 1 CONTROL

BIT# 7 6
0 0 One-shot mode (output to PB7 disabled)
0 1 Free running mode (output to PB7 disabled)
1 0 One-shot mode (output to PB7 enabled)
1 1 Free running mode (output to PB7 enabled)

M: TIMER 2 CONTROL

TIMER 2 has 2 modes. If this bit is 0, TIMER 2 acts as an interval timer
in one-shot mode. If this bit is 1, TIMER 2 will count a predetermined
number of pulses on pin PB6.



APPENDIX | 313

N: SHIFT REGISTER CONTROL

BIT# 4 3 2

0 0 O SHIFT REGISTER DISABLED

0 0 1 SHIFT IN (FROM CB1) UNDER CONTROL OF
TIMER 2

0 1 0 SHIFT IN UNDER CONTROL OF SYSTEM CLOCK
PULSES

0 1 1 SHIFT IN UNDER CONTROL OF EXTERNAL
CLOCK PULSES

0 FREE RUN MODE AT RATE SET BY TIMER 2
SHIFT OUT UNDER CONTROL OF TIMER 2
SHIFT OUT UNDER CONTROL OF SYSTEM
CLOCK PULSES

1 1 1 SHIFT OUT UNDER CONTROL OF EXTERNAL
CLOCK PULSES

-
- OO
e

O: PORT B LATCH ENABLE

As long as this bit is 0, the PORT B register will directly reflect the data
on the pins.

If this bit is set to one, the data present on the input pins of PORT A will
be latched within the chip when the CB1 INTERRUPT FLAG is set. As
long as the CB1 INTERRUPT FLAG is set, the data on the pins can change
without affecting the contents of the PORT B register. Note that the CPU
always reads the register (the latches) rather than the pins.

Input latching can be used with any of the input or output modes available
for CB2.

P: PORT A LATCH ENABLE

As long as this bit is 0, the PORT A register will directly reflect the data
on the pins.

If this bit is set to one, the data present on the input pins of PORT A will
be latched within the chip when the CA1 INTERRUPT FLAG is set. As
long as the CA1 INTERRUPT FLAG is set, the data on the pins can change
without affecting the contents of the PORT A register. Note that the CPU
always reads the register (the latches) rather than the pins.

Input latching can be used with any of the input or output modes available
for CA2.



314

MACHINE LANGUAGE FOR COMMODORE MACHINES

Q,R,S,T THE PERIPHERAL CONTROL REGISTER

Q: CB2 CONTROL

Q
BIT # DESCRIPTION
Interrupt Input Mode
independent Interrupt Input Mode
Input Mode
Independent Input Mode
Handshake Output Mode
Pulse Output Mode
Manual Output Mode (CB2 is held LOW)

7
0
0
0
0
1
1
1
1 Manual Output Mode (CB2 is held HIGH)

~— w00 —a00®0
—~0—m0O0—-0O=0W0O

INTERRUPT INPUT MODE:

The CB2 interrupt flag (IFR bit 3) will be set on a negative (high-to-low)
transition on the CB2 input line. The CB2 interrupt bit will be cleared on
a read or write to PORT B.

INDEPENDENT INTERRUPT INPUT MODE:

As above, the CB2 interrupt flag will be set on a negative transition on
the CB2 input line. However, reading or writing to PORT B does not clear
the flag.

INPUT MODE:

The CB2 interrupt flag (IFR bit 3) will be set on a positive (low-to-high)
transition of the CB2 line. The CB2 flag will be cleared on a read or write
of PORT B.

INDEPENDENT INPUT MODE:

As above, the CB2 interrupt flag will be set on a positive transition on the
CB2 line. However, reading or writing PORT B does not affect the flag.
HANDSHAKE OUTPUT MODE:

The CB2 line will be set low on a write to PORT B. It will be reset high
again when there is an active transition on the CB1 line.

PULSE OUTPUT MODE:

The CB2 line is set low for one cycle after a write to PORT B.



APPENDIX | 315

MANUAL OUTPUT MODE:
The CB2 line is held low.

MANUAL OUTPUT MODE:
The CB2 line is held high.

R: CB1 CONTROL

This bit selects the active transition of the input signal applied to the CB1
pin. If this bit is 0, the CB1 interrupt flag will be set on a negative transition
(high-to-low). If this bitis a 1, the CB 1 interrupt flag will be set on a positive
(low-to-high) transition.

S:CA2 CONTROL
S 8§ S§
BIT # 3 2 1 DESCRIPTION
0 0O ©O Interrupt Input Mode
o 0 1 Independent Interrupt Input Mode
o 1 0 Input Mode
o 1 1 Independent Input Mode
1 0O O Handshake Output Mode
1 0o 1 Pulse Output Mode
1 1 0 Manual Output Mode (CA2 is held LOW)
1 1 1 Manual Output Mode (CA2 is held HIGH)

INTERRUPT INPUT MODE:

The CA2 interrupt flag (IFR bit 0) will be set on a negative (high-to-low)
transition on the CA2 input line. The CA2 interrupt bit will be cleared on
a read or write to PORT A.

INDEPENDENT INTERRUPT INPUT MODE:

As above, the CA2 interrupt flag will be set on a negative transition on
the CA2 input line. However, reading or writing to PORT A does not clear
the flag.

INPUT MODE:

The CA2 interrupt flag (IFR bit 0) will be set on a positive (low-to-high)
transition of the CA2 line. The CA2 flag will be cleared on a read or write
of PORT A.



316

MACHINE LANGUAGE FOR COMMODORE MACHINES

INDEPENDENT INPUT MODE:

As above, the CA2 interrupt flag will be set on a positive transition on the
CA2 line. However, reading or writing PORT A does not affect the flag.

HANDSHAKE OUTPUT MODE:

The CA2 line will be set low on a read or write to PORT A. It will be reset
high again when there is an active transition on the CA1 line.

PULSE OUTPUT MODE:
The CA2 line is set low for one cycle after a read or write to PORT A.

MANUAL OUTPUT MODE:
The CA2 line is held low.

MANUAL OUTPUT MODE:
The CA2 line is held high.

T: CA1 CONTROL

This bit of the PCR selects the active transition of the input signal applied
to the CA1 input pin. If this bit is 0, the CA1 interrupt flag (Bit) will be set
by a negative transition (high-to-low) on the CA1 pin. If this bit is 1, the
CAT1 interrupt flag will be set by a positive transition (low-to-high).

There are two registers associated with interrupts: The INTERRUPT FLAG
REGISTER (IFR) and the INTERRUPT ENABLE REGISTER (IER). The
IFR has eight bits, each one connected to a register in the 6522. Each bit
in the IFR has an associated bit in the IER. The flag is set when a register
wants to interrupt. However, no interrupt will take place unless the cor-
responding bit in the IER is set.

UVWXYZab: INTERRUPT FLAG REGISTER

When the flag is set, the pin associated with that flag is attempting to
interrupt the 6502. Bit U is not a normal flag. It goes high if both the flag
and the corresponding bit in the INTERRUPT ENABLE REGISTER are
set. It can be cleared only by clearing all the flags in the IFR or disabling
all active interrupts in the IER.



APPENDIX |

317

SET BY
U IRQ STATUS
\ TIMER 1 time-out

w TIMER 2 time-out

X CB1 pin active transition
Y CB2 pin active transition
Z Completion of 8 shifts

a CAT1 pin active transition
b CA2 pin active transition

CLEARED BY

Reading TIMER 1 low order
counter and writing TIMER 1
high order latch

Reading TIMER 2 low order
counter and writing TIMER 2
high order counter

Reading or writing PORT B
Reading or writing PORT B
Reading or writing the shift
register

Reading or writing PORT A
(BBBBBBBB in above chart)
Reading or writing PORT A
(BBBBBBBB in above chart)

cdefghij: INTERRUPT ENABLE REGISTER

c: ENABLE CONTROL

If this bit is a 0 during a write to this register, each 1 in bits 0-6 clears the
corresponding bit in the IER. If this bit is a 1 during this register, each 1
in bits 0-6 will set the corresponding IER bit.

TIMER 1 time-out enable
TIMER 2 time-out enable
CB1 interrupt enable
CB2 interrupt enable
Shift interrupt enable
CA1 interrupt enable
CA2 interrupt enable

—=—sa=-0ona

PORT A

This is similar to BBBBBBBB, except that the handshaking lines (CA1 and
CA2) are unaffected by operations on this port.



318

MACHINE LANGUAGE FOR COMMODORE MACHINES

6526 (CIA) Complex Interface Adaptor

REGISTER MAP

RS3 | RS2 | RS1 | RSO | REG NAME
0 0 0 0 0 |PRA PERIPHERAL DATA REG A
0 0 0 1 1 PRB PERIPHERAL DATA REG B
0 0 1 0 2 | DDRA DATA DIRECTION REG A
0 0 1 1 3 |[DDRB DATA DIRECTION REG B
0 1 0 0 4 |TALO TIMER A LOW REGISTER
0 1 0 1 5 |TAHI TIMER A HIGH REGISTER
0 1 1 0 6 |TBLO TIMER B LOW REGISTER
0 1 1 1 7 | TBHI TIMER B HIGH REGISTER
1 0 0 0 8 | TOD 10ths 10ths OF SECONDS REGISTER
1 0 0 1 9 | TOD SEC SECONDS REGISTER
1 0 1 0 A | TOD MIN MINUTES REGISTER
1 0 1 1 B | TOD HR HOURS—AM/PM REGISTER
1 1 0 0 C | SDR SERIAL DATA REGISTER
1 1 0 1 D |[ICR INTERRUPT CONTROL REGIS-
TER
1 E |CRA CONTROL REG A
1 1 1 1 F [CRB CONTROL REG B

I/0 Ports (PRA, PRB, DDRA, DDRB)

Ports A and B each consist of an 8-bit Peripheral Data Register (PR) and
an 8-bit Data Direction Register (DDR). If a bit in the DDR is set to a one,
the corresponding bit in the PR is an output; if a DDR bit is set to a zero,
the corresponding PR bit is defined as an input. On a READ, the PR
reflects the information present on the actual port pins (PAO—-PA7, PBO—
PB7) for both input and output bits. Port A and Port B have passive pull-
up devices as well as active pull-ups, providing both CMOS and TTL
compatibility. Both ports have two TTL load drive capability. In addition to
normal I/O operation, PB6 and PB7 also provide timer output functions.

Handshaking

Handshaking on data transfers can be accomplished using the PC output
pin and the FLAG input pin. PC will go low for one cycle following a read
or write of PORT B. This signal can be used to indicate “data ready” at
PORT B or “data accepted” from PORT B. Handshaking on 16-bit data
transfers (using both PORT A and PORT B) is possible by always reading



APPENDIX | 319

or writing PORT A first. FLAG is a negative edge sensitive input which
can be used for receiving the PC output from another 6526, or as a general
purpose interrupt input. Any negative transition of FLAG will set the FLAG

interrupt bit.

REG | NAME D, De Ds D, D D, D, Do
PRA PA; PAg PAs PA, PA; PA, PA, PA,
PRB PB, PBs PBs PB, PB; PB, PB, PB,

DDRA DPA, |DPA; |DPA; |DPA, [DPA; | DPA, | DPA, |DPA,
DDRB DPB, |DPB; |DPB; |DPB, |DPB; | DPB, | DPB, |DPB,

w|N|= O

Interval Timers (Timer A, Timer B)

Each interval timer consists of a 16-bit read-only Timer Counter and a 16-
bit write-only Timer Latch. Data written to the timer are latched in the Timer
Latch, while data read from the timer are the present contents of the Time
Counter. The timers can be used independently or linked for extended
operations. The various timer modes allow generation of long time delays,
variable width pulses, pulse trains and variable frequency waveforms.
Utilizing the CNT input, the timers can count external pulses or measure
frequency, pulse width and delay times of external signals. Each timer has
an associated control register, providing independent control of the fol-
lowing functions:

Start/Stop

A control bit allows the time to be started or stopped by the microprocessor
at any time.

PB On/Off:

A control bit allows the timer output to appear on a PORT B output line
(PB6 for TIMER A and PB7 for TIMER B). This function overrides the
DDRB control bit and forces the appropriate PB line to an output.

Toggle/Pulse

A control bit selects the output applied to PORT B. On every timer un-
derflow the output can either toggle or generate a single positive pulse of
one cycle duration. The Toggle output is set high whenever the timer is
started and is set low by RES.



320

MACHINE LANGUAGE FOR COMMODORE MACHINES

One-Shot/Continuous

A control bit selects either timer mode. In one-shot mode, the timer will
count down from the latched value to zero, generate an interrupt, reload
the latched value, then stop. In continuous mode, the timer will count from
the latched value to zero, generate an interrupt, reload the latched value
and repeat the procedure continuously.

Force Load

A strobe bit allows the timer latch to be loaded into the timer counter at
any time, whether the timer is running or not.

Input Mode:

Control bits allow selection of the clock used to decrement the timer.
TIMER A can count ¢$2 clock pulses or external pulses applied to the CNT
pin. TIMER B can count ¢2 pulses, external CNT pulses, TIMER A un-
derflow pulses or TIMER A underflow pulses while the CNT pin is held
high.

The timer latch is loaded into the timer on any timer underflow, on a force
load or following a write to the high byte of the prescaler while the timer
is stopped. If the timer is running, a write to the high byte will load the
timer latch, but not reload the counter.

READ (TIMER)
REG  NAME

4 TALO |TAL, |[TALs |TALs |TAL, |TAL; |TAL, |TAL, [TAL,

TA HI TAH; | TAHs | TAHs | TAH, | TAH; | TAH, | TAH, | TAH,

5
6 TBLO |TBL, [TBLg |TBLs |TBL, [TBL; |TBL, |TBL, |TBL,
7 TB HI TBH, |TBHg¢ |TBHs | TBH, | TBH; | TBH, | TBH, [ TBH,

WRITE (PRESCALER)
REG NAME

4 TALO PAL, |PALs |PALs; |PAL, |PAL; |PAL, |PAL, [PAL,
5 TA HI PAH, |PAHs | PAHs; | PAH, [ PAH; | PAH, | PAH, [ PAH,
6
7

T8 LO PB; PBs PBs PB, PB; PB, PB, PB,
TB HI PBH, |PBH; | PBHs | PBH, |PBH; |PBH, [PBH, |PBH,




APPENDIX | 321

Time of Day Clock (TOD)

The TOD clock is a special purpose timer for real-time applications. TOD
consists of a 24-hour (AM/PM) clock with 1/10th second resolution. It is
organized into 4 registers: 10ths of seconds, Seconds, Minutes and Hours.
The AM/PM flag is in the MSB of the Hours register for easy bit testing.
Each register reads out in BCD format to simplify conversion for driving
displays, etc. The clock requires an external 60 Hz or 50 Hz (programm-
able) TTL level input on the TOD pin for accurate timekeeping. In addition
to time-keeping, a programmable ALARM is provided for generating an
interrupt at a desired time. The ALARM registers are located at the same
addresses as the corresponding TOD registers. Access to the ALARM is
governed by a Control Register bit. The ALARM is write-only; any read of
a TOD address will read time regardless of the state of the ALARM access
bit.

A specific sequence of events must be followed for proper setting and
reading of TOD. TOD is automatically stopped whenever a write to the
Hours register occurs. The clock will not start again until after a write to
the 10ths of seconds register. This assures TOD will always start at the
desired time. Since a carry from one stage to the next can occur at any
time with respect to a read operation, a latching function is included to
keep all Time Of Day information constant during a read sequence. All
four TOD registers latch on a read of Hours and remain latched until after
a read of 10ths of seconds. The TOD clock continues to count when the
output registers are latched. If only one register is to be read, there is no
carry problem and the register can be read “on the fly,” provided that any
read of Hours is followed by a read of 10ths of seconds to disable the

latching.

READ

REG  NAME

8 |Top 0 0 0 0 Te Ts To T
10THS

9 TOD 0 SH, SH, SH, SLg SL, SL, SL,
SEC

A |TOD 0 MH, |MH, |MH, |MLg |ML, (ML, |ML,
MIN

B |TODHR|PM |0 0 HH HL, [HL, |HL, |HL,




322

MACHINE LANGUAGE FOR COMMODORE MACHINES

WRITE
CRB, = 0 TOD
CRB, = 1 ALARM

(SAME FORMAT AS READ)

Serial Port (SDR)

The serial port is a buffered, 8-bit synchronous shift register system. A
control bit selects input or output mode. In input mode, data on the SP
pin is shifted into the shift register on the rising edge of the signal applied
to the CNT pin. After 8 CNT pulses, the data in the shift register is dumped
into the Serial Data Register and an interrupt is generated. In the output
mode, TIMER A is used for the baud rate generator. Data is shifted out
on the SP pin at 2 the underflow rate of TIMER A. The maximum baud
rate possible is ¢2 divided by 4, but the maximum useable baud rate will
be determined by line loading and the speed at which the receiver responds
to input data. Transmission will start following a write to the Serial Data
Register (provided TIMER A is running and in continuous mode). The
clock signal derived from TIMER A appears as an output on the CNT pin.
The data in the Serial Data Register will be loaded into the shift register
then shift out to the SP pin when a CNT pulse occurs. Data shifted out
becomes valid on the falling edge of CNT and remains valid until the next
falling edge. After 8 CNT pulses, an interrupt is generated to indicate more
data can be sent. If the Serial Data Register was loaded with new infor-
mation prior to this interrupt, the new data will automatically be loaded
into the shift register and transmission will continue. If the microprocessor
stays one byte ahead of the shift register, transmission will be continuous.
If no further data is to be transmitted, after the 8th CNT pulse, CNT will
return high and SP will remain at the level of the last data bit transmitted.
SDR data is shifted out MSB first and serial input data should also appear
in this format.

The bidirectional capability of the Serial Port and CNT clock allows many
6526 devices to be connected to a common serial communication bus on
which one 6526 acts as a master, sourcing data and shift clock, while all
other 6526 chips act as slaves. Both CNT and SP outputs are open drain
to allow such a common bus. Protocol for master/slave selection can be
transmitted over the serial bus, or via dedicated handshaking lines.

REG NAME
|c|son|s,|ss|35|s.,|sa|szls,|so|




APPENDIX | 323

Interrupt Control (ICR)

There are five sources of interrupts on the 6526: underflow from TIMER
A, underflow from TIMER B, TOD ALARM, Serial Port full/empty and
FLAG. A single register provides masking and interrupt information. The
interrupt Control Register consists of a write-only MASK register and a
read-only DATA register. Any interrupt will set the corresponding bit in the
DATA register. Any interrupt which is enabled by the MASK register will
set the IR bit (MSB) of the DATA register and bring the IRQ pin low. In a
multi-chip system, the IR bit can be polled to detect which chip has gen-
erated an interrupt request. The interrupt DATA register is cleared and
the 1RQ line returns high following a read of the DATA register. Since each
interrupt sets an interrupt bit regardless of the MASK, and each interrupt
bit can be selectively masked to prevent the generation of a processor
interrupt, it is possible to intermix polled interrupts with true interrupts.
However, polling the IR bit will cause the DATA register to clear, therefore,
it is up to the user to preserve the information contained in the DATA
register if any polled interrupts were present.

The MASK register provides convenient control of individual mask bits.
When writing to the MASK register, if bit 7 (SET/CLEAR) of the data written
is a ZERO, any mask bit written with a one will be cleared, while those
mask bits written with a zero will be unaffected. If bit 7 of the data written
is a ONE, any mask bit written with a one will be set, while those mask
bits written with a zero will be unaffected. In order for an interrupt flag to
set IR and generate an Interrupt Request, the corresponding MASK bit

must be set.

READ (INT DATA)

REG NAME
|D||CR||R|0|o|FLG|3P|ALRM|TB|TA|

WRITE (INT MASK)
REG NAME
|D||CR|S/6|x|x|FLG|SPlALRM|TB|TA|
Control Registers

There are two control registers in the 6526, CRA and CRB. CRA is as-

sociated with TIMER A and CRB is associated with TIMER B. The register
format is as follows:



324 MACHINE LANGUAGE FOR COMMODORE MACHINES

CRA:

Bit Name

0 START

1 PBON

2 OUTMODE
3 RUNMODE
4 LOAD

5 INMODE

6 SPMODE

7 TODIN

5,6 INMODE
7 ALARM

Function

1=S8START TIMER A, 0=STOP TIMER A. This
bit is automatically reset when underflow oc-
curs during one-shot mode.

1=TIMER A output appears on PB6, 0=PB6
normal operation.

1=TOGGLE, 0=PULSE

1=0NE-SHOT, 0=CONTINUOUS
1=FORCE LOAD (this is STROBE input, there

- is no data storage, bit 4 will always read back

a zero and writing a zero has no effect).
1=TIMER A counts positive CNT transitions,
0=TIMER A counts ¢2 pulses.

1=SERIAL PORT output (CNT sources shift
clock), 0=SERIAL PORT input (external shift
clock required).

1=50 Hz clock required on TOD pin for ac-
curate time, 0=60 Hz clock required on TOD
pin for accurate time.

(Bits CRB0-CRB4 are identical to CRA0-CRA4
for TIMER B with the exception that bit 1 con-
trols the output of TIMER B on PB7).

Bits CRB5 and CRB6 select one of four input
modes for TIMER B as:

CRB6 CRBS

0 0 TIMER B counts ¢2
pulses.

0 1 TIMER B counts positive
CNT transitions.

1, 0 TIMER B counts TIMER
A underflow pulses.

1 1 TIMER B counts TIMER
A underflow pulses while
CNT is high.

1 =writing to TOD registers sets ALARM,
0 =writing to TOD registers sets TOD clock.



APPENDIX | 325

TOD SP IN RUN out
REG NAME IN MODE MODE LOAD MODE MODE PBON START
E CRA 0=60Hz 0=INPUT |0=¢2 1=FORCE 0=CONT 0=PULSE |0=PBgOFF [0=STOP
LOAD
1=50Hz 1= OUT- |1=CNT (STROBE) 1=0.8. 1=TOGGLE |1=PBg ON |1=START
PUT
l TA |
RUN ouTt
REG NAME ALARM IN MODE LOAD MODE MODE PBON  START
F CRB 0=TOD 0 0=62 1=FORCE 0=CONT. |0=PULSE 0=PBy7 OFF 0=STOP
1 1=CNT LOAD
1 0=TA
1= 1 1=CNT-TA (STROBE) 1=0.8. 1=TOGGLE |[1=PB7 ON 1=START
ALARM
| ™ |

All unused register bits are unaffected by a write and are forced to zero
on a read.

COMMODORE SEMICONDUCTOR GROUP reserves the right to
make changes to any products herein to improve reliability, function
or design. COMMODORE SEMICONDUCTOR GROUP does not
assume any liability arising out of the application or use of any product
or circuit described herein; neither does it convey any license under
its patent rights nor the rights of others.

6566/6567 (VIC-II) Chip Specifications

The 6566/6567 are multi-purpose color video controller devices for use in

- both computer video terminals and video game applications. Both devices
contain 47 control registers which are accessed via a standard 8-bit mi-
croprocessor bus (65XX) and will access up to 16K of memory for display
information. The various operating modes and options within each mode
are described.

Character Display Mode

In the character display mode, the 6566/6567 fetches CHARACTER
POINTERs from the VIDEO MATRIX area of memory and translates the
pointers to character dot location addresses in the 2048 byte CHARACTER
BASE area of memory. The video matrix is comprised of 1000 consecutive
locations in memory which each contain an eight-bit character pointer.
The location of the video matrix within memory is defined by VM13-VM10
in register 24($18) which are used as the 4 MSB of the video matrix



326 MACHINE LANGUAGE FOR COMMODORE MACHINES

address. The lower order 10 bits are provided by an internal counter (VC3-
VCO0) which steps through the 1000 character locations. Note that the
6566/6567 provides 14 address outputs; therefore, additional system hard-
ware may be required for complete system memory decodes.

CHARACTER POINTER ADDRESS

A13 | A12 | A11 | A10 | A09 | A08 l A07 \ A06 | A0S | AO4 \ A03 | A02 I AO1 |Aoo
vmi13|vmiz|vmi1|vmio| ves | ves | ver | ves | ves | vea | ves | vez | vei | veo

The eight-bit character pointer permits up to 256 different character def-
initions to be available simultaneously. Each character is an 8 x8 dot
matrix stored in the character base as eight consecutive bytes. The location
of the character base is defined by CB13-CB11 also in register 24 ($18)
which are used for the 3 most significant bits (MSB) of the character base
address. The 11 lower order addresses are formed by the 8-bit character
pointer from the video matrix (D7-D0) which selects a particular character,
and a 3-bit raster counter (RC2-RCO) which selects one of the eight char-
acter bytes. The resulting characters are formatted as 25 rows of 40
characters each. In addition to the 8-bit character pointer, a 4-bit COLOR
NYBBLE is associated with each video matrix location (the video matrix
memory must be 12 bits wide) which defines one of sixteen colors for
each character.

CHARACTER DATA ADDRESS

A13 | A12 | A11 I A10 | A09 l A08 | AO7 | A06 | A0S | A04 | A03 \ A02 l AO1 | A0O
ce13|cei2|cBi11| D7 | D6 | D5 | D4 | D3 | D2 | D1 | Do [Rc2|RCt[RCO

Standard Character Mode (MCM = BMM =
ECM = 0)

In the standard character mode, the 8 sequential bytes from the character
base are displayed directly on the 8 lines in each character region. A “0”
bit causes the background #0 color (from register 33 ($21)) to be displayed
while the color selected by the color nybble (foreground) is displayed for
a “1” bit (see Color Code Table).



APPENDIX | 327

CHARACTER
FUNCTION BIT COLOR DISPLAYED
Background #0 color

(register 33 ($21))

Background ‘ 0
Color selected by 4-bit color nybble

Foreground 1
Therefore, each character has a unique color determined by the 4-bit color
nybble (1 of 16) and all characters share the common background color.

Multi-Color Character Mode (MCM = 1,
BMM = ECM = 0)

Multi-color mode provides additional color flexibility allowing up to four
colors within each character but with reduced resolution. The multi-color
mode is selected by setting the MCM bit in register 22 ($16) to “1,” which
causes the dot data stored in the character base to be interpreted in a
different manner. If the MSB of the color nybble is a “0,” the character
will be displayed as described in standard character mode, allowing the
two modes to be inter-mixed (however, only the lower order 8 colors are
available). When the MSB of the color nybble is a “1” (if MCM:MSB(CM)
= 1) the character bits are interpreted in the multi-color mode:

CHARACTER
FUNCTION BIT PAIR COLOR DISPLAYED
Background 00 Background #0 Color
(register 33 ($21))
Background 01 Background #1 Color
(register 34 ($22))
Foreground 10 Background #2 Color
(register 35 ($23))
Foreground 11 Color specified by 3 LSB of color
nybble

Since two bits are required to specify one dot color, the character is now
displayed as a 4 x 8 matrix with each dot twice the horizontal size as in
standard mode. Note, however, that each character region can now con-
tain 4 different colors, two as foreground and two as background (see
MOB priority).



328 MACHINE LANGUAGE FOR COMMODORE MACHINES

Extended Color Mode (ECM = 1, BMM =
MCM = 0)

The extended color mode allows the selection of individual background
colors for each character region with the normal 8 x 8 character resolution.
This mode is selected by setting the ECM bit of register 17 ($11) to “1.”
The character dot data is displayed as in the standard mode (foreground
color determined by the color nybble is displayed for a “1” data bit), but
the 2 MSB of the character pointer are used to select the background
color for each character region as follows:

CHAR. POINTER

MS BIT PAIR BACKGROUND COLOR DISPLAYED FOR 0 BIT
00 Background #0 color (register 33 ($21))
01 Background #1 color (register 34 ($22))
10 Background #2 color (register 35 ($23))
11 Background #3 color (register 36 ($24))

Since the two MSB of the character pointers are used for color information,
only 64 different character definitions are available. The 6566/6567 will
force CB10 and CB9 to “0” regardless of the original pointer values, so
that only the first 64 character definitions will be accessed. With extended
color mode each character has one of sixteen individually defined fore-
ground colors and one of the four available background colors.

NOTE: Extended color mode and multi-color mode should not be enabled simulta-
neously.

Bit Map Mode

In bit map mode, the 6566/6567 fetches data from memory in a different
fashion, so that a one-to-one correspondence exists between each dis-
played dot and a memory bit. The bit map mode provides a screen res-
olution of 320H x 200V individually controlled display dots. Bit map mode
is selected by setting the BMM bit in register 17 ($11) to a “1.” The VIDEO
MATRIX is still accessed as in character mode, but the video matrix data
is no longer interpreted as character pointers, but rather as color data.
The VIDEO MATRIX COUNTER is then also used as an address to fetch
the dot data for display from the 8000-byte DISPLAY BASE. The display
base address is formed as follows:



APPENDIX | 329

A13 | A12 | A11 ] A10 | A0 | A8 | A07 | A06 | A05 | A0a | A0 | A02 | Aot | Aco
cB13|ves | ves|ver [ves|ves [vea|ves | vea | ver [veo | rez|Ret | Reo

VCx denotes the video matrix counter outputs, RCx denotes the 3-bit raster
line counter and CB13 is from register 24 ($18). The video matrix counter
steps through the same 40 locations for eight raster lines, continuing to
the next 40 locations every eighth line, while the raster counter increments
once for each horizontal video line (raster line). This addressing results
in each eight sequential memory locations being formatted as an 8 x 8
dot block on the video display.

Standard Bit Map Mode (BMM = 1,
MCM = 0)

When standard bit map mode is in use, the color information is derived
only from the data stored in the video matrix (the color nybble is disre-
garded). The 8 bits are divided into two 4-bit nybbles which allow two
colors to be independently selected in each 8 x 8 dot block. When a bit
in the display memory is a “0” the color of the output dot is set by the
least significant (lower) nybble (LSN). Similarly, a display memory bit of
“1” selects the output color determined by the MSN (upper nybble).

BIT | DISPLAY COLOR

0 ' Lower nybble of video matrix pointer
Upper nybble of video matrix pointer

Multi-Color Bit Map Mode (BMM = MCM
= 1)

Multi-colored bit map mode is selected by setting the MCM bit in register
22 ($16) to a “1” in conjunction with the BMM bit. Multi-color mode uses
the same memory access sequences as standard bit map mode, but
interprets the dot data as follows:

BIT PAR | DISPLAY COLOR
00 Background #0 color (register 33 ($21))
01 Upper nybble of video matrix pointer
10 Lower nybble of video matrix pointer

11 Video matrix color nybble



330

MACHINE LANGUAGE FOR COMMODORE MACHINES

Note that the color nybble (DB11-DB8) IS used for the multi-color bit map
mode, again, as two bits are used to select one dot color, the horizontal
dot size is doubled, resulting in a screen resolution of 160H x 200V.
Utilizing multi-color bit map mode, three independently selected colors can
be displayed in each 8 x 8 block in addition to the background color.

Movable Object Blocks

The movable object block (MOB) is a special type of character which can
be displayed at any one position on the screen without the block constraints
inherent in character and bit map mode. Up to 8 unique MOBs can be
displayed simultaneously, each defined by 63 bytes in memory which are
displayed as a 24 x21 dot array (shown below). A number of special
features make MOBs especially suited for video graphics and game ap-
plications.

MOB DISPLAY BLOCK

BYTE BYTE BYTE
00 01 02
03 04 05
57 58 59
60 61 62

Enable

Each MOB can be selectively enabled for display by setting its corre-
sponding enable bit (MnE) to “1” in register 21 ($15). If the MnE bit is
“0,” no MOB operations will occur involving the disabled MOB.

Position

Each MOB is positioned via its X and Y position register (see register
map) with a resolution of 512 horizontal and 256 vertical positions. The
position of a MOB is determined by the upper-left corner of the array. X
locations 23 to 347 ($17-$157) and Y locations 50 to 249 ($32-$F9) are
visible. Since not all available MOB positions are entirely visible on the
screen, MOBs may be moved smoothly on and off the display screen.



APPENDIX | 331

Color

Each MOB has a separate 4-bit register to determine the MOB color. The
two MOB color modes are:

STANDARD MOB (MnMC = 0)

In the standard mode, a “0” bit of MOB data allows any background data
to show through (transparent) and a “1” bit is displayed as the MOB color
determined by the corresponding MOB Color register.

MULTI-COLOR MOB (MnMC = 1)

Each MOB can be individually selected as a multi-color MOB via MnMC
bits in the MOB Multi-color register 28 ($1C). When the MnMC bit is “1,”
the corresponding MOB is displayed in the multi-color mode. In the multi-
color mode, the MOB data is interpreted in pairs (similar to the other multi-
color modes) as follows:

BIT PAIR I COLOR DISPLAYED
00 Transparent
01 MOB Multi-color #0 (register 37 ($25))
10 MOB Color (registers 39—46 ($27-$2E))
11 MOB Multi-color #1 (register 38 ($26))

Since two bits of data are required for each color, the resolution of the
MOB is reduced to 12x 21, with each horizontal dot expanded to twice
standard size so that the overall MOB size does not change. Note that up
to 3 colors can be displayed in each MOB (in addition to transparent) but
that two of the colors are shared among all the MOBs in the multi-color
mode.

Magnification

Each MOB can be selectively expanded (2 x) in both the horizontal and
vertical directions. Two registers contain the control bits (MnXE,MnYE)
for the magnification control:

REGISTER | FUNCTION

23 ($17) Horizontal expand MnXE—"1" = expand;
“0” =normal
29 ($1D) Vertical expand MnYE—"1" =expand; “0” = normal




332

MACHINE LANGUAGE FOR COMMODORE MACHINES

When MOBs are expanded, no increase in resolution is realized. The same
24 x 21 array (12 x 21 if multi-colored) is displayed, but the overall MOB
dimension is doubled in the desired direction (the smallest MOB dot may
be up to 4 x standard dot dimension if a MOB is both multi-colored and
expanded).

Priority

The priority of each MOB may be individually controlled with respect to
the other displayed information from character or bit map modes. The
priority of each MOB is set by the corresponding bit (MnDP) of register
27 ($1B) as follows:

REG BIT PRIORITY TO CHARACTER OR BIT MAP DATA
0 Non-transparent MOB data will be displayed (MOB in
front)
1 Non-transparent MOB data wil be displayed only in-
stead of Bkgd #0 or multi-color bit pair 01 (MOB be-
hind)

MOB—DISPLAY DATA PRIORITY

MnDP = 1 MnDP = 0
MOBn Foreground
Foreground MOBnN

Background Background

MOB data bits of “0” (“00” in multi-color mode) are transparent, always
permitting any other information to be displayed.

The MOBs have a fixed priority with respect to each other, with MOB 0
having the highest priority and MOB 7 the lowest. When MOB data (except
transparent data) of two MOBs are coincident, the data from the lower
number MOB will be displayed. MOB vs. MOB data is prioritized before
priority resolution with character or bit map data.

Collision Detection

Two types of MOB collision (coincidence) are detected, MOB to MOB
collision and MOB to display data collision:

1) A collision between two MOBs occurs when non-transparent output data of
two MOBs are coincident. Coincidence of MOB transparent areas will not
generate a collision. When a collision occurs, the MOB bits (MnM) in the



APPENDIX | 333

MOB-MOB COLLISION register 30 ($1E) will be set to “1” for both colliding
MOBs. As a collision between two (or more) MOBs occurs, the MOB—-MOB
collision bit for each collided MOB will be set. The collision bits remain set
until a read of the collision register, when all bits are automatically cleared.
MOBs collisions are detected even if positioned off-screen.

2) The second type of collision is a MOB—DATA collision between a MOB and
foreground display data from the character or bit map modes. The MOB—
DATA COLLISION register 31 ($1F) has a bit (MnD) for each MOB which
is set to “1” when both the MOB and non-background display data are
coincident. Again, the coincidence of only transparent data does not generate
a collision. For special applications, the display data from the 0—1 multicolor
bit pair also does not cause a collision. This feature permits their use as
background display data without interfering with true MOB collisions. A MOB—
DATA collision can occur off-screen in the horizontal direction if actual display
data has been scrolled to an off-screen position (see scrolling). The MOB-
DATA COLLISION register also automatically clears when read.

The collision interrupt latches are set whenever the first bit of either register
is setto *1.” Once any collision bit within a register is set high, subsequent
collisions will not set the interrupt latch until that collision register has been
cleared to all “0s” by a read.

MOB Memory Access

The data for each MOB is stored in 63 consecutive bytes of memory. Each
block of MOB data is defined by a MOB pointer, located at the end of the
VIDEO MATRIX. Only 1000 bytes of the video matrix are used in the
normal display modes, allowing the video matrix locations 1016—1023 (VM
base + $3F8 to VM base + $3FF) to be used for MOB pointers 0-7, re-
spectively. The eight-bit MOB pointer from the video matrix together with
the six bits from the MOB byte counter (to address 63 bytes) define the
entire 14-bit address field:

A13 | A12 | A11 | A10 | A09 | Aos | A07 | A0s | A0s | A4 | A03 | A2 | Aot | Aco
MP7 | MPs | MP5 | MP4 | MP3 | MP2 | MP1 | MPo | Mcs | Mca [mca [mcz [ Mc1 [mco

Where MPx are the MOB pointer bits from the video matrix and MCx are
the internally generated MOB counter bits. The MOB pointers are read
from the video matrix at the end of every raster line. When the Y position
register of a MOB matches the current raster line count, the actual fetches
of MOB data begin. Internal counters automatically step through the 63
bytes of MOB data, displaying three bytes on each raster line.



334 MACHINE LANGUAGE FOR COMMODORE MACHINES

Other Features

Screen Blanking

The display screen may be blanked by setting the DEN bit in register 17
($11) to a “0.” When the screen is blanked, the entire screen will be filled
with the exterior color as in register 32 ($20). When blanking is active,
only transparent (Phase 1) memory accesses are required, permitting full
processor utilization of the system bus. MOB data, however, will be ac-
cessed if the MOBs are not also disabled. The DEN bit must be set to “1”
for normal video display.

Row/Column Select

The normal display consists of 25 rows of 40 characters (or character
regions) per row. For special display purposes, the display window may
be reduced to 24 rows and 38 characters. There is no change in the format
of the displayed information, except that characters (bits) adjacent to the
exterior border area will now be covered by the border. The select bits
operate as follows:

NUMBER OF NUMBER OF
RSEL ROWS CSEL COLUMNS
0 24 rows ‘ 0 38 columns
1 25 rows 1 40 columns

The RSEL bit is in register 17 ($11) and the CSEL bit is in register 22
($16). For standard display the larger display window is normally used,
while the smaller display window is normally used in conjunction with
scrolling.

Scrolling

The display data may be scrolled up to one entire character space in both
the horizontal and vertical direction. When used in conjunction with the
smaller display window (above), scrolling can be used to create a smooth
panning motion of display data while updating the system memory only
when a new character row (or column) is required. Scrolling is also used
to center a fixed display within the display window.

BTS | REGISTER |  FUNCTION

X2,X1,X0 I 22 ($16) ‘ Horizontal Position
Y2,Y1,Y0 17 ($11) Vertical Position




APPENDIX | 335

Light Pen

The light pen input latches the current screen position into a pair of reg-
isters (LPX,LPY) on a low-going edge. The X position register 19 ($13)
will contain the 8 MSB of the X position at the time of transition. Since the
X position is defined by a 512-state counter (9 bits) resolution to 2 hori-
zontal dots is provided. Similarly, the Y position is latched to its register
20 ($14) but here 8 bits provide single raster resolution within the visible
display. The light pen latch may be triggered only once per frame, and
subsequent triggers within the same frame will have no effect. Therefore,
you must take several samples before turning the light pen to the screen
(8 or more samples, average), depending upon the characteristics of your
light pen.

Raster Register

The raster register is a dual-function register. A read of the raster register
18 ($12) returns the lower 8 bits of the current raster position (the MSB—
RC8is located in register 17 ($11)). The raster register can be interrogated
to implement display changes outside the visible area to prevent display
flicker. The visible display window is from raster 51 through raster 251
($033—$0FB). A write to the raster bits (including RC8) is latched for use
in an internal raster compare. When the current raster matches the written
value, the raster interrupt latch is set.

Interrupt Register

The interrupt register shows the status of the four sources of interrupt. An
interrupt latch in register 25 ($19) is set to “1” when an interrupt source
has generated an interrupt request. The four sources of interrupt are:

LATCH ENABLE
BIT BIT WHEN SET

IRST ERST Set when (raster count) = (stored raster
count)

IMDC EMDC Set by MOB-DATA collision register (first
collision only)

IMMC EMMC Set by MOB-MOB collision register (first
collision only)

ILP ELP Set by negative transition of LP input (once
per frame)

IRQ Set high by latch set and enabled (invert of
IRQ/ output)



336

MACHINE LANGUAGE FOR COMMODORE MACHINES

To enable an interrupt request to set the IRQ/ output to “0,” the corre-
sponding interrupt enable bit in register 26 ($1A) must be set to “1.” Once
an interrupt latch has been set, the latch may be cleared only by writing
a “1” to the desired latch in the interrupt register. This feature allows
selective handling of video interrupts without software required to “re-
member” active interrupts.

Dynamic Ram Refresh

A dynamic ram refresh controller is built into the 6566/6567 devices. Five
8-bit row addresses are refreshed every raster line. This rate guarantees
amaximum delay of 2.02 ms between the refresh of any single row address
in a 128 refresh scheme. (The maximum delay is 3.66 ms in a 256 address
refresh scheme.) This refresh is totally transparent to the system, since
the refresh occurs during Phase 1 of the system clock. The 6567 generates
both RAS/ and CAS/ which are normally connected directly to the dynamic
rams. RAS/ and CAS/ are generated for every Phase 2 and every video
data access (including refresh) so that external clock generation is not
required.

Reset

The reset bit (RES) in register 22 ($16) is not used for normal operation.
Therefore it should be set to “0” when initializing the video chip. When
set to a “1,” the entire operation of the video chip is suspended, including
video outputs and sync, memory refresh, and system bus access.

Theory of Operation

System Interface

The 6566/6567 video controller devices interact with the system data bus
in a special way. A 65XX system requires the system buses only during
the Phase 2 (clock high) portion of the cycle. The 6566/6567 devices take
advantage of this feature by normally accessing system memory during
the Phase 1 (clock low) portion of the clock cycle. Therefore, operations
such as character data fetches and memory refresh are totally transparent
to the processor and do not reduce the processor throughput. The video
chips provide the interface control signals required to maintain this bus
sharing.

The video devices provide the signal AEC (address enable control) which
is used to disable the processor address bus drivers allowing the video
device to access the address bus. AEC is active low which permits direct



APPENDIX | 337

connection to the AEC input of the 65XX family. The AEC signal is normally
activated during Phase 1 so that processor operation is not affected. Be-
cause of this bus “sharing,” all memory accesses must be completed in
2 cycle. Since the video chips provide a 1-MHz clock (which must be
used as system Phase 2), a memory cycle is 500 ns including address
setup, data access and, data setup to the reading device.

Certain operations of the 6566/6567 require data at a faster rate than
available by reading only during the Phase 1 time; specifically, the access
of character pointers from the video matrix and the fetch of MOB data.
Therefore, the processor must be disabled and the data accessed during
the Phase 2 clock. This is accomplished via the BA (bus available) signal.
The BA line is normally high but is brought low during Phase 1 to indicate
that the video chip will require a Phase 2 data access. Three Phase-2
times are allowed after BA low for the processor to complete any current
memory accesses. On the fourth Phase 2 after BA low, the AEC signal
will remain low during Phase 2 as the video chip fetches data. The BA
line is normally connected to the RDY input of a 65XX processor. The
character pointer fetches occur every eighth raster line during the display
window and require 40 consecutive Phase 2 accesses to fetch the video
matrix pointers. The MOB data fetches require 4 memory accesses as

follows:
PHASE | DATA | CONDITION
1 MOB Pointer Every raster
2 MOB Byte 1 Each raster while MOB is displayed
1 MOB Byte 2 Each raster while MOB is displayed
2 MOB Byte 3 Each raster while MOB is displayed

The MOB pointers are fetched every other Phase 1 at the end of each
raster line. As required, the additional cycles-are used for MOB data
fetches. Again, all necessary bus control is provided by the 6566/6567
devices.

Memory Interface

The two versions of the video interface chip, 6566 and 6567, differ in
address output configurations. The 6566 has thirteen fully decoded ad-
dresses for direct connection to the system address bus. The 6567 has
multiplexed addresses for direct connection to 64K dynamic RAMs. The
least significant address bits, AO6-A0Q0, are present on A06-A00 while RAS/
is brought low, while the most significant bits, A13-A08, are present on
A05-A00 while CAS/ is brought low. The pins A11-A07 on the 6567 are



MACHINE LANGUAGE FOR COMMODORE MACHINES

338

idnusu) 8igeu3  1SHI  0gW3I DWWI d13 — — — — (VI$) 92
losibay idnue)  1SHI OGNl DWINI d — — — odl (61$) se
siajuiod Aowspy — 1180 2180 €190 OHNA LHNA  ZHNA  SHAA (81%) e
puedxe-A gOW 3JAON 3IALN  TJASN  3JASW  FAVIN  IASN  JAON  IAZWN (21$) €2
1xe] 995 0X 1X X 73SO  WOWN  S3H — — (919) @2
9Iqeu3 gON JOW  JIN F2N TSN FVIN SN F9N TLW (S1$) 1e
Audd bl O0AdT  IAd1  2AdT  €AdT  PAd1  SAd1  9AdT  ZAd1 (19 o2
Xuad Wb IXd1 2Xd1 €Xd1 PXd1  SXd1  9Xd1 IXd1  8Xd1 (€1$) 61
ls)sibal Jaisey 004 104 2od €04 oM G0d 904 204 (21%) 81
1xe) 999 OA LA 2A 73sd  N3aa  WNg  WO3 8od (11S) /1
uomisod-X JO GSIN  8XOWN 8XLIN  8X2IN 8XEW 8XWIN 8XSIN  8X9N 8XZW (01$) 91
uomsod-A L 4OW  OAZIN  LAZW  2AZN  EAZWN  PAZIN  SAZN  9AZIN  ZAZIN (d0$) SI
uomsod-X L 4O  OXZIN  IXZIN  2XZN  EXZIN  PXZIN  SXZIN  9XZN  ZXZN (30%) i
uomsod-A 9 HOW OA9N  LA9N  ZA9N  EA9N  PYA9IN  SAON  9A9N  ZA9W (ao$) €1
uomsod-X 9 GO  OX9N  IX9N  2SXIN EXIN +X9N  SXIN  9X9N  ZX9N (D0$) 2!
uomsod-A G AOW  OASIN  LASIN  2ASIN  SASIN  PASIN  GASIN  9ASIN  ZASIN (g0$) 11
uomsod-X G HOW OXSN XS 2XSW  EXSIN  PXSIN  SXSIN  9XSIN ZXSW (Vo$) OF
uonisod-A ¥ HOW  OAPIN  LAPIN  ZAPIN  EAPIN  VAVIN  SAVIN  9AVIN  ZAVIN (60$) 60
uomisod-X ¥ HOW  OXPIN  IXPIN  2XPIN  EXPIN  vXPIN  SXPIN  9XPIN  ZXPIN (80%) 80
uonisod-A € HOW  OASN  LAEN  2ZAEN  EAEN  VASIW  SAEIN  9AEW  ZASW (20$) 20
uonisod-X € IO OXEW  IXEW 2SXEW EXEN  PXEW GSXEW OXEW  ZXEW (90$) 90
uomsod-A 2 9OWN  OASWN  LASN  2ASN  EASN VAN SAZN  9A2N  ZA2W (S0$) SO
uonisod-X 2 HOW OX2WN IXSN 2X2N EXSN XN SX2N  9XeW  ZX2W (¥0$) +0
uomsod-A | O OALN AL 2ALN  EALIN  PALIN  SALHN  9ALN  ZAMN (e0$) €0
uomsod-X | O OXHAN  IXEN  2XHA  EXIWN  PXLIN SXLN  9XEWN  ZXHN (20%) 20
uopisod-A 0 OW OAOWN  LAOWN ZAON EAOWN YAOWN SAOWN  9AON  ZAOW (10$) 1O
uomsod-X 0 HOW OXON  IXON 2XON E€XOW  PXOW SXOW 9XOW  ZXOW (00$) 00
NOILdIHOS3a  o0gda 8@ 280 ¢€89a ¥8@ S€Ad 984 l84a SS3yHaav

dVIN H31S1934




339

APPENDIX |

.}, & Se peal ale Sj08UU0d OU |jy "}08ULOD Ou B Sajedipul Ysep ¥ :JLON

10100 2 dON
10[0D 9 G0N
10/0D S OW
10100 ¥ GO
10100 € aON
10100 2 9O
10/09 | GO
10109 0 GON

L# 10j00BININ GOW
0# Joj0onINN GOW
10j0D £# pbyg
10j0D g# pbyg
10109 |# pbyg
10100 0# pbyg
J0j0D JouBIX]
uoisi|09 V1va-9a0nW
uoisjio) GOW-g0N
puedxa-X 4ON

[os Joj0onINAl GO
Awoud v1va-aon

00LN
009N
00SN
0OvN
00EN
00ciN
00IN
000N
OLAW
OO
00¢€d
00¢cg
00149
00049
003
aonw
WOW
IXON
OWON
dAaon

FOLN
LO9N
LOSW
LOVYIN
LOEW
LO2N
1OLN
LOOW
AN
LONN
10€d
20742
1oLga
1004
103
atn
WILN
IXIN
ONLIN
dain

¢OLN
CO9N
c¢OS
40174}
¢OEN
¢OciN
¢OIN
¢O0N
¢HAN
¢ONIN
¢oged
¢Ocd
cold
co0d
(4oL
acn
WZN
IXN
OWCN
ddciN

€OLN
€09
€OSN
1014}
€O0EN
€0ciN
€O
€00
ELAN
EONN
£€0¢gd
€0cd
€olg
€004
€03
asn
WEW
IXEN
OWEN
dden

(329)
(az$)
(02%)
(ge$)
(ves)
(629%)
(829)
(22%)
(92%)
(Ge$)
(¥e$)
(e29)
(ce$)
(129$)
(02%)
(d19)
319%)
(arg)
(01%)
(arg)

14
Sy
v
1594
ey
374
ov
6¢
8¢
LE
o¢
se
ve
€e
4
e
oe
6¢
8¢
e




340 MACHINE LANGUAGE FOR COMMODORE MACHINES

COLOR CODES
DO HEX | DEC | COLOR

(=}
H
O
(%)
O
ot

0 0 0 0 0 0 BLACK

0 0 0 1 1 1 WHITE

0 0 1 0 2 2 RED

0 0 1 1 3 3 CYAN

0 1 0 0 4 4 PURPLE

0 1 0 1 5 5 GREEN

0 1 1 0 6 6 BLUE

0 1 1 1 7 7 YELLOW

1 0 0 0 8 8 ORANGE

1 0 0 1 9 9 BROWN

1 0 1 0 A 10 LT RED

1 0 1 1 B 11 DARK GRAY
1 1 0 0 C 12 MED GRAY
1 1 0 1 D 13 LT GREEN
1 1 1 0 E 14 LT BLUE

1 1 1 1 F 15 LT GRAY

static address outputs to allow direct connection of these bits to a con-
ventional 16K (2K x 8) ROM. (The lower order addresses require external
latching.)

6581 Sound Interface Device (SID) Chip
Specifications
Concept

The 6581 Sound Interface Device (SID) is a single-chip, 3-voice electronic
music synthesizer/sound effects generator compatible with the 65XX and
similar microprocessor families. SID provides wide-range, high-resolution
control of pitch (frequency), tone color (harmonic content), and dynamics
(volume). Specialized control circuitry minimizes software overhead, fa-
cilitating use in arcade/home video games and low-cost musical instru-
ments.

Features

e 3 TONE OSCILLATORS
Range: 0—4 kHz



APPENDIX | 341

® 4 WAVEFORMS PER OSCILLATOR
Triangle, Sawtooth,
Variable Pulse, Noise

e 3 AMPLITUDE MODULATORS
Range: 48 dB

o 3 ENVELOPE GENERATORS
Exponential response
Attack Rate: 2 ms—8 s
Decay Rate: 6 ms—24 s
Sustain Level: 0—peak volume

Release Rate: 6 ms—24 s
® OSCILLATOR SYNCHRONIZATION

e RING MODULATION

Description

The 6581 consists of three synthesizer “voices” which can be used in-
dependently or in conjunction with each other (or external audio sources)
to create complex sounds. Each voice consists of a Tone Oscillator/Wave-
form Generator, an Envelope Generator and an Amplitude Modulator. The
Tone Oscillator controls the pitch of the voice over a wide range. The
Oscillator produces four waveforms at the selected frequency, with the
unigue harmonic content of each waveform providing simple control of
tone color. The volume dynamics of the oscillator are controlled by the
Amplitude Modulator under the direction of the Envelope Generator. When
triggered, the Envelope Generator creates an amplitude envelope with
programmable rates of increasing and decreasing volume. In addition to
the three voices, a programmable Filter is provided for generating complex,
dynamic tone colors via subtractive synthesis.

SIS allows the microprocessor to read the changing output of the third
Oscillator and third Envelope Generator. These outputs can be used as
a source of modulation information for creating vibrator, frequency/filter
sweeps and similar effects. The third oscillator can also act as a random
number generator for games. Two A/D converters are provided for inter-
facing SID with potentiometers. These can be used for “paddles” in a
game environment or as front panel controls in a music synthesizer. SID
can process external audio signals, allowing multiple SID chips to be daisy-
chained or mixed in complex polyphonic systems.



342 MACHINE LANGUAGE FOR COMMODORE MACHINES

SID Control Registers

There are 29 eight-bit registers in SID which control the generation of
sound. These registers are either WRITE-only or READ-only and are listed
below in Table 1.

SID Register Description

Voice 1
FREQ LO/FREQ HI (Registers 00,01)

Together these registers form a 16-bit number which linearly controls the
frequency of Oscillator 1. The frequency is determined by the following
equation:

Fout = (Fn X Fclk/1 6777216) Hz

Where F, is the 16-bit number in the Frequency registers and F is the
system clock applied to the ¢$2 input (pin 6). For a standard 1.0-MHz clock,
the frequency is given by:

Fout = (Fn X 0.059604645) Hz

A complete table of values for generating 8 octaves of the equally tempered
musical scale with concert A (440 Hz) tuning is provided in Appendix E.
It should be noted that the frequency resolution of SID is sufficient for any
tuning scale and allows sweeping from note to note (portamento) with no
discernable frequency steps.

PW LO/PW HI (Registers 02,03)

Together these registers form a 12-bit number (bits 4—7 of PW HI are not
used) which linearly controls the Pulse Width (duty cycle) of the Pulse
waveform on Oscillator 1. The pulse width is determined by the following
equation:

PW,, = (PW,/40.95)%

Where PW, is the 12-bit number in the Pulse Width registers.

The pulse width resolution allows the width to be smoothly swept with no
discernable stepping. Note that the Pulse waveform on Oscillator 1 must
be selected in order for the Pulse Width registers to have any audible



343

APPENDIX |

ATINO-ILIHM
AINO-3LIUM

ATINO-3ILIHM
AINO-3LIHM
ATINO-3LIHM
ATINO-3LIEM
ATINO-3LIHM

ATINO-3LIHM
ATINO-3LIHM

ATINO-3LIHM
ATINO-3LIHM
ATINO-3LIEM
AINO-3LIEM
ATINO-3LIHM

ATINO-ILIHM
ATINO-3L1IHM

ATINO-3ILIHM
ATINO-3LIHM
AINO-3LIHM
ATINO-3LIHM
AINO-3LiHM

3dAL
o3d

JSVIIIHUNIVISNS
AVO3AMOVLLY

934 TOHLINOD
IH Md

O Md

IH D344
010344

€ 8010A

3SVINIU/NIVISNS
AVO3ANMOV.LLY

934 TOHINOD
IH Md

0T Md

IH 0344

01 03ud

T 8JJ0A

ISYIT3UNIVLISNS
AVO3aMOVLLY

934 TOHLNOD
IHMd

OTMd

IH 0344
010344

1 @JI0A
JNVN O3

0sH 'sTd s €S ONLS INLS NS ENLS
Deld] 'A0a | 2A0Q €A0Q oMLY Ly By oY
aow 1
31VO | ONAS | SNH ls3al w _\#\ 3SION
8Md md Otmd ‘tmd - - - -
omd ‘Md ZMd EMd YMd Smd IMd ‘Md
84 64 Ot4 ] [{¥] €hy LX) Sty
04 4 %4 €4 ¥4 54 94 4
os sy s L] ONLS INLS NS ENLS
%A0a 'A0Q | 2A0Q | EAOG o1y 1Y iy oY
QoW migh
31v9 | ONAS | ONH 1s3al w —\#\ 3SION
SMd SMd | Omd | ‘md — - - -
Omd ‘Md Zmd €Md YMd SMd IMd imd
84 64 (] Ly cly €y Py Siy4
04 4 =] €4 v S 94 44
0s7d | 'sTH | %W | fSTH | ONIS | 'NLS [ eNIS | ©NIS
0A0a 'ADQ | %A0a | €AOQ oMLY v i1y oIV
aow
3LvO | ONAS | ONIH 1s3l </\ _\#\ uy 3SION
SMd Smd Otmd Himd - - ot —
OMmd ‘md md | tmd YMd Smd IMd imd
84 64 oLy (L] 24 ey vig Skg
04 bq 24 €4 vq S4 94 44
°a ‘a ta ta va sa %a ‘a

143
€l

(43

0l
40
30

ao
20

a0
vo
60

0

90
S0

8§83

[Vel)]
# 934

-

© -~ © - O

(=]

- - O v O =~

& ©o~- o ~o

o L o
L o0 o
L o0 o
o o o
0o o o
3 3 3
oL
0 3 3
o L
3 0 3
3 o 3
0o o0
0o 0
L1 oo
L1 oo
o + o
o L o
L o0 o
b o0 o
0o o0 o
0o o0 o
v 2y oy
ssauaav

[=] © © o oo © © O r =

(=]

d © o o oo

61

8L
L
9l
St
143

€l
ct

33
oL

wn

o - N O %



MACHINE LANGUAGE FOR COMMODORE MACHINES

344

AINO-QV3H
AINO-QvaH
AINO-Qv3aH
AINO-Qv3Y

ATNO-3LIEM
ATINO-3LIIM
ATINO-3LIHM
ATINO-3LIHM

EAN3
WOANVH/£0sOoe
A LOd

X 10d

‘I8N

TON3AON
1714/834
IHOd
0104

o414

03 ] 23 €3 v3 s3 93 i3
% o o) o) (o) S0 % 0
OAd 'Ad eAd €Ad YAd SAd 9Ad LAd
0xd 'Xd exd exd vXd SXd 9%d IXd
O0A | YIOA | Z10A | €l0A d1 dg dH 440 €
LIS | 204 | €174 [ X314 | %3y | 's3ay | 2s3y | Ssay
€04 ¥o4 S04 904 204 804 604 (Y]
004 104 204 - - — — —

Ol
at
vi
6l

8t
Ll
9l
Sl

- O - O

- O - ©

© v~ - O

© v ~ O

¢'l aanbig

© © O =~

- - - 0

- - - -

© © O «

- - - -

- -

L
92

e
€e

e



APPENDIX | 345

effect. A value of 0 or 4095 ($FFF) in the Pulse Width registers will produce
a constant DC output, while a value of 2048 ($800) will produce a square
wave.

CONTROL REGISTER (Register 04)

This register contains eight control bits which select various options on
Oscillator 1.

Gate (Bit 0): The GATE bit controls the Envelope Generator for Voice 1.
When this bit is set to a one, the Envelope Generator is Gated (triggered)
and the ATTACK/DECAY/SUSTAIN cycle is initiated. When the bit is reset
to a zero, the RELEASE cycle begins. The Envelope Generator controls
the amplitude of Oscillator 1 appearing at the audio output, therefore, the
GATE bit must be set (along with suitable envelope parameters) for the
selected output of Oscillator 1 to be audible. A detailed discussion of the
Envelope Generator can be found at the end of this Appendix.

SYNC (Bit 1): The SYNC bit, when set to a one, synchronizes the fun-
damental frequency of Oscillator 1 with the fundamental frequency of
Oscillator 3, producing “Hard Sync” effects.

Varying the frequency of Oscillator 1 with respect to Oscillator 3 produces
a wide range of complex harmonic structures from Voice 1 at the frequency
of Oscillator 3. In order for sync to occur, Oscillator 3 must be set to some
frequency other than zero but preferably lower than the frequency of
Oscillator 1. No other parameters of Voice 3 have any effect on sync.

RING MOD (Bit 2): The RING MOD bit, when set to a one, replaces the
Triangle waveform output of Oscillator 1 with a “Ring Modulated” com-
bination of Oscillators 1 and 3. Varying the frequency of Oscillator 1 with
respect to Oscillator 3 produces a wide range of non-harmonic overtone
structures for creating bell or gong sounds and for special effects. In order
for ring modulation to be audible, the Triangle waveform of Oscillator 1
must be selected and Oscillator 3 must be set to some frequency other
than zero. No other parameters of Voice 3 have any effect on ring mod-
ulation.

TEST (Bit 3): The TEST bit, when set to a one, resets and locks Oscillator 1
at zero until the TEST bit is cleared. The Noise waveform output of Oscillator 1
is also reset and the Pulse waveform output is held at a DC level. Normally
this bit is used for testing purposes, however, it can be used to synchronize
Oscillator 1 to external events, allowing the generation of highly complex
waveforms under real-time software control.



346

MACHINE LANGUAGE FOR COMMODORE MACHINES

(Bit 4): When set to a one, the Triangle waveform output of Oscillator 1
is selected. The Triangle waveform is low in harmonics and has a mellow,
flute-like quality.

(Bit 5): When set to a one, the Pulse waveform output of Oscillator 1 is
selected. The Sawtooth waveform is rich in even and odd harmonics and
has a bright, brassy quality.

(Bit 6): When set to a one, the Pulse waveform of Oscillator 1 is selected.
The harmonic content of this waveform can be adjusted by the Pulse
Width registers, producing tone qualities ranging from a bright, hollow
square wave to a nasal, reedy pulse. Sweeping the pulse width in real-
time produces a dynamic “phasing” effect which adds a sense of motion
to the sound. Rapidly jumping between different pulse widths can produce
interesting harmonic sequences.

NOISE (Bit 7): When set to a one, the Noise output waveform of Oscillator 1
is selected. This output is a random signal which changes at the frequency
of Oscillator 1. The sound quality can be varied from a low rumbling to
hissing white noise via the Oscillator 1 Frequency registers. Noise is useful
in creating explosions, gunshots, jet engines, wind, surf and other un-
pitched sounds, as well as snare drums and cymbals. Sweeping the os-
cillator frequency with Noise selected produces a dramatic rushing effect.

One of the output waveforms must be selected for Oscillator 1 to be au-
dible, however, it is NOT necessary to de-select waveforms to silence the
output of Voice 1. The amplitude of Voice 1 at the final output is a function
of the Envelope Generator only.

NOTE: The oscillator output waveforms are NOT additive. If more
than one output waveform is selected simultaneously, the result will
be a logical ANDing of the waveforms. Although this technique can
be used to generate additional waveforms beyond the four listed
above, it must be used with care. If any other waveform is selected
while Noise is on, the Noise output can “lock up.” If this occurs, the
Noise output will remain silent until reset by the TEST bit or by
bringing RES (pin 5) low.

ATTACK/DECAY (Register 05)

Bits 4-7 of this register (ATKO—ATKS) select 1 of 16 ATTACK rates for
the Voice 1 Envelope Generator. The ATTACK rate determines how rapidly
the output of Voice 1 rises from zero to peak amplitude when the Envelope
Generator is Gated. The 16 ATTACK rates are listed in Table 2.



APPENDIX |

347

Bits 0-3 (DCY0—DCY3) select 1 of 16 DECAY rates for the Envelope
Generator. The DECAY cycle follows the ATTACK cycle and the DECAY
rate determines how rapidly the output falls from the peak amplitude to
the selected SUSTAIN level. The 16 DECAY rates are listed in Table 2.

SUSTAIN/RELEASE (Register 06)

Bits 4—7 of this register (STNO—STN3) select 1 of 16 SUSTAIN levels
for the Envelope Generator. The SUSTAIN cycle follows the DECAY cycle
and the output of Voice 1 will remain at the selected SUSTAIN amplitude
as long as the Gate bit remains set. The SUSTAIN levels range from zero

Table 2. Envelope Rates

VALUE ATTACK RATE DECAY/RELEASE
RATE
DEC (HEX) (Time/Cycle) (Time/Cycle)
0 (0) 2ms 6 ms
1 (1) 8 ms 24 ms
2 (2 16 ms 48 ms
3 (3) 24 ms 72 ms
4 (4) 38 ms 114 ms
5 (5) 56 ms 168 ms
6 (6) 68 ms 204 ms
7 (7) 80 ms 240 ms
8 (8) 100 ms 300 ms
9 (9 250 ms 750 ms
10 (A) 500 ms 15s
11 (B) 800 ms 24s
12 (C) 1s 3s
13 (D) 3s 9s
14 (E) 5s 15s
15 (F) 8s 24s
NOTE: Envelope rates are based on a 1.0-MHz ¢2 clock. For other
$2 frequencies, multiply the given rate by 1 MHz/¢2. The rates refer
to the amount of time per cycle. For example, given an ATTACK
value of 2, the ATTACK cycle would take 16 ms to rise from zero to
peak amplitude. The DECAY/RELEASE rates refer to the amount of
time these cycles would take to fall from peak amplitude to zero.




348 MACHINE LANGUAGE FOR COMMODORE MACHINES

to peak amplitude in 16 linear steps, with a SUSTAIN value of 0 selecting
zero amplitude and a SUSTAIN value of 15 ($F) selecting the peak am-
plitude. A SUSTAIN value of 8 would cause Voice 1 to SUSTAIN at an
amplitude one-half the peak amplitude reached by the ATTACK cycle.

Bits 0—3 (RLS0-RLS3) select 1 of 16 RELEASE rates for the Envelope
Generator. The RELEASE cycle follows the SUSTAIN cycle when the
Gate bit is reset to zero. At this time, the output of Voice 1 will fall from
the SUSTAIN amplitude to zero amplitude at the selected RELEASE rate.
The 16 RELEASE rates are identical to the DECAY rates.

NOTE: The cycling of the Envelope Generator can be altered at any
point via the Gate bit. The Envelope Generator can be Gated and
Released without restriction. For example, if the Gate bit is reset
before the envelope has finished the ATTACK cycle, the RELEASE
cycle will immediately begin, starting from whatever amplitude had
been reached. If the envelope is then gated again (before the RE-
LEASE cycle has reached zero amplitude), another ATTACK cycle
will begin, starting from whatever amplitude had been reached. This
technique can be used to generate complex amplitude envelopes
via real-time software control.

Voice 2

Registers 07—$0D control Voice 2 and are functionally identical to registers
00-06 with these exceptions:

1) When selected, SYNC synchronizes Oscillator 2 with Oscillator 1.

2) When selected, RING MOD replaces the Triangle output of Oscillator 2 with
the ring modulated combination of Oscillators 2 and 1.

Voice 3

Registers $0E—-$14 control Voice 3 and are functionally identical to reg-
isters 00—06 with these exceptions:

1) When selected, SYNC synchronizes Oscillator 3 with Oscillator 2.

2) When selected, RING MOD replaces the Triangle output of Oscillator 3 with
the ring modulated combination of Oscillators 3 and 2.

Typical operation of a voice consists of selecting the desired parameters:
frequency, waveform, effects (SYNC, RING MOD) and envelope rates,
then gating the voice whenever the sound is desired. The sound can be
sustained for any length of time and terminated by clearing the Gate bit.



APPENDIX | 349

Each voice can be used separately, with independent parameters and
gating, or in unison to create a single, powerful voice. When used in unison,
a slight detuning of each oscillator or tuning to musical intervals creates
a rich, animated sound.

Filter

FC LO/FC HI (Registers $15,516)

Together these registers form an 11-bit number (bits 3—7 of FC LO are
not used) which linearly controls the Cutoff (or Center) Frequency of the
programmable Filter. The approximate Cutoff Frequency ranges from 30
Hz to 12 KHz.

RES/FILT (Register $17)

Bits 4-7 of this register (RESO0—RES3) control the resonance of the filter.
Resonance is a peaking effect which emphasizes frequency components
at the Cutoff Frequency of the Filter, causing a sharper sound. There are
16 resonance settings ranging linearly from no resonance (0) to maximum
resonance (15 or $F). Bits 0—-3 determine which signals will be routed
through the Filter:

FILT 1 (Bit 0): When set to a zero, Voice 1 appears directly at the audio
output and the Filter has no effect on it. When set to a one, Voice 1 will
be processed through the Filter and the harmonic content of Voice 1 will
be altered according to the selected Filter parameters.

FILT 2 (Bit 1): Same as bit O for Voice 2.

FILT 3 (Bit 2): Same as bit 0 for Voice 3.

FILTEX (Bit 3): Same as bit 0 for External audio input (pin 26).
MODE VOL (Register $18)

Bits 4—7 of this register select various Filter mode and output options:

LP (Bit 4): When set to a one, the Low-Pass output of the Filter is selected
and sent to the audio output. For a given Filter input signal, all frequency
components below the Filter Cutoff Frequency are passed unaltered, while
all frequency components above the Cutoff are attenuated at a rate of 12
dB/Octave. The Low-Pass mode produces full-bodied sounds.

BP (Bit 5): Same as bit 4 for the Bandpass output. All frequency com-
ponents above and below the Cutoff are attenuated at a rate of 6 dB/
Octave. The Bandpass mode produces thin, open sounds.



350

MACHINE LANGUAGE FOR COMMODORE MACHINES

HP (Bit 6): Same as bit 4 for the High-Pass output. All frequency com-
ponents above the Cutoff are passed unaltered, while all frequency com-
ponents below the Cutoff are attenuated at a rate of 12 dB/Octave. The
High-Pass mode produces tinny, buzzy sounds.

3 OFF (Bit 7): When set to a one, the output of voice 3 is disconnected
from the direct audio path. Setting Voice 3 to bypass the Filter (FILT 3 =
0) and setting 3 OFF to a one prevents Voice 3 from reaching the audio
output. This allows Voice 3 to be used for modulation purposes without
any undesirable output.

NOTE: The Filter output modes ARE additive and multiple Filter
modes may be selected simultaneously. For example, both LP and
HP modes can be selected to produce a Notch (or Band Reject)
Filter response. In order for the Filter to have any audible effect, at
least one Filter output must be selected and at least one Voice must
be routed through the Filter. The Filter is, perhaps, the most important
element in SID as it allows the generation of complex tone colors
via subtractive synthesis (the Filter is used to eliminate specific fre-
quency components from a harmonically rich input signal). The best
results are achieved by varying the Cutoff Frequency in real-time.

Bits 0-3 (VOLO-VOL3) select 1 of 16 overall Volume levels for the final
composite audio output. The output volume levels range from no output
(0) to maximum volume (15 or $F) in 16 linear steps. This control can be
used as a static volume control for balancing levels in multi-chip systems
or for creating dynamic volume effects, such as Tremolo. Some Volume
level other than zero must be selected in order for SID to produce any
sound.

Miscellaneous

POTX (Register $19)

This register allows the microprocessor to read the position of the poten-
tiometer tied to POTX (pin 24), with values ranging from 0 at minimum
resistance, to 255 ($FF) at maximum resistance. The value is always valid
and is updated every 512 ¢2 clock cycles. See the Pin Description section
for information on pot and capacitor values.

POTY (Register $1A)
Same as POTX for the pot tied to POTY (pin 23).



APPENDIX | : 351

OSC 3/RANDOM (Register $1B)

This register allows the microprocessor to read the upper 8 output bits of
Oscillator 3. The character of the numbers generated is directly related to
the waveform selected. If the Sawtooth waveform of Oscillator 3 is se-
lected, this register will present a series of numbers incrementing from 0
to 255 ($FF) at a rate determined by the frequency of Oscillator 3. If the
Triangle waveform is selected, the output will increment from 0 up to 255,
then decrement down to 0. If the Pulse waveform is selected, the output
will jump between 0 and 255. Selecting the Noise waveform will produce
a series of random numbers, therefore, this register can be used as a
random number generator for games. There are numerous timing and
sequencing applications for the OSC 3 register, however, the chief function
is probably that of a modulation generator. The numbers generated by
this register can be added, via software, to the Oscillator or Filter Fre-
quency registers or the Pulse Width registers in real-time. Many dynamic
effects can be generated in this manner. Siren-like sounds can be created
by adding the OSC 3 Sawtooth output to the frequency control of another
oscillator. Synthesizer “Sample and Hold” effects can be produced by
adding the OSC 3 Noise output to the Filter Frequency control registers.
Vibrato can be produced by setting Oscillator 3 to a frequency around
7 Hz and adding the OSC 3 Triangle output (with proper scaling) to the
Frequency control of another oscillator. An unlimited range of effects are
available by altering the frequency of Oscillator 3 and scaling the OSC 3
output. Normally, when Oscillator 3 is used for modulation, the audio output
of Voice 3 should be eliminated (3 OFF = 1).

ENV 3 (Register $1C)

Same as OSC 3, but this register allows the microprocessor to read the
output of the Voice 3 Envelope Generator. This output can be added to
the Filter Frequency to produce harmonic envelopes, WAH-WAH, and
similar effects. “Phaser” sounds can be created by adding this output to
the frequency control registers of an oscillator. The Voice 3 Envelope
Generator must be Gated in order to produce any output from this register.
The OSC 3 register, however, always reflects the changing output of the
oscillator and is not affected in any way by the Envelope Generator.



352

MACHINE LANGUAGE FOR COMMODORE MACHINES

6525 Tri-Port Interface

Concept

The 6525 TRI-PORT Interface (TPI) is designed to simplify the imple-
mentation of complex I/O operations in microcomputer systems. It com-
bines two dedicated 8-bit I/O ports with a third 8-bit port programmable
for either normal 1/0 operations or priority interrupt/handshaking control.
Depending on the mode selected, the 6525 can provide 24 individually
programmable 1/O lines or 16 I/O lines, 2 handshake lines and 5 priority

interrupt inputs.

6525 Addressing

6525 REGISTERS/(Direct Addressing)

*000
001
010
011
100
101
110
111

RO
R1
R2
R3
R4
R5
R6
R7

PRA—Port Register A

PRB—Port Register B

PRC—Port Register C

DDRA—Data Direction Register A

DDRB—Data Direction Register B

DDRC—Data Direction Register C/Interrupt Mask Register
CR—Control Register

AIR—Active Interrupt Register

*NOTE: RS2, RS1, RSO respectively

6525 Control Registers

CR
AIR
DDRC

When MC = 1

PRC

When MC = 1

CB, | CB, | CA, | CA, | IE, | IE5 | IP | MC

CB|CA[IRQ| Iy |Ig| 1| 14| 1o

CA, CB Functional Description

The CA, CB lines are outputs used in the same fashion as the CA, and
CB, output of the 6520.



APPENDIX | 353

CA Output Modes
CA; CA, MODE DESCRIPTION
0 0 “Handshake” CA is set high on an active transition of the I3
on Read interrupt input signal and set low by a micropro-

cessor “Read A Data” operation. This allows
positive control of data transfers from the pe-
ripheral device to the microprocessor.

0 1 Pulse Output  CA goes low for IMS after a “Read A Data” op-
eration. This pulse can be used to signal the
peripheral device that data was taken.

1 0 Manual CA set low.
Output

1 1 Manual CA set high.
Output

CB Output Modes

CB, CByp MODE DESCRIPTION
0 0 “Handshake” CB is set low on microprocessor “Write B Data”
on Write operation and is set high by an active transition

of the |, interrupt input signal. This allows positive
control of data transfers from the microprocessor
to the peripheral device. :

0 1 Puise Output  CB goes low for IMS after a microprocessor “Write
B Data” operation. This can be used to signal
the peripheral device that data is available.

1 0 Manual CB set low.
Output

1 1 Manual CB set high.
Output

INTERRUPT MASK REGISTER DESCRIPTION

When the Interrupt Mode is selected (MC = 1), the Data Direction Register
for Port C (DDRC) is used to enable or disable a corresponding interrupt
input. For example: If Mg = O then | is disabled and any |, interrupt latched
in the interrupt latch register will not be transferred to the AIR and will not
cause IRQ to go low. The interrupt latch can be cleared by writing a zero
to the appropriate | bit in PRC.



354 MACHINE LANGUAGE FOR COMMODORE MACHINES

PORT REGISTER C DESCRIPTION

Port Register C (PRC) can operate in two modes. The mode is controlled
by bit MC in register CR. When MC = 0, PRC is a standard /O port,
operating identically to PRA & PRB. If MC = 1, then port register C is
used for handshaking and priority interrupt input and output.

PRC When MC = 0:

PC; | PC¢ | PCs | PC, | PC; | PC, | PC, | PC,

PRC When MC = 1:
CB|CA|IRQ | I, | I3 I ly lo

INTERRUPT EDGE CONTROL

Bits IE, and IE; in the control register (CR) are used to determine the
active edge which will be recognized by the interrupt latch.

If IE4 (IE3) = O then I, (I3) latch will be set on a negative transition of |,
(13) input.

If IE4 (IE3) = 1 then I, (I3) latch will be set on a positive transition of the
I, (I3) input.

All other interrupt latches (I, |4, lp) are set on a negative transition of the
corresponding interrupt input.

Interrupt Latch Register
Clears on Read of AIR Using Following
R PO I PP R PR I Equation

ILR < ILR @ AIR

Active Interrupt Register
Ay | Az | As | Ay | A Clears on Write to AIR

Interrupt Priority Select
P IP = 0 No Priority

IP = 1 Interrupts Prioritized



APPENDIX | 355

FUNCTIONAL DESCRIPTION

1. IP = 0 No Priority

All interrupt information latched into interrupt latch register (ILR) is im-
mediately transferred into active interrupt register (AIR) and IRQ is pulled
low. Upon read of interrupt the IRQ is reset high and the appropriate bit(s)
of the interrupt latch register is cleared by exclusive OR-ing. The ILR with
AIR (ILR@AIR). After the appropriate interrupt request has been serviced
a Write to the AIR will clear it and initiate a new interrupt sequence if any
interrupts were received during previous interrupt servicing. In this non-
prioritized mode it is possible for two or more interrupts to occur simul-
taneously and be transferred to the AIR. If this occurs it is a software effort
to recognize this and act accordingly.

2. IP = 1 Interrupts Prioritized

In this mode the Interrupt Inputs are prioritized in the following order I, >

In this mode only one bit of the AIR can be set at any one time. If an
interrupt occurs it is latched into the interrupt latch register, the IRQ line
is pulled low and the appropriate bit of the AIR is set. To understand fully
the operation of the priority interrupts it is easiest to consider the following
examples.

A. The first case is the simplest. A single interrupt occurs and the pro-
cessor can service it completely before another interrupt request is
received.

Interrupt 1, is received.

Bit I, is set high in Interrupt Latch Register.

IRQ is pulled low.

A, is set high. .

Processor recognizes IRQ and reads AIR to determine which in-

terrupt occurred.

Bit 1, is reset and IRQ is reset to high.

Processor Services Interrupt and signals completion of Service

routine by writing to AIR.

8. A, is reset low and interrupt sequence is complete.

aorOD =

No

B. The second case occurs when an interrupt has been received and a
higher priority interrupt occurs. (See Note)
1. Interrupt |, is received.
2. Bit I, is set high on the Interrupt Latch Register.
3. IRQ is pulled low and A, is set high.



356

MACHINE LANGUAGE FOR COMMODORE MACHINES

4. Processor recognizes IRQ and reads AIR to determine which
interrupt occurred.

5. Bit |, is reset and IRQ is reset high.

6. Processor begins servicing | interrupt and the |, interrupt is re-
ceived. .

7. A, is set, A, is reset low and IRQ is pulled low.

8. Processor has not yet completed servicing |, interrupt so this
routine will be automatically stacked in 6500 stack queue when
new IRQ for |, of interrupt is received.

9. Processor reads AIR to determine |, interrupt occurrence and bit
I, of interrupt latch is reset.

10. Processor services |, interrupt, clears A, by writing AIR and re-
turns from interrupt. Returning from interrupt causes 650X pro-
cessor to resume servicing |, interrupt.

11. Upon clearing A, bit in AIR, the A; bit will not be restored to a
one. Internal circuitry will prevent a lower priority interrupt from
interrupting the resumed |,.

The third case occurs when an interrupt has been received and a

lower priority interrupt occurs.

1. Interrupt I, is received and latched.

2. IRQ is pulled low and A, is set high.

3. Processor recognizes IRQ and reads AIR to determine that |, in-
terrupt occurred.

4. Processor logic servicing |, interrupt during which |, interrupt oc-
curs and is latched.

5. Upon completion of |, interrupt routine the processor writes AIR
to clear A, to signal 6525 that interrupt service is complete.

6. Latch |, interrupt is transferred to AIR and IRQ is pulled low to
begin new interrupt sequence.

NOTE: It was indicated that the 6525 will maintain Priority Interrupt
information from previously serviced interrupts.

This is achieved by the use of an Interrupt Stack. This stack is pushed
whenever a read of AIR occurs and is pulled whenever a write to
AIR occurs. It is therefore important not to perform any extraneous
reads or writes to AIR since this will cause extra and unwanted stack
operations to occur.

The only time a read of AIR should occur is to respond to an interrupt
request.

The only time a write of AIR should occur is to signal the 6525 that
the interrupt service is complete.




Disk User’s
Guide

The optional disk holds programs supplementary to the book. The pro-
grams are as follows:

SUPERMON1 (for original ROM PET computers)
SUPERMONZ (for upgrade ROM PET/CBM computers)
SUPERMON4 (for 4.0 PET/CBM computers)
SUPERMON. V (for VIC-20 computers)
SUPERMONGE4 (for Commodore 64 computers)
SUPERMON INST(instructions, BASIC)
SUPERMON +PET (for upgrade and 4.0 PET/CBM)
SUPERMON + VIC (for VIC-20 computers)
SUPERMON + B4 (for Commodore 64 computers)
SUPERMON + INST (instructions, Basic)
UNICOPYE4 (for Commodore 64)

UNICOPY INST (instructions, BASIC)

UNICOPY LIST (BASIC, all machines)
JUNICOPY ASSY (data file for UNICOPY LIST)
COPY - ALL (for PET/CBM)

COPY-ALL.E4 (for Commodore 64)

CROSS REF (for PET/CBM)

CROSS REF k4 (for Commodore 64)

CROSS REF 128 (for Commodore 128)
FACTORS (for PET/CBM)

357



358

MACHINE LANGUAGE FOR COMMODORE MACHINES

FACTORS VE4 (for VIC-20, Commodore 64, and Plus-4)
FACTORS 128 (for Commodore 128)

PENTOMINOS INST (instructions)

PENTOMINOS (BASIC, all machines)

PENTOMINOS PET (for PET/CBM)

PENTOMINOS VE4 (for VIC-20, Commodore 64, and Plus-4)
PENTOMINOS 128 (for Commodore 128)

PENTOMINOS B1l28 (boot for B128 system)
+PENTOL28 (program for B128)

+ XFER (transfer sequence for B128)

STRING THING (BASIC, for PET/CBM)

STRING THING V&4 (BASIC, for VIC-20, Commodore 64)
STRING THING 128 (for Commodore 128)

JSAMPLE FILE (for use with STRING THING)

These programs are public domain, and may be obtained from user groups.
They are available here for user convenience.

The following notes may be useful in using or studying the programs.

SUPERMON1 (for original ROM PET computers)
SUPERMONZ (for upgrade ROM PET/CBM computers)
SUPERMON4 (for 4.0 PET/CBM computers)
SUPERMON. V (for VIC-20 computers)
SUPERMONE4 (for Commodore 64 computers)
SUPERMON INST (instructions, BASIC)

Supermon 2 and 4 are “extensions” to the built-in MLM of the respective
machines. The other Supermon versions are complete monitors. These
are the “original” Supermon programs.

Remember that the programs on disk are “monitor generators,” that is,
they build the monitor for you. After the monitor has been built, you should
remove the builder program so that you don’'t end up with two copies. In
other words, after RUN type .X to return to BASIC, NEW to scrap the
builder, and then SYS4 or SYSA to return to the monitor whenever de-
sired.

The monitor is always built near the top of memory. Its entry address can
be determined by checking the TOM (top-of-memory) pointer. Monitors
are complex, but feel free to ask the monitor to disassemble itself for your
information. '

After Supermon is placed, you may load BASIC programs and use the
computer normally. Supermon will remain until you shut off the power.



APPENDIX J 359

SUPERMON + PET (for upgrade and 4.0 PET/CBM)
SUPERMON + VIC (for VIC-20 computers)
SUPERMON + &4 (for Commodore 64 computers)
SUPERMON + INST (instructions, Basic)

A revised version of SUPERMON; the commands closely correspond to
those of the built-in monitors of the Plus-4 and Commodore 128. Contains
a number of convenience features not found in the original SUPER—
MON.

UNICOPYE4

A utility for copying files from one disk to another, on a single drive; or
copying from one disk to cassette tape. The program is written entirely in
machine language, apart from the SYS that starts it up.

Information is copied from the selected files into RAM memory. When the
output phase begins, the data is then written to disk or tape.

UNICOPY INST
A BASIC program explaining how to use UNICOPYL4.

UNICOPY LIST
JUNICOPY ASSY

An assembly listing of program UNICOPY. Because UNICOPY is written
entirely in machine language, a number of tasks are performed in the
program that are often more conveniently done in BASIC. For example,
files are opened and closed by machine language. This makes the program
listing particularly interesting for students of these techniques.

Assembly listings have a somewhat different appearance from the machine
language programs this book has dealt with. The most visible difference
is in the use of symbolic addresses. If there is any confusion, concentrate
on the machine language half of the listing; that will clarify what's going
on. Program UNICOPY LIST allows output to the screen or to a Com-
modore printer.

For cassette tape output, direct calls to the ROM routines are made; that's
usually not good practice, but there’s little choice here.

The program is written in machine language so that the BASIC ROM can
be flippped out, allowing for more memory space in which to copy pro-
grams.

COPY — ALL (for PET/CBM)
COPY - ALL. &4 (for Commodore 64)



360

MACHINE LANGUAGE FOR COMMODORE MACHINES

A utility for copying files from one disk drive to another. You will find two
SYS commands in the BASIC part of the program: one to get the directory,
and the other to do the actual copying.

Information is copied from the selected file into a BASIC string that has
been set aside for the purpose. A similar technique may be found in the
simpler STRING THING.

CROSS REF (for PET/CBM)
CROSS REF k4 (for Commodore 64)
CROSS REF 128 (for Commodore 128)

This program prepares a cross-reference listing for any selected BASIC
program on disk. It cross-references both line numbers and variables. It's
a good way to document a BASIC program.

The program uses two table lookup techniques that may be confusing to
the beginning machine language program reader. First, it classifies all
characters received from BASIC in terms of “type”; this is done with a
table of 256 elements, one for each possible character. Second, it uses
a “state transition table” to record the nature of the job in progress; for
example, after meeting a GOSUB “token,” it will expect to receive a line
number.

The second SYS in the BASIC program is used to print the line numbers
of the cross-reference. It employs an efficient binary-to-decimal conversion
technique, which uses decimal mode.

FACTORS (for PET/CBM)
FACTORS VE4 (for VIC-20, Commodore 64, and Plus-4)
FACTORS 128 (for Commodore 128)

This program finds factors of numbers up to nineteen digits long. This
shows a powerful feature of machine language as opposed to BASIC: the
size of numbers is not limited by the language.

The program contains a number of useful techniques worth studying. First,
it allows a decimal input of any number up to 19 digits (a 64-bit or 8-byte
binary number). Second, to find factors it performs division with remainder.
Finally, to print results, it must convert binary-to-decimal, using the same
decimal mode technique as in CROSS REF.

The program does not try all divisors. After trying a few initial values (2,
3, and 5), it switches to a “30-counter” technique, trying only multiples of
30 plus 1, 7, 11, 17, 19, 23, and 29.

The maqhine language program is relocated by BASIC so that it starts at
hexadecimal 1300 (in the C128 version, 1LD00O) regardless of where it



APPENDIX J 361

was originally loaded. This was originally done to allow for the VIC-20’s
variable start-of-BASIC, which rambles according to the amount of extra
memory fitted. It turns out to be useful for study to have the program in a
fixed location; so the PET/CMB version was also set up in this way.

Students wishing to disassemble FACTORS will find the following infor-
mation useful:

VARIABLES (see note for C-128):
$0349—number of times a factor divides evenly
$034R—"equals” or “asterisk” character for formatting
$034B—zero suppression flag
$034C—30—counter

$0350 to $0357—value under analysis

$0358 to $035F—value work area

$0360 to $03E7—"base” value for 30-counter
$036C to $0379—division work area, including:
$036C to $036F—remainder

$0370 to $0377?—quotient

C-128 note: The above locations are sensitive in the C128; the above
variables have been relocated to page B. Thus, instead of $0349 given
above, address $0B49 will be used.

PROGRAM (see note for C128):

$1300: Main routine, including:
$1300: Start, clear work area
$131D: Get number digits from user
$1331 : Handle bad input

$133A: Begin factoring; check non-zero
$1350: Try divisors 2, 3, and 5
$1365: Try higher divisors

$13A2: Print remaining value.
$13BA: Prompt subroutine

$13C4 : Input and analyze digit
$140B: Multiply-by-two subroutine
$1415: Division subroutine
$147A: Try a divisor (short)
$147D: Try a divisor (long)
$1485: Check if remainder zero
$1492: Log factor if found

$14A2: Check if more to do
$14B9: Print value subroutine



362

MACHINE LANGUAGE FOR COMMODORE MACHINES

$14D0: Print factor subroutine

$1504 : Clear output area

$1S0F : Convert to decimal and print
$1535: Print a digit with zero suppression
$1565: 30-count values: 1,7,11, etc.

C128 note: Basic is located at quite a high address in this machine; the
start address of the program has been moved up to $1D00 to allow for
this. The above table is correct if the extra offset is allowed; thus $1415
above becomes $1E1S in the C128.

Even at machine language speeds, this program can take a long time to
analyze large factors and prime numbers. The RUN/STOP key is active

. to allow the user to stop the run.

PENTOMINOS INST (instructions)

PENTOMINOS (BASIC, all machines)

PENTOMINOS PET (for PET/CBM)

PENTOMINOS V&4 (for VIC-20, Commodore 64, and Plus-4)
PENTOMINOS 128 (for Commodore 128)

PENTOMINOS B128 (boot for B128 system)

+PENTO0128 (program for B128)

+ XFER (transfer sequence for B128)

This is a puzzle solving problem. Pieces are fitted into a selected rectan-
gular shape “visibly”—in other words, they may be seen on the screen
as they are tried.

The machine language programs follow the logic of the BASIC program
precisely. The “shape tables” have been rearranged for greater machine
language convenience (each piece is reached by indexing; the index range
of 0 to 255 dictates the piece being selected and its rotation).

The machine language program uses no indirect addressing and no sub-
routines. That is not necessarily good practice; it is largely a result of
writing the program logic to exactly match the BASIC program.

This program makes use of tables, and is worth studying for that reason.
It is also useful to examine the close relationship between the BASIC
program and its machine language equivalent, especially starting at line
2000 in BASIC.

As with FACTORS, the machine language program is relocated by BASIC
so that it starts at hexadecimal 1SED (with tables starting at $12FA)
regardiess of where it was originally loaded. Again, this is necessary for
the VIC-20 and proves to be convenient for study purposes on all ma-
chines—except the B-128 version, where this relocation does not happen.



APPENDIX J 363

Students wishing to disassemble PENTOMINOS will find the following
information useful:

VARIABLES (see C128 note):

$033C—piece number, BASIC variable P

$033D to $033E—variables W1 and W2, board size
$033F—P1, number of pieces placed

$0340 to $034B—U(..) log of pieces placed

$034C to $0357—T(..) rotation of piece

$0358 to $035C—X(..) location of piece

$035D to $0361—Y(..) location of piece

$0362 to $0370—tables to place a piece

$037F to $039C—board “edge” table

$039D to $03D&—B(...) the board.

C128 note: The above locations are sensitive in the C128; the above
variables have been relocated to page B. Thus, instead of $03E¢2 given
above, address $0BE2 will be used.

PROGRAM (see C128 note):

$15ED: Start, BASIC line 1070

$1SA4: Clear screen, BASIC line 1120
$15A9: Clear variables, set up

$15CC: Find space, BASIC line 2010
$1600: Get new piece, BASIC line 2030
$1E609: Try piece, BASIC line 2060
$168E : Put piece in, BASIC line 2120
$1BED: Print “Solution”, BASIC line 2170
$1701 : Undraw piece, BASIC line 2190
$17AB: Rotate piece, BASIC line 2260
$17BC: Give up on piece, BASIC line 2280
$17C1: Look for new piece, BASIC line 2300

C128 note: Basic is located at quite a high address in this machine; the
start address of the program has been moved up to $1FED to allow for
this. The above table is correct if the extra offset is allowed; thus $1600
above becomes $2000 in the C128.

The B128 version does not align to the above addresses. It is written to
illustrate the “boot” loading system needed for that computer. Programs
whose names begin with a + symbol are loaded by the bootstrap program;
do not try to load them directly.



364

MACHINE LANGUAGE FOR COMMODORE MACHINES

STRING THING (BASIC, for PET/CBM)

STRING THING V&4 (BASIC, for VIC-20, Commodore 64, Plus-4)
STRING THING 128 (Commodore 128)

]SAMPLE FILE

A simple machine language program , POKEable directly from BASIC, to
substitute for an INPUT# statement.

INPUT# has several limitations that sometimes make it awkward for use
with files:

e No more than 80 characters may be read.
e The comma or colon character will break up input.
® Leading spaces will disappear.

STRING THING reads everything up to the next RETURN or end of
file. It is pure BASIC, but POKEs machine language into the cassette
buffer area. It finds the first variable and uses it as an input buffer.

The 128 machine language program is brief and makes good study ma-
terial. Since the program is in bank 0 but the variable table is in bank 1,
it is necessary to call special Kernal routine INDFET ($FF74) to get
the information. Later, when the program wishes to place a character into
the string (which also resides in bank 1), it must call special Kernal routine
INDSTA ($FF77) to get it there. The manner in which the calls are set
up is instructive.



Glossary

The numbers in parentheses indicate the chapter in which the word or,
phrase is first used.

Absolute address: (5) An address that can indicate any location in
memory.

Accumulator: (3) The A register; the register used for arithmetic.

Address bus: (1) A bus that signals which part of memory is wanted
for the next memory operation.

Address mode: (5) The manner in which an instruction reaches in-
formation within memory. ‘

Address: (1) The identity of a specific location within memory.

Algorithm: (1) A method or procedure to perform a computing task.

Arithmetic shift or rotate: (4) A shift or rotate that usually preserves
the sign of a number.

Assembler: (2) A program that assembles or changes source code
into object code.

Assembly: (1) The process of changing source code into object code.

Assembly code: (1) Also called source code. A program written in a
somewhat human-readable form. Must be translated (“assembled”) before
use.

365



366

MACHINE LANGUAGE FOR COMMODORE MACHINES

Assembly language: (1) The set of instructions, or language, in which
a source program must be written before assembly.

Binary: (1) Something that has two possible states; a number based
on digits, each of which has two possible states.

Bit: (1) A binary digit; the smallest element of information within a
computer.

Bootstrap: (6) A program that starts up another program.

Breakpoint: (8) A location where the program will stop so as to allow
checking for errors.

Bug: (8) An error within a program.

Bus: (1) A collection of wires connecting many devices together.

Byte: (1) Eight bits of information grouped together; the normal mea-
sure of computer storage.

Calling point: (2) The program location from which a subroutine is
called into play; the subroutine will return to the calling point when finished.

Channel: (8) A path connecting the computer to one of its external
devices.

Comment: (8) A program element which does not cause the computer
to do anything, used as advice to the human program reader.

Commutative: (3) A mathematical operation that works both ways,
e.g., 3+4 gives the same result as 4+ 3.

Control bus: (1) A bus that signals timing and direction of data flow
to the various connected devices.

Data bus: (1) A bus used to transfer data between memory and the
microprocessor.

Debugging: (8) Testing a program to uncover possible errors.

Decimal: (1) A number system based on a system of ten digits; the
“normal” numbering system used by humans.

Decrement: (2) To make smaller by a value of one.

Descriptor: (6) A three-byte set of data giving a string’s length and
its location.

Disassembler: (2) A program that changes object code into assembly
code to allow inspection of a program.

Disassemble: (2) To change object code into assembly code. Similar
to a LIST in BASIC.

Dynamic string: (6) A string that must be placed into memory after
being received or calculated.

Effective address: (2) The address used by the processor to handle
data when executing an instruction. It may differ from the instruction ad-
dress (or “operand”) because of indexing or indirect addressing.

Event flag: (7) A flag that signals that some event has happened.

Execute: (1) To perform an instruction.



GLOSSARY B 367

File: (8) A collection of data stored on some external device.

Flag: (3) An on/off indicator that signals some condition.

Floating accumulator: (7) A group of memory locations used by BASIC
to perform calculations on a number.

Garbage collection: (6) A BASIC process in which active strings are
gathered together and inactive strings are discarded. On some computers
this can be quite time consuming.

Increment: (2) To make larger by a value of one.

Index: (2) To change an address by adding the contents of an index
register.

Index register: (2) The X or Y registers, which may be used for chang-
ing effective addresses.

Indirect address: (5) An addressing scheme whereby the instruction
contains the location of the actual address to be used; an address of an
address.

Instruction: (1) An element of a program that tells the processor what
to do.

Interrupt: (1) An event that causes the processor to leave its normal
program so that some other program takes control, usually temporarily.

Interrupt enable register: (7) A location within an |A chip that deter-
mines whether or not a selected event will cause an interrupt.

Interrupt flag: (7) A signal within the IA indicating that a certain event
has requested that an interrupt take place.

Interrupt flag register: (7) A location within the IA where interrupt
events can be detected and turned off if desired.

Interrupt source: (7) The particular event that caused an interrupt.
Since many things can do this, it's usually necessary to identify the specific
source of the interrupt.

Kernal: (2) Commodore’s operating system.

Label, symbolic address: (8) A name identifying a memory location.

Latch: (7) A flag that “locks in.”

Load: (1) To bring information from memory into the processor. A
load operation is a copying activity; the information still remains in memory.

Logical file number: (8) The identity of a file as used by the program-
mer.

Logical operator: (3) An operation that affects individual bits within a
byte: AND, ORA, and EOR.

Logical shift or rotate: (4) A shift that does not preserve the sign of
a signed number.

Machine code: (1) Instructions written in machine language.

Machine language: (1) The set of commands that allow you to give
instructions to the processor.



368

MACHINE LANGUAGE FOR COMMODORE MACHINES

Machine language monitor: (1) A program that allows communication
with the computer in a manner convenient for machine language pro-
gramming.

Memory: (1) The storage used by a computer; every location is iden-
tified by an address.

Memory mapped: (1) Circuits that can be reached by the use of a
memory address, even though they are not used for storage or memory
purposes.

Memory page: (5) A set of 256 locations in memory, all of whose
addresses have the same “high byte.”

Microcomputer: (1) A computer system containing a microprocessor,
memory, and input/output circuits. A computer built using microchips.

Microprocessor: (1) The central logic of a microcomputer, containing
logic and arithmetic. A processor built on a microchip.

Monitor: (1) A program that allows the user to communicate with the
computer. Alternatively, a video screen device.

Non-maskable interrupt, NMI: (7) A type of interrupt that cannot be
disabled.

Non-symbolic assembler: (2) An assembler in which actual addresses
must be used.

Object code: (1) The machine language program that will run in the
computer.

Octothorpe: (2) Sometimes called a nhumbers sign, a pounds sign, a
hash mark. The “#” symbol.

Operand: (1) The part of an instruction following the op code that
usually signals where in memory the operation is to take place.

Operating system: (1) A set of programs with a computer that takes
care of general work such as input/output, timing, and so on.

Operation code, op code: (1) The part of an instruction that says
what to do. :

Overflow: (3) Condition caused by an arithmetic operation generating
a result that is too big to fit in the space provided.

Pointer: (6) An address held in memory, usually in two bytes.

Processor status word, status register: (3) A processor register that
holds status flags.

Pull: (7) To take something from the stack.

Push: (7) To put something on the stack.

Random access memory, RAM: (1) The part of a computer's memory
where information can be stored and recalled.

Read: (1) To obtain information from a device.

Read only memory, ROM: (1) The part of a computer’'s memory where
fixed information has been stored. New information cannot be stored in a
ROM; it is preprogrammed.



GLOSSARY 369

Register: (1) Location within a processor where information can be
held temporarily.

Screen editing: (1) The ability to change the screen of a computer
and cause a corresponding change in memory.

Screen memory: (2) The part of a computer holding the information
displayed on the screen. Changing screen memory will change the screen;
reading screen memory will reveal what is on the screen.

Selected: (1) A chip or device that has been signaled to participate
in a data transfer. If the chip or device has not been selected, it will ignore
data operations.

Self-modifying: (7) A type of program that changes itself as it runs.
Rare, and not always considered good programming practice.

Signed number: (3) A number that holds a value that may be either
positive or negative.

Source code: (1) Instructions written in assembly language; usually,
the first code written by the programmer before performing an assembly.

Stack: (7) A temporary, or “scratch pad,” set of memory locations.

Status register, processor status word: (3) Within the processor, a
register that holds status flags.

Store: (1) To transfer information from the processor to memory. The
store operation is a copying activity: the information still remains in the
processor. '

Subroutine: (2) A set of instructions that can be called up by another
program.

Symbolic address, label: (7) A name identifying a memory location.

Symbolic assembler: (2) An assembler in which symbolic addresses
may be used. This is more powerful than a non-symbolic assembler.

Testable flag: (3) A flag that can be tested by means of a conditional
branch instruction. :

Two’s complement: (3) A method of representing negative numbers.
With single byte numbers, —1 would be represented by $FF.

Unsigned number: (3) A number that cannot have a negative value.

Write: (1) To send information to a device.

Zero page: (5) The lowest 256 locations in memory. Locations whose
addresses begin with hexadecimal $00. . .






A, X, and Y data registers, 9, 11,
46, 47, 142
Absolute addressing, 148
Absolute indexed mode, 77-78
Absolute indirect, 149
Absolute mode, 75-76
Accumulator addressing, 148
Accumulator mode, 74
ADC, Add memory to accumulator
with carry, 149
Addition, 58-60
Address, defined, 3
Address bus, 3-5
Addressing modes, 72-89,
148-149
Algorithms:
decimal to hexadecimal, 7
hexadecimal to decimal, 7
AND, “AND” memory with
accumulator, 121, 149
ASCII, 25, 50, 249-250
ASL, Shift left one bit (memory or
accumulator), 61-62, 149
Assemblers:
nonsymbolic, 27
symbolic, 143-144

BASIC:
breaking into, 124-125
infiltrating, 122-124

Index

linking with, 30-31
machine language exchanging
data, 104-108
memory layout, 92-102
variables, 102-105
BCC, Branch on carry clear, 87,
149
BCS, Branch on carry set, 149
BEQ, Branch on result zero, 149
Binary, defined, 2
Bit, defined, 2
BIT, Test bits in memory with
accumulator, 142, 149
Bit map mode on the 6566/6567,
328-330
BMI, Branch on result minus, 149
BNE, Branch on result not zero,
149
BOS, Bottom of string, 94-95
BPL, Branch on result plus, 149
Branches and branching, 79-80
Branch instructions, 141
BRK, Force-break, 72, 115, 116,
142, 143, 149, 279
Bus:
address, 4-5
control, 5
defined, 3
see also Data bus
BVC, Branch on overflow clear, 150

371



372 MACHINE LANGUAGE FOR COMMODORE MACHINES

BVS, Branch on overflow set, 150
Bytes, multiple, 58

C flag, 42, 45, 46
Character display mode of the
6566/6567, 325—-327
Character sets, 242-250
Chip information, 293-356
6520 (PIA) Peripheral interface
adaptor, 294-298
6522 (VIA) Versatile interface
adaptor, 309-318
6525 Tri-port interface, 352—-356
6526 (CIA) Complex interface
adaptor, 318-325
6545-1 (CRTC) CRT controller,
299-304
6560 (VIC) video interface chip,
304-309
6566/6567 (VIC Il) chip
specifications, 325-340
6581 (SID) Sound interface
device, chip specifications,
340-351
CHKIN subroutine, 136
CHKOUT subroutine, 133, 134
CHRGET subroutine, 122-123,
124
CHRGOT subroutine, 123,
124-125
CHROUT subroutine, 25, 133
CIA chip, 120
CLC, Clear carry flag, 150
CLD, Clear decimal mode, 150
CLlI, clear interrupt disable bit, 118
Clock speed, 132
CLOSE, 134
CLRCHN subroutine, 133, 135,
136, 137
CLV, Clear overflow flag, 150
CMP, Compare memory and
accumulator, 150

Color codes of the 6566/6567, 340

Commodore computers,
characteristics of, 156-166

Compare, 141

Comparing numbers, 61-62

Complex interface adaptor 6526,
318-325

Control bus, 5

CPX, Compare memory and index
X, 150

CPY, Compare memory and index
Y, 150

Data bus, 4-5
see also Bus

Data exchange, BASIC machine
language, 104-108

Debugging, 143

DEC, Decrement memory by one,
150

Decimal notation to hexadecimal,
7-8

DEX, Decrement index X by one,
150

DEY, Decrement index Y by one,
150

Disassembler, checking the,
29-30

Disk user’s guide, 357-364

Division by two, 63-64

Do nothing insruction, 72-74

Dynamic string, 94

Effective address, 32

End of BASIC, 92-93

Envelope rates of the 6581, 347

EOA, end of arrays, 93

EOR, exclusive or, 47, 48, 49, 121,
150

EOR instruction, 87

Exercises, 11-13, 52-54,
84-88, 252-278



INDEX

373

adding a command, 125-126,
256, 271-273

addition, 263-264

for Commodore C128, 257-276

file transfer, 274-276

input, 263

interrupt, 119-120, 254255,
270-271

loops, 262-263

output, 273-274

print, 26-27, 259-262

screen manipulation, 265-266

Extended color mode of the 6566/

6567, 328

File transfer program, 138-141
Flags, 40-46

Floating point variables, 103
Free memory, 94-95

GETIN, Gets an ASCII character,
25, 133
Glossary, 365—-369

Handshaking, 318-319

Hexadecimal notation, 5-6

Hexadecimal notation to decimal,
6-7

IA, Interface adaptor chips, 9, 50,
120-122, 142

IER, Interrupt enable register, 122

IFR, Interrupt flag register, 121

Immediate addressing, 148

Immediate mode, 74-75

Implied addressing, 148

Implied mode, 72-74

INC, Increment memory by one, 74,
150

Increment and decrement
instructions, 141

Indexed absolute addressing, 148

Indexed indirect addressing, 149
Indexed indirect mode, 83-84
Indexed zero page addressing, 148
Indexing modes:
absolute, 77-78
indirect, 81-82
zero page, 78
Index registers, 33
Indirect indexed addressing, 149
Indirect indexed mode, 81-82
Infiltrating BASIC, 122-124
Input, 50-52, 133
Input:
GETIN, 50-51
switching, 136-137
INS; increment, 72
Instruction execution, 10-11
Instruction set, 141-142, 147
alphabetic sequence, 149-151
Integer variables, 104
Interface adaptor chips, 9, 50,
120-122, 142
Interrupt enable register, 122
Interrupt flag register, 121
Interrupt processing, 40
Interrupt request, 115
INX, Increment index X by one, 150
INY, Increment index Y by one, 150
IRQ, Interrupt request, 115,
117-118

JMP, Jump to new location,
80-81, 141-142, 150

JSR, Jump to new location saving
return address, 114—-115, 150

Jumps in indirect mode, 80-81

Jump subroutine, 142

Kernal, 24

Kernal subroutines:
CHKIN, 136
CHROWUT, 25, 133, 134



374 MACHINE LANGUAGE FOR COMMODORE MACHINES

CLRCHN, 136
GETIN, 51
STOP, 52

LDA, Load accumulator with
memory, 150

LDX, Load index X with memory,
150

LDY, Load index Y with memory,
150

Light pen, 335

LOAD, 100-101

Logical and arithmetic routines, 141

Logical operators, 47-50

Loops, 32-34, 262—-263

LSR, Shift one bit right (memory or
accumulator), 63-64, 150

Machine language and BASIC
exchanging data, 104-108
Machine language linking with
BASIC, 30-31
Machine language monitor SAVE,
99-100
Memory, free, 94-95
Memory contents:
changing, 17
displaying, 17
Memory elements, 8-9
Memory interface of the 6566/6567,
337-340
Memory layout, BASIC, 92-102
Memory maps:
B series, 203-212
CBM 8032, 179-180
Commodore PLUS/4 “TED” chip,
201-203
Commmodore 64, 191-200
Commodore 128, 213-230
FAT-40 6545 CRT, controller,
179-180
“Original ROM” PET, 168-172

Upgrade and BASIC 4.0 systems,
172-179
VIC 20, 181-187
VIC 6522 usage, 189-190
VIC 6560 chip, 188
Microprocessor chips, 650X, 3—4
MLM, Machine language monitors,
14, 284
MLM commands, 16-17, 99-100
.G command, 17
.M command, 16
.R command, 16
Save command, 99-100
.X command, 16
Modes:
absolute indexed, 77-78
addressing, 72—-89
all of zero page, 78
indexed, indirect, 83-84
indirect, indexed, 81-82
jumps in indirect, 80-81
no address, 72-74
no address accumulator, 74
not quite an address, 74-75
relative address, 79-80
single address, 75-76
zero page, 76-78
Monitors:
basic, 14
display, 15
extensions, 27-29
machine language (MLM),
14-15, 290-291
machine language SAVE,
99-100
Multi-color character mode of the
6566/6567, 327
Multiplication, 62—-63
by two, 61-62

N flag, 42-43, 45, 46
Non-maskable interrupt (NMI), 115,
118



INDEX

375

NOP, No operation, 72-74, 85,
150
NOP BRK, No operation, break,
false interrupt, 142
Numbers:
comparing, 61-62
signed, 43-44, 58
unsigned, 58
Numeric variables, 104

OPEN, 133-134
ORA, “OR” memory with
accumulator, 47, 48, 49, 121,
150
Output, 133
controlling, 24-36
examples of, 135-136
switching, 133-135
Overflow, 44

PC, Program control register, 9
PEEK, 5, 104
PHA, Push accumulator on stack,
113, 150
PHP, Push processor status on
stack, 114, 150
PIA, Peripheral interface adaptor
6520, 120, 294-298
PLA, Pull accumulator from stack,
113, 114, 150
PLP, Pull processor status from
stack, 114, 150
Pointers, fixing, 102
POKE, 5, 26, 104
Program:
entering a, 18-19
running a, 30
Program Counter, 9-11, 149
Programming model, 151
Programming projects, 11-13,
52-54, 84-88, 252-278
adding a command, 125-126,
256

interrupt, 119-120, 254-255
print, 26-27
Programs, file transfer, 138—141
Pull information, 142
Push information, 142
Push processor status, 114

RAM, Random access memory, 8
Register map of the 6566/6567,
338-339
Registers, 9-10, 18
A X, and Y, 9, 11, 46, 47
index, 33
status, 45-46
Relative addressing, 148-149
mode, 79-80
ROL, Rotate one bit left (memory or
accumulator), 62, 150
ROM, Read only memory, 8-9
link, 80—81
ROR, Rotate one bit right (memory
or accumulator), 63-64, 150
Rotate, comments, 64-65
RTI, Return from interrupt, 115, 150
RTS, Return from subroutine, 65,
114-115, 151
RUN STOP key, 51-52

6502 Instruction set, 147

6509 Instruction set, 147

6510 Instruction set, 147

6520 (PIA) Peripheral interface
adaptor, 294-298

6522 (VIA) Versatile interface
adaptor, 309-318

6525 Tri-port interface, 352-356

6526 (CIA) Complex interface
adaptor, 318-325

6545-1 (CRTC) CRT controller,
299-304

6560 (VIC) Video interface chip,
304-309



376 MACHINE LANGUAGE FOR COMMODORE MACHINES

6566/6567 (VIC 11) chip
specifications, 325-340
6581 (SID) Sound interface device,
chip specifications, 340-351
7501 Insruction set, 147
SAVE, 34, 141 '
stopgap, 34-35
SBC, Subtract memory from
accumulator with borrow, 151
Screen codes, 242-250
Screen manipulations, 84—-88
Screen memory address, 21
SEC, Set carry flag, 151
SED, Set decimal mode, 151
SEl, Set interrupt disabler status,
118, 151
Shift, comments on, 64-65
Shift and rotate instructions,
61-63, 74, 141
Signed numbers, 43—-44, 58
Single address mode, 75-76
SOA, Start of arrays, 93
SOB, Start of BASIC, 92
Sound interface device (SID) chip
specification 6581, 340-351
SOV, Start of variables, 93,
97-102
SP, Stack pointer register, 9
SR, Status register, 9
STA, Store accumulator in memory,
151
Stack, 112-115
Status register, 45-46
Stop, 25, 51-52"
Stopgap save command, 34-35
Storage, temporary, 112-115
String variables, 103
STX, Store index X in memory, 151
STY, Store index Y in memory, 151
Subroutines:
CHROUT, 25
GETIN, 25, 50-51

KERNAL, 24

prewritten, 24—-25

STOP, 25, 51-52
Subtraction, 60-61
Supermon program, 27, 284—-289
Supermon+ program, 290-291
Symbolic assemblers, 143-144
SYS, Go to the address supplied,

116

TAX, Transfer accumulator to index
X, 113, 151

TAY, Transfer accumulator to index
Y, 72, 113, 151

Testable flags, 40-45

Time of day clock, 321

Timing, machine language program,
132-133

TOM, Top of memory, 93—-94

Tri-port interface 6525, 352—-356

TSX, Transfer stack pointer to
index X, 151

Two’s complement, 43

TXA, Transfer index X to
accumulator, 151

TXS, Transfer index X to stack
register, 151

TYA, Transfer index Y to
accumulator, 151

Uncrashing techniques, 280-281

Unsigned numbers, 58

USR, Go to a fixed address and
execute machine code there as
a subroutine, 116-117

Variables, 102-105

V flag, 44, 45, 46

VIA, Versatile interface adaptor,
120-121

VIC Il chip specifications 6566/
6567, 325-340



INDEX

377

(VIC) Video interface chip 6560,
304-309

Wedge, 122-124
program, 124-125

Zero page addressing, 148

Zero page mode, 76-78
indexed, 78

Z flag, 40-41, 45, 46









Pull up a chair and sit down with Jim Butterfield—the Commodore guru
himself—and get the answers to all your questions about machine lan-
guage with. . .

Machine Language for the
Commodore 64, 128, and Other

Commodore Computers
Revised & Expanded Edition/by Jim Butterfield

Authored by the world-renowned expert on all facets of the Commodore,
this comprehensive tutorial introduces programmers of all levels to the
principles of machine language—what it is, how it works, and how to
program with it. With speed and versatility, you'll share in Butterfield’s
vast experience as you:

® Learn-by-doing—with easy-to-follow, step-by-step instructions, exam-
ples, and exercises

® Uncover the critical elements to understanding machine language,
machine architecture, and machine language tools

® Master principles of good coding practices—for more efficient and
etfective programming

® Explore the inner workings of the Commodore, write and enter a simple
program, learn the details behind output, flags, logic, input, subrou-
tines, address modes, and more!

Not only an excellent tutorial, it's an invaluable resource you'll refer to
again and again!

TABLE OF CONTENTS

First Concepts / Controlling Output / Flags, Logic, and Input / Numbers,
Arithmetic, and Subroutines / Address Modes / Linking BASIC and
Machine Language / Stack, USR, Interrupt, and Wedge / Timing, Input/
Output, and Conclusion / Appendix A: The 6502/6510/6509/7501 Instruc-
tion Set / Appendix B: Some Characteristics of Commodore Machines /
Appendix C: Memory Maps / Appendix D: Character Sets / Appendix E:
Exercises for Alternative Commodore Machines / Appendix F: Floating
Point Formats / Appendix G: Uncrashing / Appendix H: A Do-It-Yourself
Supermon / Appendix I: A Chip Information / Appendix J: Disk User's
Guide / Index

Cover illustration by David Joly

Cover Design by Ben Santora
A Brady Book « Published by Prentice Hall Press « New York
0""21898"66417"" 4

ISBN 0-89303-kk4-1





